在新環境中有效的自主導航對于智能體達到更復雜的自主水平至關重要。我們對改善攜帶輕型光電傳感器有效載荷的車輛在未知環境中的自主導航和估計感興趣。由于傳感的限制,在非瑣碎的新環境中,世界的許多幾何結構還沒有被觀察到,導致了嚴重的幾何模糊性。盡管收集額外的幾何信息可以減少模糊性,但這樣做往往與任務的目標相抵觸。我們建議將對象層面的語義信息和幾何信息結合起來,以切實改善導航和估計。
在這篇論文中,我們提出了在新環境中改善自主導航的三個貢獻。首先,我們通過將有用的導航行為編碼在由部分占有率和對象級地圖告知的抽樣分布中,來提高新環境中的導航效率。我們認識到,在有效導航時,在有限的視角下,對象層面的估計是具有挑戰性的,因此我們還開發了兩種在線建立對象層面表征的方法。在我們的第二個貢獻中,我們通過引入額外的紋理測量和語義類形狀先驗,提高了帶有橢圓體表征的對象級SLAM的視點效率。最后,在我們的第三個貢獻中,我們提出了一種新的深度學習的三維對象估計方法,利用間接的圖像空間注釋和類內形狀一致性來實現從單一的RGB圖像的三維對象估計。
在許多問題上,模型誤設定構成了可靠推理的主要障礙。在貝葉斯設置中,模型誤設定會導致不一致,以及對數量相關的后驗分布的過度自信,即對不確定性的漏報。
本論文開發了一個貝葉斯框架,以減少在涉及時間序列數據的推理問題中出現的一種模型誤設定的影響:觀察和建模數據之間未建模的時間扭曲。涉及動態系統、信號處理和更普遍的功能數據的推理問題都會受到這種錯誤設定的影響。地震學中的逆向問題是這類問題的一個重要例子:在描述復雜的、空間異質的地震波傳播速度方面的不準確,會導致其建模的時間演化的錯誤。數據不足以約束這些傳播速度,因此我們尋求對模型誤差的魯棒性。我們的方法是使用傳輸-拉格朗日(TL)距離作為損失/失誤函數:這種距離可以被理解為 "圖空間 "的最優傳輸距離,它們自然忽略了數據中對時間扭曲更敏感的某些特征。我們表明,與標準的失配函數相比,它們產生的后驗分布既不偏頗又不分散。
特別是,我們使用矩張量反演,一個地震反演問題,作為我們的主要激勵性應用,并通過各種統計和物理指標證明TL損失的反演性能得到改善,適用于一系列日益復雜的反演和錯誤規范的情況。同時,我們還解決了幾個更廣泛的方法學問題。首先,在缺乏基于TL的可能性的可操作性表達的情況下,我們使用吉布斯后驗的概念構建了一個一致的先驗-后驗升級版。然后,我們通過幾個統計評分規則和等級統計,以及特定應用的物理標準,更廣泛地探索什么是在錯誤設定的環境中構成 "好的"推理,來比較不同損失函數對吉布斯后驗的影響。為了將我們的廣義(吉布斯)貝葉斯方法與更傳統的貝葉斯設置聯系起來,我們還對隨機噪聲信號之間的傳輸-拉格朗日距離的統計特性進行了分析和數字調查。
作為對貝葉斯反演的補充,我們還證明了最優傳輸距離對頻繁回歸的效用。我們研究了帶有TL損失的線性回歸模型,描述了相關混合整數優化問題的幾何結構,并提出了利用其基本結構的專用算法。然后,我們將TL線性回歸與經典的線性回歸在幾個應用中進行了比較。
最后,我們討論了TL距離的潛在概括,以包括通過時間序列嵌入的 "形狀 "概念,以及所提出的框架對其他形式的模型錯誤規范的可能擴展。
近年來,人工智能研究取得了令人難以置信的發展和進步。這些進展主要是在三個方面取得的:計算機視覺、自然語言處理和機器人技術。例如,圖像識別被廣泛認為是計算機視覺的圣杯,而語言建模和翻譯則是自然語言處理的基本任務。然而,許多實際的應用程序和任務需要解決的不僅僅是這些特定于領域的問題,而是需要解決同時涉及所有三個領域的問題。一個自主系統不僅需要能夠識別圖像中的物體,還需要能夠解釋自然語言描述或命令,并理解它們如何與其感知到的視覺觀察相關聯。此外,機器人需要利用這些信息來做決策,并決定采取哪些物理行動來完成任務。在本文的第一部分中,我提出了一種學習如何將自然語言和3D形狀聯系起來的方法,這樣系統就可以將文本描述中描述的單詞(如“round”)與3D對象中圓形的幾何屬性聯系起來。為了將這兩種模式聯系起來,我們依賴一個跨模態嵌入空間來進行多模態推理,并在沒有細粒度的屬性級分類注釋的情況下學習這個空間。通過學習如何將這兩種模態聯系起來,我們可以執行文本到形狀的檢索和形狀操作等任務,也可以執行新的任務,如文本到形狀的生成。在本論文的第二部分中,我們允許代理被嵌入并探索一個依賴于所有三個領域(計算機視覺、自然語言和機器人)的任務:通過遵循自然語言指令進行機器人導航。與依賴固定的圖像或3D對象數據集不同,代理現在位于一個物理環境中,并使用機載攝像機捕捉自己對空間的視覺觀察。為了把視覺、語言和機器人的物理狀態聯系起來,我們提出了一個使用拓形圖進行規劃和控制的系統。這種基本的抽象允許主體將語言指令的部分與環境的相關空間區域聯系起來,并將一系列的視覺觀察與物理運動和動作聯系起來
在過去的十年里,機器學習的突破導致了“數字智能”,即機器學習模型能夠從大量標記數據中學習,以執行一些數字任務,如語音識別、人臉識別、機器翻譯等。這篇論文的目標是在設計能夠“物理智能”的算法方面取得進展,即構建智能自主導航代理,能夠學習在物理世界中執行復雜的導航任務,包括視覺感知、自然語言理解、推理、規劃、還有順序決策。盡管在過去的幾十年里,經典的導航方法有了一些進步,但是當前的導航代理在長期的語義導航任務上仍然很掙扎。在論文的第一部分,我們討論了我們使用端到端強化學習來解決諸如回避障礙、語義感知、語言基礎和推理等挑戰的短期導航工作。在第二部分,我們提出了一種新的導航方法,基于模塊化學習和結構化顯式地圖表示,它利用了經典和端到端學習方法的優勢,以解決長期的導航任務。我們證明了這些方法能夠有效地解決諸如定位、映射、長期規劃、探索和學習語義先驗等挑戰。這些模塊化學習方法能夠長期理解空間和語義,并在各種導航任務中獲得最先進的結果。
鏈接: //www.zhuanzhi.ai/paper/833a5e3cfe6401566bdde2b30d574d09
視頻:
向量嵌入模型是現代機器學習知識表示和推理方法的基石。這些方法旨在通過在低維向量空間中學習概念和其他領域對象的表示,將語義問題轉化為幾何問題。本著這種精神,這項工作提倡基于密度和區域的表示學習。將領域元素作為幾何對象嵌入到單點之外,使我們能夠自然地表示廣度和一詞多義,進行不對稱比較,回答復雜的查詢,并在標記數據稀缺時提供強烈的歸納偏見。我們提出了一個使用高斯密度的詞表示模型,實現了概念之間的不對稱隱含判斷,以及一個基于軸對齊超矩形表示(盒)格的加權傳遞關系和多元離散數據的概率模型。我們將探討這些嵌入方法在不同的稀疏性、邊緣權值、相關性和獨立結構的適用性,以及表示的擴展和不同的優化策略。我們從理論上研究了盒格的表示能力,并提出了擴展模型來解決在建模困難的分布和圖方面的不足。
賦予機器以感知三維世界的能力,就像我們人類一樣,是人工智能領域一個基本且長期存在的主題。給定不同類型的視覺輸入,如二維/三維傳感器獲取的圖像或點云,一個重要的目標是理解三維環境的幾何結構和語義。傳統的方法通常利用手工特征來估計物體或場景的形狀和語義。然而,他們很難推廣到新的對象和場景,并努力克服關鍵問題造成的視覺遮擋。相比之下,我們的目標是理解場景和其中的對象,通過學習一般和魯棒的表示使用深度神經網絡,訓練在大規模的真實世界3D數據。為了實現這些目標,本文從單視圖或多視圖的物體級三維形狀估計到場景級語義理解三個方面做出了核心貢獻。
在第3章中,我們從一張圖像開始估計一個物體的完整三維形狀。利用幾何細節恢復密集的三維圖形,提出一種強大的編碼器解碼器結構,并結合對抗式學習,從大型三維對象庫中學習可行的幾何先驗。在第4章中,我們建立了一個更通用的框架來從任意數量的圖像中精確地估計物體的三維形狀。通過引入一種新的基于注意力的聚合模塊和兩階段的訓練算法,我們的框架能夠集成可變數量的輸入視圖,預測穩健且一致的物體三維形狀。在第5章中,我們將我們的研究擴展到三維場景,這通常是一個復雜的個體對象的集合。現實世界的3D場景,例如點云,通常是雜亂的,無結構的,閉塞的和不完整的。在借鑒以往基于點的網絡工作的基礎上,我們引入了一種全新的端到端管道來同時識別、檢測和分割三維點云中的所有對象。
總的來說,本文開發了一系列新穎的數據驅動算法,讓機器感知我們真實的3D環境,可以說是在推動人工智能和機器理解的邊界。
//ora.ox.ac.uk/objects/uuid:5f9cd30d-0ee7-412d-ba49-44f5fd76bf28
機器人研究的一個長期目標是創建能夠從零開始自動學習復雜控制策略的算法。將這種算法應用到機器人上的挑戰之一是表示的選擇。強化學習(RL)算法已經成功地應用于許多不同的機器人任務中,如帶有機器人手臂的cup中的Ball-in-a-Cup任務和各種機器人世界杯機器人足球啟發的領域。然而,RL算法仍然存在訓練時間長、所需訓練數據量大的問題。為狀態空間、行動空間和策略選擇合適的表示可以大大減少所需的訓練時間和所需的訓練數據。
本文主要研究機器人的深度強化學習。具體來說,狀態空間、動作空間和策略表示的選擇如何減少機器人學習任務的訓練時間和樣本復雜度。特別集中注意兩個主要領域: 1)通過張量狀態-動作空間表示 2)多狀態表示的輔助任務學習
第一個領域探索了在環境變化中改進機器人策略遷移的方法。學習策略的成本可能很高,但是如果策略可以在類似的環境中傳輸和重用,那么訓練成本可以平攤。遷移學習是一個被廣泛研究的領域,涉及多種技術。在這篇論文中,我們著重設計一個易于傳輸的表示。我們的方法將狀態空間和動作空間映射為多維張量,設計成當環境中機器人和其他對象的數量變化時保持固定維數。我們還提出了全卷積Q-Network (FCQN)策略表示,這是一種特殊的網絡架構,與張量表示相結合,允許跨環境大小進行零距離傳輸。我們在模擬的單代理和多代理任務上演示了這種方法,靈感來自于RoboCup Small - Size League (SSL)和Atari Breakout的修改版本。我們還表明,在真實世界的傳感器數據和機器人中使用這樣的表示和模擬訓練策略是可能的。
第二個領域考察了一個機器人深度RL狀態表示的優勢如何彌補另一個機器人深度RL狀態表示的劣勢。例如,我們經常想要利用機器人可用的傳感器來學習任務,其中包括像攝像機這樣的高維傳感器。最近的Deep RL算法可以通過圖像進行學習,但是數據的數量對于真實的機器人來說是難以接受的。或者,可以使用任務完成所需的最小集創建狀態。這樣做的好處是:1)減少策略參數的數量,2)刪除不相關的信息。然而,提取這些特征通常會在工程、額外硬件、校準和實驗室之外的脆弱性方面有很大的成本。我們在仿真和現實世界的多個機器人平臺和任務上演示了這一點。我們證明它在模擬的RoboCup小型聯賽(SSL)機器人上工作。我們還演示了這樣的技術允許在真實的硬件上從零開始學習,通過機器人手臂執行一個球在一個杯子的任務。
本篇推薦來自CMU-LTI的小姐姐Zhuyun Dai博士論文《Neural Matching and Importance Learning in Information Retrieval》,是信息檢索領域值得關注的最新工作。
作者介紹:
Zhuyun Dai
卡內基梅隆大學語言技術學院(LTI)的博士生。研究方向是提升當今信息檢索系統的語言理解能力,構建下一代信息助理系統,幫助人們無縫地獲取世界上的知識。
//www.cs.cmu.edu/~zhuyund/index.html
信息檢索中的神經匹配與重要性學習
地址:
在50-60年的時間里,信息檢索(IR)系統依賴于詞匯袋方法。盡管詞包檢索有一些長期存在的限制,但解決這些問題的嘗試大多是不成功的。最近,神經網絡為自然語言建模提供了一種新的范式。這篇論文的目的是結合IR的觀點和神經網絡的關鍵優勢,以帶來更深入的語言理解IR。
本論文的第一部分主要研究如何匹配查詢和文檔。 最先進的排序器以前依賴于精確的詞匯匹配,這導致了眾所周知的詞匯不匹配問題。本文開發了將軟匹配引入相關性排序的神經模型。利用分布式文本表示,我們的模型可以對每個查詢詞和每個文檔詞進行軟匹配。由于軟匹配信號有噪聲,本文提出了一種新的核池技術,該技術根據軟匹配對相關性的貢獻對軟匹配進行分組。本文還研究了預訓練好的模型參數是否可以改善低資源域,以及模型架構在非文本檢索任務中是否可重用。我們的方法比以前最先進的排名系統有很大的優勢。
本論文的第二部分主要研究如何表示查詢和文檔。一個典型的搜索引擎使用頻率統計來確定單詞的權重,但是頻繁的單詞對文本的意義不一定是必要的。本論文開發的神經網絡,以估計詞的重要性,基于如何相互作用的語言語境。開發了一種弱監督方法,允許在沒有任何人工注釋的情況下訓練我們的模型。我們的模型可以離線運行,在不影響效率的前提下顯著提高了第一階段的檢索。
總之,本文提出了一種新的神經檢索范式,克服了傳統檢索模型在匹配和重要性加權方面的局限性。在神經相關性排序、深度檢索模型和深度文檔理解等方面提出了一些有前景的方法。
使用生成模型的無監督學習具有發現3D場景豐富表示的潛力。這種神經場景表示可能隨后支持各種下游任務,從機器人技術到計算機圖形再到醫學成像。然而,現有的方法忽略了場景最基本的屬性之一:三維結構。在這項工作中,我們使神經場景表征與一個感應偏差的三維結構的情況。我們證明了這種歸納偏差如何使無監督的發現幾何和外觀,只給定的二維圖像。通過學習一組這樣的三維結構感知神經表征的分布,我們可以執行聯合重建的三維形狀和外觀只給出一個單一的二維觀察。我們表明,在這個過程中學習到的特征使整個類對象的三維語義分割成為可能,只訓練了30個帶標記的例子,證明了三維形狀、外觀和語義分割之間的緊密聯系。最后,我們討論了場景表示學習在計算機視覺本身中的本質和潛在作用,并討論了未來工作的前景。
導航是移動機器人所需要的最基本的功能之一,允許它們從一個源穿越到一個目的地。傳統的辦法嚴重依賴于預先確定的地圖的存在,這種地圖的取得時間和勞力都很昂貴。另外,地圖在獲取時是準確的,而且由于環境的變化會隨著時間的推移而退化。我們認為,獲取高質量地圖的嚴格要求從根本上限制了機器人系統在動態世界中的可實現性。本論文以無地圖導航的范例為動力,以深度強化學習(DRL)的最新發展為靈感,探討如何開發實用的機器人導航。
DRL的主要問題之一是需要具有數百萬次重復試驗的不同實驗設置。這顯然是不可行的,從一個真實的機器人通過試驗和錯誤,所以我們反而從一個模擬的環境學習。這就引出了第一個基本問題,即彌合從模擬環境到真實環境的現實差距,該問題將在第3章討論。我們把重點放在單眼視覺避障的特殊挑戰上,把它作為一個低級的導航原語。我們開發了一種DRL方法,它在模擬世界中訓練,但可以很好地推廣到現實世界。
在現實世界中限制移動機器人采用DRL技術的另一個問題是訓練策略的高度差異。這導致了較差的收斂性和較低的整體回報,由于復雜和高維搜索空間。在第4章中,我們利用簡單的經典控制器為DRL的局部導航任務提供指導,避免了純隨機的初始探索。我們證明,這種新的加速方法大大減少了樣本方差,并顯著增加了可實現的平均回報。
我們考慮的最后一個挑戰是無上限導航的稀疏視覺制導。在第五章,我們提出了一種創新的方法來導航基于幾個路點圖像,而不是傳統的基于視頻的教學和重復。我們證明,在模擬中學習的策略可以直接轉移到現實世界,并有能力很好地概括到不可見的場景與環境的最小描述。
我們開發和測試新的方法,以解決障礙規避、局部引導和全球導航等關鍵問題,實現我們的愿景,實現實際的機器人導航。我們將展示如何將DRL作為一種強大的無模型方法來處理這些問題
論文題目:Acquiring Diverse Robot Skills via Maximum Entropy Deep Reinforcement Learning
作者:Tuomas Haarnoja
導師:Pieter Abbeel and Sergey Levine
網址:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-176.html
論文摘要:
在本文中,我們研究了最大熵框架如何提供有效的深度強化學習(deep reinforcement learning, deep RL)算法,以連貫性地解決任務并有效地進行樣本抽取。這個框架有幾個有趣的特性。首先,最優策略是隨機的,改進了搜索,防止了收斂到局部最優,特別是當目標是多模態的時候。其次,熵項提供了正則化,與確定性方法相比,具有更強的一致性和魯棒性。第三,最大熵策略是可組合的,即可以組合兩個或兩個以上的策略,并且所得到的策略對于組成任務獎勵的總和是近似最優的。第四,最大熵RL作為概率推理的觀點為構建能夠解決復雜和稀疏獎勵任務的分層策略提供了基礎。在第一部分中,我們將在此基礎上設計新的算法框架,從soft Q學習的學習表現力好的能量策略、對于 sodt actor-critic提供簡單和方便的方法,到溫度自動調整策略, 幾乎不需要hyperparameter調優,這是最重要的一個實際應用的調優hyperparameters可以非常昂貴。在第二部分中,我們將討論由最大熵策略固有的隨機特性所支持的擴展,包括組合性和層次學習。我們將演示所提出的算法在模擬和現實機器人操作和移動任務中的有效性。