亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

抽象的知識深深根植于許多基于計算機的應用中。從數據中自動獲取知識是人工智能的一個重要研究方向。機器學習提供了相應的算法。其中一個研究領域專注于開發受生物啟發的學習算法。各自的機器學習方法基于神經學概念,因此它們可以系統地從數據中獲取知識并存儲它。可以歸類為深度學習模型的一類機器學習算法被稱為深度神經網絡(deep Neural Networks, DNNs)。DNNs由多個人工神經元組成,這些神經元按層排列,通過使用反向傳播算法進行訓練。這些深度學習方法在從高維數據中推理和存儲復雜知識方面表現出驚人的能力。

然而,DNN會受到一個問題的影響,即無法將新知識添加到現有的知識庫中。不斷積累知識的能力是促進進化的重要因素,因此是發展強大人工智能的先決條件。所謂的“災難性遺忘”(CF)效應導致DNN在對新數據分布進行幾次訓練迭代后,立即失去已經派生的知識。只有用過去和新數據的聯合數據分布進行昂貴的再訓練,才能抽象出整個新知識集。為了抵消這種影響,各種旨在緩解甚至解決CF問題的技術已經并且仍在開發中。這些已發表的CF回避研究通常暗示他們的方法對各種持續學習任務的有效性。本文的研究背景是基于深度學習方法的持續機器學習。第一部分是面向實際應用的評估協議的開發,該協議可以用于研究不同的機器學習模型對協同效應的抑制。在第二部分,綜合研究表明,在面向應用的需求下,所研究的模型都不能表現出令人滿意的持續學習效果。第三部分提出了一種新的深度學習模型——深度卷積高斯混合模型(deep Convolutional Gaussian Mixture Models, DCGMMs)。DCGMMs建立在無監督高斯混合模型(GMMs)的基礎上。GMM不能被認為是深度學習方法,它必須在訓練前以數據驅動的方式進行初始化。這些方面限制了GMM在持續學習場景中的使用。

本文提出的訓練過程使使用隨機梯度下降(SGD)(應用于DNN)來訓練GMMs成為可能。集成退火方案解決了數據驅動的初始化問題,這是GMM訓練的先決條件。實驗證明,新的訓練方法在不迭代其缺點的情況下,可以得到與傳統方法相當的結果。另一個創新是gmm以層的形式排列,這類似于DNN。將GMM轉換為層使其能夠與現有層類型相結合,從而構建深層體系結構,從而可以用較少的資源派生出更復雜的知識。在本工作的最后一部分,研究DCGMM模型的持續學習能力。為此,提出一種稱為高斯混合重放(GMR)的重放方法。GMR利用DCGMM的功能來描述數據樣本的生成和重現。與現有CF回避模型的比較表明,在面向應用的條件下,GMR可以取得類似的持續學習效果。總之,所提出的工作表明,確定的面向應用的需求仍然是“應用”持續學習研究方法的開放問題。此外,新的深度學習模型為許多其他研究領域提供了一個有趣的起點。

付費5元查看完整內容

相關內容

持續學習(continuallearning,CL) 是 模 擬 大 腦 學 習 的 過 程,按 照 一 定 的 順 序 對 連 續 非 獨 立 同 分 布 的 (independentlyandidenticallydistributed,IID)流數據進行學習,進而根據任務的執行結果對模型進行 增量式更新.持續學習的意義在于高效地轉化和利用已經學過的知識來完成新任務的學習,并且能夠極 大程度地降低遺忘帶來的問題.連續學習研究對智能計算系統自適應地適應環境改變具有重要的意義

基于圖的深度學習已經在各種工業環境和應用中取得了成功。然而,由于來自不同領域的圖可能表現出不同的屬性,并且可能具有顯著的噪聲,深度模型很難實現泛化。這些挑戰限制了圖模型在各個領域的使用。**在本文中,我對圖的可泛化神經網絡提出了各種理論和經驗分析。我考慮了圖神經網絡(GNNs)的兩種類型的泛化能力:(1)數據泛化能力,其中圖模型具有有效處理具有不同屬性的各種圖的表達能力;(2)規模泛化性,圖模型可以從小規模的圖中學習并泛化到更大的圖。**論文的第一部分分別從節點和子圖兩個層面研究了數據的泛化問題。在節點層面,我分析了具有不同屬性的節點(如度、相鄰節點的標簽分布)時GNNs的性能是否會退化,并提出了有效的理論基礎設計,以緩解這種退化。在子圖層面,我考慮了數據有限和有噪聲的情況,并提出使用聚類使GNN克服這些問題并找到有意義的模式。在論文的第二部分中,研究了圖層次上的規模泛化問題。具體來說,我考慮了不同規模的圖,并研究如何將知識從小型圖遷移到大型圖。我首先說明了基于譜特性的GNN可能會受到譜和圖大小的相關性的影響,這限制了它們對大小的泛化能力。提出了一種學會消除與尺寸相關的分量的技術,提高了gnn的尺寸泛化能力。此外,我研究了transformer模型,它與gnn相關,但不依賴于圖譜。在這種情況下,我發現普通的transformer模型無法泛化到更大的序列和圖,因為它的注意力掩碼隨著輸入的增加逐漸失去保真度。基于我的發現,我引入了一個學習的條件掩蔽機制,它能夠在模型的訓練范圍之外實現強泛化。

//ai.engin.umich.edu/event/towards-generalizable-neural-networks-for-graph-applications

近年來,深度學習在各個領域得到了越來越多的關注,例如計算機視覺[52],自然語言處理[155]和機器人[49]。與傳統方法相比,深度神經網絡模型通過從海量數據中學習獲得了高表達能力。在某些領域,深度模型甚至可以超越人類[137],這為通用智能帶來了希望[139]。盡管深度學習在各個領域都顯示了其優勢,但它主要在規則結構數據上取得了成功,如序列和圖像。然而,并非所有數據都具有規則結構,圖數據就是一個值得注意的例子。圖被廣泛用于表示實體之間的交互[62,136,175]。例如,在社交網絡(Facebook, LinkedIn)中,用戶是節點,他們的友誼或職業關系是邊[174];在腦科學中,大腦中的感興趣區域(ROI)是節點,它們的活動相關性是邊[175];在程序合成中,寄存器是節點,它們的依賴關系是邊[136]。圖可以在不同的粒度上進行分析:節點或邊緣級別、子圖級別和圖級別。不同層次的分析已被用于幾個高影響的應用中,例如推斷電子郵件網絡中的專業角色63,發現社會網絡中的社區結構107,以及預測生物網絡中的圖屬性168 受語言和圖像深度學習成功的啟發,研究人員對使神經網絡適應圖數據產生了極大的興趣[73,156,176,186]。在GNN的設計目標中,本文主要關注GNN的泛化能力,并考慮兩種類型的泛化能力:(1)數據泛化能力,圖模型具有有效處理具有不同屬性的各種圖的表達能力;(2)規模泛化性,圖模型可以從小規模的圖中學習并泛化到更大的圖。除了本文涵蓋的這兩種泛化類型外,GNN還存在其他類型的泛化。例如,在遷移學習中,泛化能力表征了GNN將知識從一個領域遷移到另一個領域的能力(例如,通過微調一些層[54,85]);在多任務學習中,泛化能力表示GNN利用其他任務中編碼的信息的程度。在表1 - 1中,我簡要概述了GNN的不同泛化類型。盡管所有這些都對構建通用GNN很重要,但數據的泛化能力和大小的泛化能力相對被忽視和探索不足。數據的泛化能力決定了一個模型是否可以有效地應用于各種應用。圖在不同的域中可能不同。例如,在大多數社交網絡中,度分布遵循冪律[87],而在分子圖中,度并不存在偏斜。在引文網絡中,具有相似屬性的節點傾向于相互連接,而在在線交易網絡中,具有不同屬性的節點(欺詐者和共犯)傾向于形成鏈接[114]。在蛋白質網絡中,可以清楚地觀察到圖形,而在大腦網絡中,感興趣區域(ROIs)之間的連接是推斷的和嘈雜的[175]。盡管圖數據具有多變性,但大多數GNN[42, 51, 73, 156, 169]沒有考慮不同的圖屬性。他們持有圖數據的“同質性假設”,即有鏈接的節點通常屬于同一類或具有相似的特征(“物以類聚”)[99],而忽略了違反該假設的圖的存在;他們忽略了圖具有不同的度分布,GNN對不同度的節點的反應不同的事實[177];它們沒有考慮圖結構和特征中的噪聲。為了設計更通用的GNN模型,需要考慮各種圖屬性。因此,本文的第一個問題是: **如何通過考慮不同的圖屬性來增強GNN的數據泛化能力?除了數據的泛化性,我研究的另一個關鍵屬性是大小的泛化性。與常規結構化數據不同,很難獲得相同大小的圖。例如,在生物學中,分子圖的大小從幾個節點到數百個節點[167];在算法推理中,圖可以小到幾個節點,也可以大到數千個節點[136,176]。隨著我們從各種來源收集越來越多的數據,訓練圖和測試圖的大小不可避免地不同[167]。此外,大多數gnn是不可擴展的,更大的圖通常需要更多的訓練時間和計算資源[40]。這些原因促使一系列研究尋求將知識從較小的圖轉換為較大的圖的方法[159,176,181]。GNN的大小泛化能力仍然有待探索。一方面,一些經驗工作報告了GNN在特定應用中的良好規模泛化性能[91,97,127]。另一方面,一些實證工作認為GNN在大小泛化方面有困難[66,71,159]。大多數現有工作專注于架構設計,沒有提供對GNN大小通用性的基本理解。因此,我在本文中要回答的第二個問題是: 是什么限制了GNN的大小泛化能力,以及有什么有效的設計可以提高它們泛化到更大圖的能力?**為了回答上述兩個問題,在本文中,我通過研究不同粒度的圖來研究數據的泛化性和大小泛化性(圖I.1)。論文的第一部分分別從節點和子圖兩個層面研究了數據的泛化問題。在節點層面,我分析了具有不同屬性的節點(如度、相鄰節點的標簽分布)時GNNs的性能是否會退化,并提出了有效的理論基礎設計,以緩解這種退化。在子圖層面,我考慮了數據有限和有噪聲的情況,并提出使用聚類使GNN克服這些問題,并找到有意義的模式。在論文的第二部分中,研究了圖層次上的規模泛化問題。具體來說,我考慮了不同規模的圖,并研究如何將知識從小型圖遷移到大型圖。我首先表明,基于譜特性的GNN模型可能會受到譜和圖大小的相關性的影響,這限制了它們對過大尺寸的泛化能力。提出了一種學會消除與尺寸相關的分量的技術,提高了GNN的尺寸泛化能力。此外,我研究了transformer模型,它與GNN相關,但不依賴于圖譜。在這種情況下,我發現普通的transformer模型無法泛化到更大的序列和圖,因為它的注意力掩碼隨著輸入的增加逐漸失去保真度。基于我的發現,我引入了一種習得的條件掩碼機制,它能在遠遠超出模型訓練范圍的地方實現強大的泛化。

付費5元查看完整內容

深度學習模型通常限定在固定數據集中進行訓練,訓練完成之后模型無法隨著時間而擴展其行為. 將已訓練好的模型在新數據上訓練會出現災難性遺忘現象. 持續學習是一種能夠緩解深度學習模型災難性遺 忘的機器學習方法,它旨在不斷擴展模型的適應能力,讓模型能夠在不同時刻學習不同任務的知識. 目前,持 續學習算法主要分為 4 大方面,分別是正則化方法、記憶回放方法、參數孤立方法和綜合方法. 對這 4 大方面 方法的研究進展進行了系統總結與分析,梳理了衡量持續學習算法性能的評估方法,討論了持續學習的新興 研究趨勢. //www.yndxxb.ynu.edu.cn/yndxxbzrkxb/article/doi/10.7540/j.ynu.20220312?viewType=HTML 得益于更大的數據集、更強的計算能力以及 網絡結構創新,深度學習在圖像分類[1]、人臉識別[2] 等任務上已經實現了接近人類甚至超越人類的性 能. 然而大多數神經網絡只能在預先知道所有類的 批量學習設定下進行訓練直至擬合,當有新數據出 現時,必須使用全部數據重新訓練模型,以適應數 據分布變化[3] . 隨著移動設備和互聯網的飛速發展, 人們每天都會拍攝和分享大量圖片和視頻. 而從零 開始重新訓練模型是耗時且低效的,這就要求模型 擁有以序列方式進行持續學習和更新的能力,以適 應每天新產生的數據. 神經網絡從原來的批量學習模式轉變為序列 學習模式時,很容易出現對舊知識的遺忘,這意味 著,在使用新數據更新模型后,模型在先前學習的 任務中所達到的性能會急劇下降[4],出現災難性遺 忘. 早在 30 多年前,人們就在多層感知器中發現了 災難性遺忘現象[5],產生災難性遺忘的根本原因是 新任務訓練過程需要改變神經網絡權值,這不可避 免地修改了某些對于舊任務來說至關重要的權重, 使得模型不再適用于舊任務. 與此相反,人類可以 不斷學習和適應新知識,并且在自身積累新知識的 同時,也會對原有知識進行了補充和修正,學習新 知識很少會導致人類災難性地忘記之前的知識[6] . 如自然視覺系統,先前的知識得到了保留的同時, 新的視覺信息被不斷地整合到已有知識中. 為了克服災難性遺忘,學習系統一方面要在新 任務上表現出獲取新知識和提煉現有知識的能力, 另一方面要防止新任務對現有知識的顯著干擾. 持 續學習,也稱為終身學習,它建立在不斷學習外部 世界的想法之上,神經網絡通過持續學習算法能夠 漸進地學習新知識,并且保留過去學習的內容. 近 年來,如圖 1 所示,持續學習在計算機視覺領域獲 得了蓬勃發展,同時各單位也如火如荼開展著持續 學習的相關比賽[7] . 鑒于持續學習深刻的應用場景 和該領域飛速的發展,本文對持續學習的研究工作 進行綜述,從而幫助讀者掌握持續學習研究的最新 趨勢.

付費5元查看完整內容

一個機器人要想在非結構化的室外環境中與人類高效合作,就必須將指令從操作者直觀的模態轉化為行動。機器人必須能夠像人類一樣感知世界,這樣機器人所采取的行動才能反映自然語言和人類感知的細微差別。傳統上,導航系統結合了個人感知、語言處理和規劃塊,這些塊通常是根據不同的性能規格單獨訓練的。它們使用限制性接口進行通信以簡化開發(即,具有離散屬性的點對象和有限的命令語言),但這也限制了一個模塊可以傳遞給另一個模塊的信息。

深度學習的巨大成功徹底改變了計算機視覺的傳統研究方向,如目標檢測和場景標記。視覺問答(VQA)將自然語言處理中的最先進技術與圖像理解聯系起來。符號基礎、多步驟推理和對空間關系的理解已經是這些系統的元素。這些元素統一在一個具有單一可微損失的架構中,消除了模塊之間定義良好接口的需要,并簡化了與之相伴的假設。我們介紹了一種將文本語言命令和靜態航空圖像轉換為適合規劃的成本圖的技術。我們建立在FiLM VQA架構的基礎上,對其進行調整以生成成本圖,并將其與修改后的可微分計劃損失(最大邊際計劃)結合起來使用Field D*計劃器。通過這種架構,我們向統一語言、感知和規劃到單一的端到端可訓練系統邁出了一步。

我們提出了一個源自CLEVR數據集的可擴展綜合基準測試,我們用它來研究算法在無偏倚環境中具有幾乎無限數據的理解能力。我們分析了該算法在這些數據上的表現,以了解其局限性,并提出未來的工作來解決其缺點。我們使用真實的航空圖像和合成命令提供混合數據集的結果。規劃算法通常具有高分支因子,并且不能很好地映射到近年來催化深度學習發展的GPU。我們精心選擇了Field D和Max Margin Planning,以在高度并行的架構上表現良好。我們引入了一個適用于多GPU數據并行訓練的Field D版本,它使用Bellman-Ford算法,與我們的cpu優化實現相比,性能幾乎提高了十倍。在團隊中工作的人之間的流暢互動取決于對任務、環境和語言微妙之處的共同理解。在這種情況下工作的機器人也必須這樣做。學習將命令和圖像轉換為具有可微分規劃損失的軌跡是捕捉和模仿人類行為的一種方法,也是實現機器人和人類無縫交互的一小步。

付費5元查看完整內容

在過去的十年里,深度學習取得了巨大的成功,但在權值更新和訓練樣本數量方面,實際有用的深度模型的訓練仍然非常低效。為了解決這些問題的一個方面,本文研究了持續學習設置,該模型利用一系列的任務,利用之前的知識來快速學習新任務。持續學習的主要挑戰是,在為新任務更新模型時,避免模型災難性地忘記之前的信息。

//ora.ox.ac.uk/objects/uuid:7a3e5c33-864f-4cfe-8b80-e85cbf651946

為此,本文首先提出了一種持續學習算法,通過正則化兩個連續任務的條件似然之間的kl -散度來保留之前的知識。結果表明,這種正則化對網絡權值施加了二次懲罰,該懲罰基于上一個任務的最小曲率。其次,本文提出了一種更有效的持續學習算法,利用對過去任務的情景記憶作為約束,這樣當對新任務進行權重更新時,情景記憶的損失不會增加。結果表明,使用情景記憶約束目標比正則化網絡參數更有效。此外,為了提高學習新任務的速度,提出了使用組合任務描述符的聯合嵌入模型,大大提高了正向遷移。基于情景記憶的持續學習目標通過直接在損失函數中使用記憶來簡化。盡管它傾向于記憶出現在微小情景記憶中的數據,結果算法顯示出比使用記憶作為約束的算法更好的泛化。分析認為,這種驚人的概化是由于新任務數據帶來的正則化效應。然后利用該算法對合成數據和真實數據進行持續學習。為此,提出了一種方法,通過優化重放緩沖區上的事后遺忘損失,為每個任務生成合成數據點。設計了一個嵌套的持續學習優化目標,有效地利用這些綜合點來減少基于記憶的持續學習方法的遺忘。最后,本文提出了一種持續學習算法,在不重疊的特征子空間中學習不同的任務。通過保持不同任務的子空間相互正交來最小化重疊,可以減少這些任務表示之間的干擾。

付費5元查看完整內容

在本文中,我們的目標是改進深度強化學習中的泛化。對任何類型的學習來說,泛化都是一項基本挑戰,它決定了如何將已獲得的知識轉移到新的、以前從未見過的情況中。本文專注于強化學習,這是一個描述人工智能體如何學習與環境交互以實現目標的框架。近年來,利用神經網絡表示智能體取得了顯著的成功,并極大地擴展了其可能的應用范圍。本文的目標是通過允許這些智能體更快地學習,學習更好的解決方案,并對以前未見過的情況做出魯棒的反應,從而提高它們的性能。在這個探索中,我們探索了一系列不同的方法和途徑。我們專注于將額外的結構,也稱為歸納偏差,納入主體。專注于特定的,但廣泛適用的問題領域,我們可以開發專門的架構,從而大大提高性能。在第3章中,我們關注的是部分可觀察環境,在這種環境中,智能體每時每刻都不能完全訪問所有與任務相關的信息。在第4章中,我們將注意力轉向多任務和遷移學習,并設計了一種新的訓練方法,允許訓練分層結構的智能體。我們的方法優化了單個解決方案的可重用性,大大提高了傳輸設置中的性能。

//ora.ox.ac.uk/objects/uuid:9fdfadb0-e527-4421-9a22-8466c9fed9c8 在本文的第二部分中,我們將注意力轉向正則化,這是另一種形式的歸納偏差,作為提高深度智能體泛化的方法。在第五章中,我們首先探討了強化學習(RL)中的隨機正則化。雖然這些技術已被證明在監督學習中非常有效,但我們強調并克服了將它們直接應用到在線RL算法中的困難,這是RL中最強大和應用最廣泛的學習類型之一。在第6章中,我們通過探索訓練數據中的瞬態非平穩性如何干擾神經網絡的隨機梯度訓練,并使其偏向較差的解,在更基本的水平上研究了深度rl中的泛化。許多先進的RL算法將這些類型的非平穩性引入到訓練中,甚至在平穩環境中,通過使用持續改進的數據收集策略。我們提出了一個新的框架,以減少經過訓練的策略所經歷的非平穩性,從而允許改進的泛化。

付費5元查看完整內容

摘要

與批量學習不同的是,在批量學習中所有的訓練數據都是一次性可用的,而持續學習代表了一組方法,這些方法可以積累知識,并使用序列可用的數據連續學習。與人類的學習過程一樣,不斷學習具有學習、融合和積累不同時間步的新知識的能力,被認為具有很高的現實意義。因此,持續學習在各種人工智能任務中得到了研究。本文綜述了計算機視覺中持續學習的最新進展。特別地,這些作品是根據它們的代表性技術進行分組的,包括正則化、知識蒸餾、記憶、生成重放、參數隔離以及上述技術的組合。針對每一類技術,分別介紹了其特點及其在計算機視覺中的應用。在概述的最后,討論了幾個子領域,在這些子領域中,持續的知識積累可能會有幫助,而持續學習還沒有得到很好的研究。

//www.zhuanzhi.ai/paper/a13ad85605ab12d401a6b2e74bc01d8a

引言

人類的學習是一個漸進的過程。在人類的一生中,人類不斷地接受和學習新知識。新知識在發揮自身積累作用的同時,也對原有知識進行補充和修正。相比之下,傳統的機器學習和深度學習范式通常區分知識訓練和知識推理的過程,模型需要在有限的時間內在預先準備好的數據集上完成訓練,然后使用這些數據集進行推理。隨著相機和手機的廣泛普及,每天都有大量新的圖片和視頻被捕捉和分享。這就產生了新的需求,特別是在計算機視覺領域,模型在推理過程中要連續不斷地學習和更新自己,因為從頭開始訓練模型以適應每天新生成的數據是非常耗時和低效的。

由于神經網絡與人腦的結構不同,神經網絡訓練不易從原來的批量學習模式轉變為新的連續學習模式。特別是存在兩個主要問題。首先,按照序列學習多個類別的數據容易導致災難性遺忘的問題[1,2]。這意味著,在從新類別的數據更新模型參數后,模型在先前學習類別上的性能通常會急劇下降。其次,當按順序從同一類別的新數據中學習時,也會導致概念漂移問題[3,4,5],因為新數據可能會以不可預見的方式改變該類別的數據分布[6]。因此,持續學習的總體任務是解決穩定性-可塑性困境[7,8],這就要求神經網絡在保持學習新知識的能力的同時,防止遺忘之前學習過的知識。

近年來,在計算機視覺的各個子領域中提出了越來越多的持續學習方法,如圖1所示。此外,2020年和2021年還舉辦了若干與計算機視覺中的持續學習有關的比賽[9,10]。因此,本文綜述了計算機視覺中持續學習的最新進展。我們將這一概述的主要貢獻總結如下。(1)系統地綜述了計算機視覺中持續學習的最新進展。(2)介紹了用于不同計算機視覺任務的各種持續學習技術,包括正則化、知識提取、基于記憶、生成重放和參數隔離。(3)討論了計算機視覺中持續學習可能有所幫助但仍未得到充分研究的子領域。

本文的其余部分組織如下。第二節給出了持續學習的定義。第3節介紹了這一領域常用的評估指標。第4節討論了各種類型的持續學習方法及其在計算機視覺中的應用。在第5節中討論了計算機視覺中沒有很好地利用持續學習的子領域。最后,第六部分對全文進行總結。

付費5元查看完整內容

在一個特定的數據集上訓練一個強大的神經預測器執行一項任務的主流NLP范式取得了在各種應用上的成功(如:情感分類、基于廣度預測的問答或機器翻譯)。然而,它建立在數據分布是平穩的假設之上,即。在訓練和測試時,數據都是從一個固定的分布中取樣的。這種訓練方式與我們人類在不斷變化的信息流中學習和操作的方式不一致。此外,它不適合于真實世界的用例,在這些用例中,數據分布預計會在模型的生命周期中發生變化。

本文的第一個目標是描述這種偏移在自然語言處理環境中可能采取的不同形式,并提出基準和評價指標來衡量它對當前深度學習體系結構的影響。然后,我們繼續采取步驟,以減輕分布轉移對NLP模型的影響。為此,我們開發了基于分布魯棒優化框架的參數化重構方法。從經驗上講,我們證明了這些方法產生了更魯棒的模型,正如在選擇的現實問題上所證明的那樣。在本文的第三部分和最后一部分,我們探索了有效地適應現有模型的新領域或任務的方法。我們對這個主題的貢獻來自于信息幾何學的靈感,獲得了一個新的梯度更新規則,緩解了適應過程中災難性的遺忘問題。

我們從評估開始,因為分布轉移特別難以描述和測量,特別是在自然語言方面。這部分是由于數據缺乏規范的度量結構。換句話說,如何有效地衡量兩個句子之間的語義相似度還不清楚,因此沒有直接的方法來衡量兩個樣本之間的差異,更不用說兩種分布了。因此,作為解決分布偏移的第一步,我們提出了一個新的基準(第3章)和評估指標(第4章),分別評估域偏移和對抗擾動的魯棒性。有了這些工具在手,我們開始構建魯棒的模型,這些模型經過訓練,即使在沒有關于轉移本質的明確信息的情況下,對分布轉移也不那么敏感。這是通過利用訓練分布中的數據多樣性來實現的,以確保在訓練數據(子群體)中存在的各種領域上的統一性能。具體來說,我們制定了一個分布魯棒優化框架的參數化版本,該框架允許訓練模型對子群體轉移更為穩健(第5章和第6章)。最后,在靜態環境中學習從根本上是次優的:我們不能期望我們的模型在每一個可能的未來環境中都表現良好,我們必須能夠使它們適應我們遇到的任何新情況。因此,我們研究了一種機制,通過這種機制,我們能夠根據新的證據微調訓練模型,而不會忘記之前獲得的知識(第7章)。

//www.zhuanzhi.ai/paper/c5e7a9742d6a6313d63c5976499166dc

付費5元查看完整內容

這個更新的第二版提供了機器學習算法和架構設計的指導。它提供了醫療保健領域智能系統的真實應用,并涵蓋了管理大數據的挑戰。

這本書已經更新了在海量數據,機器學習和人工智能倫理的最新研究。它涵蓋了管理海量數據復雜性的新主題,并提供了復雜機器學習模型的例子。來自全球醫療服務提供商的實證研究展示了大數據和人工智能在對抗慢性和新疾病(包括COVID-19)方面的應用。探討了數字醫療、分析和人工智能在人口健康管理中的未來。您將學習如何創建機器學習模型,評估其性能,并在您的組織內運作其結果。來自主要醫療服務提供商的研究覆蓋了全球數字服務的規模。通過案例研究和最佳實踐,包括物聯網,提出了評估人工智能機器學習應用的有效性、適用性和效率的技術。

您將了解機器學習如何用于開發健康智能,其目的是改善患者健康、人口健康,并促進顯著的護理支付方成本節約。

//link.springer.com/book/10.1007/978-1-4842-6537-6#about

你會: 了解關鍵機器學習算法及其在醫療保健中的使用和實現 實現機器學習系統,如語音識別和增強深度學習/人工智能 管理海量數據的復雜性 熟悉人工智能和醫療保健最佳實踐、反饋循環和智能代理

付費5元查看完整內容

人工神經網絡在解決特定剛性任務的分類問題時,通過不同訓練階段的廣義學習行為獲取知識。由此產生的網絡類似于一個靜態的知識實體,努力擴展這種知識而不針對最初的任務,從而導致災難性的遺忘。

持續學習將這種范式轉變為可以在不同任務上持續積累知識的網絡,而不需要從頭開始再訓練。我們關注任務增量分類,即任務按順序到達,并由清晰的邊界劃分。我們的主要貢獻包括:

(1) 對持續學習技術的分類和廣泛的概述;

(2) 一個持續學習器穩定性-可塑性權衡的新框架;

(3) 對11種最先進的持續學習方法和4條基準進行綜合實驗比較。

考慮到微型Imagenet和大規模不平衡的非自然主義者以及一系列識別數據集,我們以經驗的方式在三個基準上仔細檢查方法的優缺點。我們研究了模型容量、權重衰減和衰減正則化的影響,以及任務呈現的順序,并從所需內存、計算時間和存儲空間等方面定性比較了各種方法。

//www.zhuanzhi.ai/paper/c90f25024b2c2364ce63299b4dc4677f

引言

近年來,據報道,機器學習模型在個人任務上表現出甚至超過人類水平的表現,如雅達利游戲[1]或物體識別[2]。雖然這些結果令人印象深刻,但它們是在靜態模型無法適應其行為的情況下獲得的。因此,這需要在每次有新數據可用時重新啟動訓練過程。在我們的動態世界中,這種做法對于數據流來說很快就變得難以處理,或者可能由于存儲限制或隱私問題而只能暫時可用。這就需要不斷適應和不斷學習的系統。人類的認知就是這樣一個系統的例證,它具有順序學習概念的傾向。通過觀察例子來重新審視舊的概念可能會發生,但對保存這些知識來說并不是必要的,而且盡管人類可能會逐漸忘記舊的信息,但完全丟失以前的知識很少被證明是[3]。相比之下,人工神經網絡則不能以這種方式學習:在學習新概念時,它們會遭遇對舊概念的災難性遺忘。為了規避這一問題,人工神經網絡的研究主要集中在靜態任務上,通常通過重組數據來確保i.i.d.條件,并通過在多個時期重新訪問訓練數據來大幅提高性能。

持續學習研究從無窮無盡的數據流中學習的問題,其目標是逐步擴展已獲得的知識,并將其用于未來[4]的學習。數據可以來自于變化的輸入域(例如,不同的成像條件),也可以與不同的任務相關聯(例如,細粒度的分類問題)。持續學習也被稱為終身學習[18]0,[18]1,[18]2,[18]3,[18]5,[18]4,順序學習[10],[11],[12]或增量學習[13],[14],[15],[16],[17],[18],[19]。主要的標準是學習過程的順序性質,只有一小部分輸入數據來自一個或幾個任務,一次可用。主要的挑戰是在不發生災難性遺忘的情況下進行學習:當添加新的任務或域時,之前學習的任務或域的性能不會隨著時間的推移而顯著下降。這是神經網絡中一個更普遍的問題[20]的直接結果,即穩定性-可塑性困境,可塑性指的是整合新知識的能力,以及在編碼時保持原有知識的穩定性。這是一個具有挑戰性的問題,不斷學習的進展使得現實世界的應用開始出現[21]、[22]、[23]。

為了集中注意力,我們用兩種方式限制了我們的研究范圍。首先,我們只考慮任務增量設置,其中數據按順序分批到達,一個批對應一個任務,例如要學習的一組新類別。換句話說,我們假設對于一個給定的任務,所有的數據都可以同時用于離線訓練。這使得對所有訓練數據進行多個時期的學習成為可能,反復洗刷以確保i.i.d.的條件。重要的是,無法訪問以前或將來任務的數據。在此設置中優化新任務將導致災難性的遺忘,舊任務的性能將顯著下降,除非采取特殊措施。這些措施在不同情況下的有效性,正是本文所要探討的。此外,任務增量學習將范圍限制為一個多頭配置,每個任務都有一個獨占的輸出層或頭。這與所有任務共享一個頭的更有挑戰性的類增量設置相反。這在學習中引入了額外的干擾,增加了可供選擇的輸出節點的數量。相反,我們假設已知一個給定的樣本屬于哪個任務。

其次,我們只關注分類問題,因為分類可以說是人工神經網絡最既定的任務之一,使用相對簡單、標準和易于理解的網絡體系結構具有良好的性能。第2節對設置進行了更詳細的描述,第7節討論了處理更一般設置的開放問題。

付費5元查看完整內容

近年來,自然語言處理的研究方法取得了一些突破。這些突破來源于兩個新的建模框架以及在計算和詞匯資源的可用性的改進。在這個研討會小冊子中,我們將回顧這些框架,以一種可以被視為現代自然語言處理開端的方法論開始:詞嵌入。我們將進一步討論將嵌入式集成到端到端可訓練方法中,即卷積神經網絡和遞歸神經網絡。這本小冊子的第二章將討論基于注意力的模型的影響,因為它們是最近大多數最先進的架構的基礎。因此,我們也將在本章中花很大一部分時間討論遷移學習方法在現代自然語言處理中的應用。最后一章將會是一個關于自然語言生成的說明性用例,用于評估最先進的模型的訓練前資源和基準任務/數據集。

//compstat-lmu.github.io/seminar_nlp_ss20/

在過去的幾十年里,人工智能技術的重要性和應用不斷得到關注。在當今時代,它已經與構成人類塑造環境的大部分環境密不可分。因此,商業、研究和開發、信息服務、工程、社會服務和醫學等無數部門已經不可逆轉地受到人工智能能力的影響。人工智能有三個主要領域組成了這項技術:語音識別、計算機視覺和自然語言處理(見Yeung (2020))。在這本書中,我們將仔細研究自然語言處理(NLP)的現代方法。

這本小冊子詳細介紹了用于自然語言處理的現代方法,如深度學習和遷移學習。此外,本研究亦會研究可用于訓練自然語言處理任務的資源,并會展示一個將自然語言處理應用于自然語言生成的用例。

為了分析和理解人類語言,自然語言處理程序需要從單詞和句子中提取信息。由于神經網絡和其他機器學習算法需要數字輸入來進行訓練,因此應用了使用密集向量表示單詞的詞嵌入。這些通常是通過有多個隱藏層的神經網絡學習的,深度神經網絡。為了解決容易的任務,可以應用簡單的結構神經網絡。為了克服這些簡單結構的局限性,采用了遞歸和卷積神經網絡。因此,遞歸神經網絡用于學習不需要預先定義最佳固定維數的序列的模型,卷積神經網絡用于句子分類。第二章簡要介紹了NLP中的深度學習。第三章將介紹現代自然語言處理的基礎和應用。在第四章和第五章中,將解釋和討論遞歸神經網絡和卷積神經網絡及其在自然語言處理中的應用。

遷移學習是每個任務或領域的學習模型的替代選擇。在這里,可以使用相關任務或領域的現有標記數據來訓練模型,并將其應用到感興趣的任務或領域。這種方法的優點是不需要在目標域中進行長時間的訓練,并且可以節省訓練模型的時間,同時仍然可以(在很大程度上)獲得更好的性能。遷移學習中使用的一個概念是注意力,它使解碼器能夠注意到整個輸入序列,或自注意,它允許一個Transformer 模型處理所有輸入單詞,并建模一個句子中所有單詞之間的關系,這使得快速建模一個句子中的長期依賴性成為可能。遷移學習的概念將在小冊子的第6章簡要介紹。第七章將通過ELMo、ULMFiT和GPT模型來描述遷移學習和LSTMs。第八章將詳細闡述注意力和自注意力的概念。第九章將遷移學習與自注意力相結合,介紹了BERT模型、GTP2模型和XLNet模型。

為NLP建模,需要資源。為了找到任務的最佳模型,可以使用基準測試。為了在基準實驗中比較不同的模型,需要諸如精確匹配、Fscore、困惑度或雙語評估替補學習或準確性等指標。小冊子的第十章簡要介紹了自然語言處理的資源及其使用方法。第11章將解釋不同的指標,深入了解基準數據集SQuAD、CoQa、GLUE和SuperGLUE、AQuA-Rat、SNLI和LAMBADA,以及可以找到資源的預訓練模型和數據庫,如“帶代碼的論文”和“大壞的NLP數據庫”。

在小冊子的最后一章中,介紹了生成性NLP處理自然語言生成,從而在人類語言中生成可理解的文本。因此,不同的算法將被描述,聊天機器人和圖像字幕將被展示,以說明應用的可能性。

本文對自然語言處理中各種方法的介紹是接下來討論的基礎。小冊子的各個章節將介紹現代的NLP方法,并提供了一個更詳細的討論,以及各種示例的潛力和限制。

付費5元查看完整內容
北京阿比特科技有限公司