亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

在自然語言處理(NLP)中,許多任務涉及結構化預測:預測由一組相互依賴的變量組成的結構化輸出。這允許從非結構化的原始文本中提取有用的信息,這對于人類和機器的下游任務和分析都有益處。為了獲得自動化模型,主要范式是以數據驅動的監督學習方式進行。在這個范式中,主要的瓶頸是手動注釋數據的可用性,這通常是昂貴且耗時的。此外,我們通常希望將模型擴展到各種新場景,比如不同的領域或語言。如果訓練實例不足以涵蓋目標場景,模型性能可能會顯著下降,而在所有這些新情況下注釋大量數據實例是昂貴且低效的。 為了減輕這個問題并減少結構化預測模型對大量注釋的依賴,我們需要考慮模型和數據兩個方面,這是數據驅動機器學習的主要驅動力。與這些核心方面相關,我們探討了三個方向。首先,我們研究模型設計中的結構化建模,其中涉及如何對復雜的結構化輸出進行建模和預測。這對于結構化預測任務特別重要,因為這些任務通常具有大的輸出空間。此外,在模型和數據的交互方面,我們研究了遷移學習,其中利用相關數據來幫助低資源的目標任務。在這種情況下,如何設計更不受源數據和目標數據之間差異影響的模型對于遷移的成功也至關重要。最后,我們探討主動學習,重點關注數據本身。當資源有限時,很難獲得大量注釋的實例,但注釋一小部分實例是可行的。通過選擇信息量豐富的實例集的策略,可能只需要較少的手動注釋就可以實現令人滿意的性能。

這篇論文包括三個部分,對應這三個方向。在第一部分中,我們研究了深度神經模型中結構化輸出建模的影響。我們發現,結構化建模在句子級別的完全匹配和更高效的模型方面帶來了好處。我們進一步將分析擴展到低資源情景,并研究結構約束與訓練數據規模之間的交互作用。在第二部分中,我們研究了一系列相關的結構化任務,并發現來自相關數據的監督,例如來自相同任務但不同語言(跨語言學習)以及來自相關任務(多任務學習)的監督,可以是有益的,尤其是在利用那些對源數據和目標數據差異關注較少的模型時。最后,在第三部分中,我們對NLP中的結構化預測進行了系統的主動學習研究。特別是,我們分析了使用部分結構進行注釋和學習的有效性,這可以提高主動學習的數據效率。此外,我們展示了將主動學習與使用主動學習數據池中未標記實例的自訓練相結合,可以帶來進一步的改進。

付費5元查看完整內容

相關內容

機器學習和離散優化是計算機科學的兩大支柱,也是廣泛用于商業、科學和技術領域的分析、預測和決策的工具。然而,機器學習和離散優化方法發展的前提在根本上有所不同。學習依賴于數據,并且通常很少或根本不需要人工設計。其優點在于普適性和幾乎全面的適用性,但許多模型無法有效地整合領域知識或特定約束,缺乏可解釋性,且其預測存在不確定性,這在實踐中阻礙了其應用。相反,離散優化的算法通常針對特定應用進行定制,如組合問題。他們精確的形式化提供了洞察和分析,而且他們的輸出通常帶有性能保證。然而,與機器學習不同,離散優化的方法在實例之間不能泛化,這在實際應用中是一個不足。

//www.research-collection.ethz.ch/handle/20.500.11850/629004 鑒于機器學習和離散優化的互補優缺點,很自然地會問到這兩個領域的方法在多大程度上可以有益地結合起來。這是我們在這篇論文中提出的問題,并通過展示用于和用于離散優化的學習方法來肯定地回答這個問題。

在用于離散優化的學習中,我們關注的是涉及離散變量的非監督學習模型的梯度估計。這些模型廣泛存在,并在正則化、可解釋性、模型設計和算法集成方面提供了好處。我們依賴離散優化的高效方法來通過松弛設計這些模型的新梯度估計器,并通過實驗證明它們使學習更加高效、有用和高效。

在用于學習的離散優化中,我們專注于使用機器學習提高整數規劃的分支和界求解器的性能。我們用針對特定應用的學習模型替換這些求解器中用于切割平面選擇和潛水的現有子程序。我們的方法借鑒了模仿學習和生成建模的思想,具有可擴展性和有效性。在一系列實驗中,我們的模型超過了現有的啟發式方法以及競爭的機器學習方法,以促進求解器性能的整體改進。

付費5元查看完整內容

本論文旨在設計有效的方法,將已知結構融入機器學習模型中。結構的產生源于問題的形式化(例如,物理約束、聚合約束)或模型所需的屬性(能效、稀疏性、魯棒性)。在許多情況下,建模者對他們正在建模的系統有一定的了解,這必須以精確的方式進行加強。這對于提供充分的安全保證,或提高系統效率是必要的:用更少的數據訓練系統,或減少計算成本。本論文在各種設置中提供了方法,這些方法建立在連續的、受約束的優化和可微統計建模(也稱為深度學習)的兩個基礎領域之上。

論文的第一部分集中于設計和分析帶有凸約束的優化問題的高效算法。特別是,它關注Frank-Wolfe算法的兩個變體:第一個變體提出了一個快速的回溯線搜索算法,以自適應地設置全梯度設置中的步長;第二個變體提出了一個快速的隨機Frank-Wolfe算法,用于受約束的有限和問題。我還描述了對開源受約束優化軟件的貢獻。這篇論文的第二部分關注設計確切強制某些約束的深度學習模型:基于物理的約束,以及概率預測模型的聚合約束。這部分利用了雙層優化模型,并利用可微優化約束復雜神經網絡的輸出。我們證明,可以在復雜的非凸模型上強制執行復雜的非線性約束,包括概率模型。

這些例子展示了混合模型的威力,這些模型結合了數據驅動的學習,利用如深度神經網絡這樣的復雜非線性模型,并允許高效算法的經過深入研究的優化問題。這些混合模型幫助高度靈活的模型捕獲結構模式,有時甚至不需要任何數據訪問就能實現出色的性能。

近年來,機器學習模型在旨在匹配人類感知的領域(計算機視覺、音頻處理、自然語言)中取得了無數的成功。這些成功是通過理解如何利用模型輸入中的結構來實現的:圖片、聲音、文本、代碼,甚至分子的數字表示[1, 2, 3, 4]。為了在工程和科學中達到相似的成功水平,模型必須納入額外的結構性約束:模型的內部和輸出都應滿足某些關鍵屬性(例如,模型內部的稀疏或低秩權重,以及模型輸出的物理方程)。盡管優化領域長期以來一直關注如何實施這些約束,但將優化方法帶來的結構與數據驅動模型的靈活性結合起來的努力是非常近期的[5, 6]。這篇論文提出了新穎、高效的方法,將結構融入機器學習模型中,無論是在模型的內部(第一部分)還是在模型的輸出(第二部分)。我們認為這樣的混合系統將是為復雜的物理應用開發高性能系統的關鍵。機器學習中的結構性約束最近再次將Frank-Wolfe(FW)算法家族推到了聚光燈下。Frank-Wolfe算法允許對決策變量(例如,模型權重)施加凸約束,同時保持決策變量的稀疏表示。這篇論文的第一部分開發了新穎的Frank-Wolfe算法變體,以提高算法的實際速度。此外,我們還描述了我們的兩個開源優化庫:COPT和CHOP。在實際環境中部署決策制定系統時,系統必須執行物理約束:差異可能導致未定義的決策。例如,如果我們預測一個地區不同粒度的水庫的入水流量,不同級別的預測必須執行質量守恒;否則,會有未被計入的水量,破壞決策制定系統。這篇論文的第二部分考慮了將物理約束納入深度學習模型的問題,采用偏微分方程和分層質量守恒的形式。

付費5元查看完整內容

在自然語言處理(NLP)中,許多任務都涉及到結構化預測:預測由一組相互依賴的變量組成的結構化輸出。這允許從非結構化的原始文本中提取有用的信息,這對下游任務和人類與機器的分析都是有益的。為了獲得自動模型,主要范式是采用數據驅動的監督學習方式。在這種范式中,主要的瓶頸是手工標注數據的可用性,這通常是昂貴且耗時的。此外,我們通常希望將模型擴展到各種新的場景,例如在不同的領域或語言中。如果訓練實例不足以覆蓋目標場景,模型的性能可能會大幅下降,而在所有這些新情境中標注大量的數據實例又是昂貴且低效的。

為了緩解這個問題并減少結構化預測模型對大量標注的依賴,我們需要考慮模型和數據的兩個方面,這些是數據驅動機器學習的主要動力。關于這兩個核心方面,我們研究了三個方向。首先,我們研究了模型設計中的結構化建模,這涉及到如何對復雜的結構化輸出進行建模和預測。這對于通常具有大輸出空間的結構化預測任務尤為重要。此外,在模型和數據的交互上,我們研究了遷移學習,其中相關數據被用來幫助低資源目標任務。 在這種情況下,如何設計對源數據和目標數據資源之間的差異更不敏感的模型對于轉移的成功也是至關重要的。最后,我們探索了有關數據本身的主動學習。當資源有限時,很難獲得大量的標注實例,但標注一小部分是可行的。通過選擇一個有信息量的實例集,可能需要更少的手工標注就能達到令人滿意的性能。這篇論文包括三部分,對應這三個方向。在第一部分,我們研究了深度神經模型中結構化輸出建模的影響。我們發現,結構化建模在句子級完全匹配上帶來了好處,并有更高效的模型。我們進一步擴展了對低資源場景的分析,并研究了結構約束和訓練數據大小的交互。在第二部分,我們研究了一系列相關的結構化任務,發現從相關數據(例如來自同一任務但在不同語言中的數據(跨語言學習)和來自相關任務的數據(多任務學習))得到的監督可以是有益的,特別是如果使用那些對源和目標差異關心較少的模型。最后,在第三部分,我們對NLP中的結構化預測的主動學習進行了系統性的調查。特別地,我們分析了使用部分結構進行標注和學習的有效性,這可以提高主動學習的數據效率。此外,我們展示了將主動學習與自學習結合,使用來自主動學習數據池的未標注實例可以帶來進一步的改進。

付費5元查看完整內容

多智能體強化學習(MARL)為一組人工智能代理提供了一個有原則的框架,使它們能夠在人類專家水平上學習協作和/或競爭行為。多智能體學習環境本質上比單智能體學習解決了更復雜的問題,因為代理既與環境互動,也與其他代理互動。特別是,在MARL中,多個代理同時學習,導致在遇到的經驗中產生自然的非平穩性,因此要求每個代理在其他代理策略可能發生較大變化的情況下調整其行為。本論文旨在從三個重要主題來解決多智能體學習中的非平穩性挑戰:1)適應性,2)收斂性,3)狀態空間。第一個主題解答了代理如何通過開發新的元學習框架來學習有效的適應策略,以應對其他代理不斷變化的策略。第二個主題解答了代理如何適應并影響聯合學習過程,使得基于新的博弈論解決方案概念,策略在學習結束時收斂到更理想的極限行為。最后,最后一個主題解答了如何基于知識共享和上下文特定抽象來減小狀態空間大小,從而使學習復雜性受到非平穩性的影響較小。總之,本論文發展了理論和算法貢獻,為上述關于非平穩性的主題提供了有原則的解答。本論文中開發的算法在多智能體基準領域的多樣化套件中展示了其有效性,包括混合激勵、競爭和合作環境的全譜。

付費5元查看完整內容

在過去的幾十年里,強化學習(RL)已經成為解決復雜控制任務的有效方法。馬爾可夫決策過程(MDP)是描述人工智能與環境之間順序交互的典型模型。在MDP中,智能體感知環境的狀態并執行操作。因此,環境轉換到一個新的狀態,并產生一個獎勵信號。智能體的目標包括學習一個策略,即最大化長期獎勵的動作配方。在傳統的環境設置中,環境被假定為一個固定的實體,不能從外部改變。然而,現實世界中存在一些場景,在這些場景中,環境可以在有限的程度上進行修改,因此,對其某些特性采取行動可能是有益的。我們將此活動稱為環境配置,它可以由智能體本身或外部實體(如配置器)執行。盡管環境配置在實際應用中經常出現,但文獻中很少探討這個主題。在本論文中,我們旨在形式化和研究環境配置的各個方面。其貢獻包括理論、算法和實驗,可以大致細分為三個部分。論文的第一部分介紹了一種新的可配置馬爾可夫決策過程(Configurable Markov Decision Processes, Conf-MDPs)的形式化描述方法,用于描述環境提供的配置機會。在直覺層面上,環境、策略和學習過程之間存在著緊密的聯系。本文探討了環境配置的不同細微差別,根據配置是完全輔助智能體的學習過程(合作設置),還是由具有可能與智能體的目標沖突的配置器(非合作設置)指導。在第二部分中,我們專注于協作的Conf-MDP設置,并研究了由尋找一個agent策略和一個環境配置組成的學習問題,該策略和環境配置共同優化長期回報。本文提供了有限和連續Conf-MDPs的求解算法,并在合成域和真實域上進行了實驗評估。第三部分介紹了Conf-MDP框架的兩個具體應用:策略空間識別和控制頻率自適應。在前者中,我們利用環境可配置性來提高智能體的感知和驅動能力。在后者中,分析了特定的可配置環境參數,即控制頻率,如何影響批量強化學習算法的性能。

付費5元查看完整內容

抽象的知識深深根植于許多基于計算機的應用中。從數據中自動獲取知識是人工智能的一個重要研究方向。機器學習提供了相應的算法。其中一個研究領域專注于開發受生物啟發的學習算法。各自的機器學習方法基于神經學概念,因此它們可以系統地從數據中獲取知識并存儲它。可以歸類為深度學習模型的一類機器學習算法被稱為深度神經網絡(deep Neural Networks, DNNs)。DNNs由多個人工神經元組成,這些神經元按層排列,通過使用反向傳播算法進行訓練。這些深度學習方法在從高維數據中推理和存儲復雜知識方面表現出驚人的能力。

然而,DNN會受到一個問題的影響,即無法將新知識添加到現有的知識庫中。不斷積累知識的能力是促進進化的重要因素,因此是發展強大人工智能的先決條件。所謂的“災難性遺忘”(CF)效應導致DNN在對新數據分布進行幾次訓練迭代后,立即失去已經派生的知識。只有用過去和新數據的聯合數據分布進行昂貴的再訓練,才能抽象出整個新知識集。為了抵消這種影響,各種旨在緩解甚至解決CF問題的技術已經并且仍在開發中。這些已發表的CF回避研究通常暗示他們的方法對各種持續學習任務的有效性。本文的研究背景是基于深度學習方法的持續機器學習。第一部分是面向實際應用的評估協議的開發,該協議可以用于研究不同的機器學習模型對協同效應的抑制。在第二部分,綜合研究表明,在面向應用的需求下,所研究的模型都不能表現出令人滿意的持續學習效果。第三部分提出了一種新的深度學習模型——深度卷積高斯混合模型(deep Convolutional Gaussian Mixture Models, DCGMMs)。DCGMMs建立在無監督高斯混合模型(GMMs)的基礎上。GMM不能被認為是深度學習方法,它必須在訓練前以數據驅動的方式進行初始化。這些方面限制了GMM在持續學習場景中的使用。

本文提出的訓練過程使使用隨機梯度下降(SGD)(應用于DNN)來訓練GMMs成為可能。集成退火方案解決了數據驅動的初始化問題,這是GMM訓練的先決條件。實驗證明,新的訓練方法在不迭代其缺點的情況下,可以得到與傳統方法相當的結果。另一個創新是gmm以層的形式排列,這類似于DNN。將GMM轉換為層使其能夠與現有層類型相結合,從而構建深層體系結構,從而可以用較少的資源派生出更復雜的知識。在本工作的最后一部分,研究DCGMM模型的持續學習能力。為此,提出一種稱為高斯混合重放(GMR)的重放方法。GMR利用DCGMM的功能來描述數據樣本的生成和重現。與現有CF回避模型的比較表明,在面向應用的條件下,GMR可以取得類似的持續學習效果。總之,所提出的工作表明,確定的面向應用的需求仍然是“應用”持續學習研究方法的開放問題。此外,新的深度學習模型為許多其他研究領域提供了一個有趣的起點。

付費5元查看完整內容

如何對不同設置下的序列數據建模是一個跨許多領域的重要機器學習問題,包括對時間序列數據、自然語言文本和事件流的預測。不同字段中的順序數據通常具有不同的特征。例如,自然語言文本可以被視為一個離散變量的序列,而傳感器網絡信號可以被視為一個連續向量空間中的多變量序列。為了在各種各樣的現實世界領域中開發成功的神經網絡模型,我們需要根據數據和問題的性質定制架構和算法。本文設計了新穎高效的神經網絡解決方案,用于序列建模和應用。具體來說,這些貢獻可以分為四部分。

第一部分重點研究了多變量序列數據中變量之間的相關性,如多傳感器的時間序列,并提出了新的算法,即深度可分圖卷積網絡(DSGC)(第二章)[60]和分解遞歸神經網絡(FRNN)(第三章)[63],以利用相關模式,提高預測精度。

第二部分側重于將人類先驗知識用于時序數據依賴模式的時間建模。具體地說,我們提出了一種新的方法,命名為長期和短期時間序列網絡(LSTNet)(第4章)[59],它被證明是特別有效的捕獲各種周期模式在不同的應用。

第三部分著重于序列分類任務中Transformers 的高效算法。具體來說,通過識別常用的Transformer架構中的計算冗余,并提出一種新的替代方案,即漏斗Transformers (第5章)[27],我們實現了更好的計算與精度之間的權衡。

第四部分側重于事件之間時間關系的建模/預測,其中的主要挑戰是從稀疏標記的數據中有效學習。我們通過結合高級數據增強、半監督學習和人類先驗知識的引入來應對這一挑戰(第6章)。因此,我們大大提高了這項任務的最先進性能。

付費5元查看完整內容

深度神經網絡在計算機視覺、機器學習和人工智能等許多領域都取得了顯著的經驗成功。隨著經驗上的成功,深度學習在理論上已被證明在表達能力方面具有吸引力。即具有一個隱層的神經網絡可以近似任意連續函數,而具有更深層次的神經網絡可以近似具有較少參數的特定類函數。表達理論指出,在一定規模的神經網絡中,存在近似目標函數的最優參數向量。然而,在神經網絡優化過程中,表達理論并不能保證能夠有效地找到這樣的最優向量。優化是深度學習的關鍵步驟之一,因為對數據的學習是通過優化來實現的,即對深度神經網絡的參數進行優化,使網絡與數據保持一致的過程。這個過程通常需要非凸優化,這對于一般的高維問題來說是不可擴展的。事實上,一般來說,神經網絡的優化是不可擴展的,除非對其架構做額外的假設。

本文通過研究可擴展性中的一些基本瓶頸,如次最優局部極小值和鞍點,研究了各種深度神經網絡體系結構的非凸優化問題。特別地,對于深度神經網絡,我們給出了局部極小值和臨界點的各種保證,以及梯度下降找到的點。證明了在深度神經網絡非凸優化中,對實際度進行適度的過參數化可以保證梯度下降找到全局最小值。此外,即使沒有過度參數化,我們表明,無論是理論還是經驗,增加參數的數量,改善臨界點和局部極小值的值向全局最小值。我們還證明了殘差神經網絡局部極小值的理論保證。此外,本文提出了一個統一的理論來分析這些特定架構之外的各種深度神經網絡的臨界點和局部極小值。這些結果表明,盡管在理論的最壞情況和最壞的架構中存在可伸縮性問題,但我們可以避免這個問題,并在實踐中對各種有用架構的大型問題進行良好的可擴展性。

付費5元查看完整內容

在一個特定的數據集上訓練一個強大的神經預測器執行一項任務的主流NLP范式取得了在各種應用上的成功(如:情感分類、基于廣度預測的問答或機器翻譯)。然而,它建立在數據分布是平穩的假設之上,即。在訓練和測試時,數據都是從一個固定的分布中取樣的。這種訓練方式與我們人類在不斷變化的信息流中學習和操作的方式不一致。此外,它不適合于真實世界的用例,在這些用例中,數據分布預計會在模型的生命周期中發生變化。

本文的第一個目標是描述這種偏移在自然語言處理環境中可能采取的不同形式,并提出基準和評價指標來衡量它對當前深度學習體系結構的影響。然后,我們繼續采取步驟,以減輕分布轉移對NLP模型的影響。為此,我們開發了基于分布魯棒優化框架的參數化重構方法。從經驗上講,我們證明了這些方法產生了更魯棒的模型,正如在選擇的現實問題上所證明的那樣。在本文的第三部分和最后一部分,我們探索了有效地適應現有模型的新領域或任務的方法。我們對這個主題的貢獻來自于信息幾何學的靈感,獲得了一個新的梯度更新規則,緩解了適應過程中災難性的遺忘問題。

我們從評估開始,因為分布轉移特別難以描述和測量,特別是在自然語言方面。這部分是由于數據缺乏規范的度量結構。換句話說,如何有效地衡量兩個句子之間的語義相似度還不清楚,因此沒有直接的方法來衡量兩個樣本之間的差異,更不用說兩種分布了。因此,作為解決分布偏移的第一步,我們提出了一個新的基準(第3章)和評估指標(第4章),分別評估域偏移和對抗擾動的魯棒性。有了這些工具在手,我們開始構建魯棒的模型,這些模型經過訓練,即使在沒有關于轉移本質的明確信息的情況下,對分布轉移也不那么敏感。這是通過利用訓練分布中的數據多樣性來實現的,以確保在訓練數據(子群體)中存在的各種領域上的統一性能。具體來說,我們制定了一個分布魯棒優化框架的參數化版本,該框架允許訓練模型對子群體轉移更為穩健(第5章和第6章)。最后,在靜態環境中學習從根本上是次優的:我們不能期望我們的模型在每一個可能的未來環境中都表現良好,我們必須能夠使它們適應我們遇到的任何新情況。因此,我們研究了一種機制,通過這種機制,我們能夠根據新的證據微調訓練模型,而不會忘記之前獲得的知識(第7章)。

//www.zhuanzhi.ai/paper/c5e7a9742d6a6313d63c5976499166dc

付費5元查看完整內容

在生態學、流行病學和天文學等許多應用領域中,仿真模型被用來研究發生在自然界中的復雜現象。通常,這些模型的似然函數的分析形式要么是不可用的,要么是太昂貴而無法評估,從而使統計推斷復雜化。無概率推理(LFI)方法,如近似貝葉斯計算(ABC),基于用模型的正演模擬代替難以處理的似然評估,已成為對仿真模型進行推理的一種流行方法。然而,當前的LFI方法在計算和統計方面存在一些挑戰。特別是,標準的ABC算法需要大量的仿真,這使得它們在前向仿真代價昂貴的情況下不可行。

本文討論了計算代價高的模型的無概率推理。主要貢獻是基于高斯過程代理模型的LFI一致性框架。GP模型允許對仿真模型輸出的平滑假設進行編碼,以減少所需的仿真量。此外,由于模擬預算有限,所產生的基于模型的后驗逼近的不確定性可以被量化。我們提出貝葉斯實驗設計策略來選擇評估地點,以使計算成本最小化。順序設計(每次選擇一個模擬)和批處理策略(允許利用并行計算)都是推導出來的。除了LFI場景外,本文提出的方法也適用于可能性可以評估但代價昂貴的情況。

本質上,所提出的框架可以被視為概率數值方法的LFI對等物,如貝葉斯優化,用于優化昂貴的目標函數,貝葉斯求積,用于計算昂貴函數的積分。我們通過大量的經驗模擬證明了所提出的LFI方法的優點。文中還對所提算法進行了理論分析,并討論了它們與其他GP代理方法的關系。

//aaltodoc.aalto.fi/handle/123456789/46310

付費5元查看完整內容
北京阿比特科技有限公司