亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

深度神經網絡可以解決多種學習問題,但前提是有大量的數據可用。對于很多問題(如醫學成像),獲取大量標記數據的成本很高,因此提高深度學習方法的統計效率是非常必要的。在這篇論文中,我們探索了利用對稱性來提高卷積神經網絡從相對較小的樣本中泛化的能力的方法。

//dare.uva.nl/search?identifier=0f7014ae-ee94-430e-a5d8-37d03d8d10e6

我們通過經驗論證并證明,在深度學習的背景下,學習等變表示比學習不變表示更好,因為不變表示在網絡中過早丟失了信息。我們提出了一組越來越一般的群等變卷積神經網絡(G-CNNs)序列,適應于各種空間的特殊對稱性。具體來說,我們提出了用于平面圖像和體積信號的旋轉平移等變網絡,用于分析球形信號如全球天氣模式和全方位圖像的旋轉等變球面CNN,以及用于分析一般流形信號的規范等變CNN。

我們已經評估了這些網絡在視覺和醫學成像中的圖像分類和分割、三維模型分類、極端天氣事件檢測、量子化學和蛋白質結構分類等問題上的能力。我們全面地證明,G-CNNs在表現出對稱性的問題上優于傳統的平移等變CNN。

在第二部分中,我們提出了G-CNN的一般數學理論。該理論將卷積特征空間描述為流形上的域空間,即相關向量束的部分空間。對稱被描述為通過自同構作用于主束上的群,網絡的層被描述為場空間之間的線性和非線性等變映射。通過使用一種通用的數學語言,建立了與理論物理(特別是規范理論)的類比。我們證明了一般情況下,類卷積映射產生于對稱原理,特別是在第一部分中使用的每個廣義卷積都是從對稱原理中恢復的,作為最一般的一類線性映射,它與特定的一組對稱是等價的。

付費5元查看完整內容

相關內容

向量嵌入模型是現代機器學習知識表示和推理方法的基石。這些方法旨在通過在低維向量空間中學習概念和其他領域對象的表示,將語義問題轉化為幾何問題。本著這種精神,這項工作提倡基于密度和區域的表示學習。將領域元素作為幾何對象嵌入到單點之外,使我們能夠自然地表示廣度和一詞多義,進行不對稱比較,回答復雜的查詢,并在標記數據稀缺時提供強烈的歸納偏見。我們提出了一個使用高斯密度的詞表示模型,實現了概念之間的不對稱隱含判斷,以及一個基于軸對齊超矩形表示(盒)格的加權傳遞關系和多元離散數據的概率模型。我們將探討這些嵌入方法在不同的稀疏性、邊緣權值、相關性和獨立結構的適用性,以及表示的擴展和不同的優化策略。我們從理論上研究了盒格的表示能力,并提出了擴展模型來解決在建模困難的分布和圖方面的不足。

付費5元查看完整內容

近年來,自然語言處理的研究方法取得了一些突破。這些突破來源于兩個新的建模框架以及在計算和詞匯資源的可用性的改進。在這個研討會小冊子中,我們將回顧這些框架,以一種可以被視為現代自然語言處理開端的方法論開始:詞嵌入。我們將進一步討論將嵌入式集成到端到端可訓練方法中,即卷積神經網絡和遞歸神經網絡。這本小冊子的第二章將討論基于注意力的模型的影響,因為它們是最近大多數最先進的架構的基礎。因此,我們也將在本章中花很大一部分時間討論遷移學習方法在現代自然語言處理中的應用。最后一章將會是一個關于自然語言生成的說明性用例,用于評估最先進的模型的訓練前資源和基準任務/數據集。

//compstat-lmu.github.io/seminar_nlp_ss20/

在過去的幾十年里,人工智能技術的重要性和應用不斷得到關注。在當今時代,它已經與構成人類塑造環境的大部分環境密不可分。因此,商業、研究和開發、信息服務、工程、社會服務和醫學等無數部門已經不可逆轉地受到人工智能能力的影響。人工智能有三個主要領域組成了這項技術:語音識別、計算機視覺和自然語言處理(見Yeung (2020))。在這本書中,我們將仔細研究自然語言處理(NLP)的現代方法。

這本小冊子詳細介紹了用于自然語言處理的現代方法,如深度學習和遷移學習。此外,本研究亦會研究可用于訓練自然語言處理任務的資源,并會展示一個將自然語言處理應用于自然語言生成的用例。

為了分析和理解人類語言,自然語言處理程序需要從單詞和句子中提取信息。由于神經網絡和其他機器學習算法需要數字輸入來進行訓練,因此應用了使用密集向量表示單詞的詞嵌入。這些通常是通過有多個隱藏層的神經網絡學習的,深度神經網絡。為了解決容易的任務,可以應用簡單的結構神經網絡。為了克服這些簡單結構的局限性,采用了遞歸和卷積神經網絡。因此,遞歸神經網絡用于學習不需要預先定義最佳固定維數的序列的模型,卷積神經網絡用于句子分類。第二章簡要介紹了NLP中的深度學習。第三章將介紹現代自然語言處理的基礎和應用。在第四章和第五章中,將解釋和討論遞歸神經網絡和卷積神經網絡及其在自然語言處理中的應用。

遷移學習是每個任務或領域的學習模型的替代選擇。在這里,可以使用相關任務或領域的現有標記數據來訓練模型,并將其應用到感興趣的任務或領域。這種方法的優點是不需要在目標域中進行長時間的訓練,并且可以節省訓練模型的時間,同時仍然可以(在很大程度上)獲得更好的性能。遷移學習中使用的一個概念是注意力,它使解碼器能夠注意到整個輸入序列,或自注意,它允許一個Transformer 模型處理所有輸入單詞,并建模一個句子中所有單詞之間的關系,這使得快速建模一個句子中的長期依賴性成為可能。遷移學習的概念將在小冊子的第6章簡要介紹。第七章將通過ELMo、ULMFiT和GPT模型來描述遷移學習和LSTMs。第八章將詳細闡述注意力和自注意力的概念。第九章將遷移學習與自注意力相結合,介紹了BERT模型、GTP2模型和XLNet模型。

為NLP建模,需要資源。為了找到任務的最佳模型,可以使用基準測試。為了在基準實驗中比較不同的模型,需要諸如精確匹配、Fscore、困惑度或雙語評估替補學習或準確性等指標。小冊子的第十章簡要介紹了自然語言處理的資源及其使用方法。第11章將解釋不同的指標,深入了解基準數據集SQuAD、CoQa、GLUE和SuperGLUE、AQuA-Rat、SNLI和LAMBADA,以及可以找到資源的預訓練模型和數據庫,如“帶代碼的論文”和“大壞的NLP數據庫”。

在小冊子的最后一章中,介紹了生成性NLP處理自然語言生成,從而在人類語言中生成可理解的文本。因此,不同的算法將被描述,聊天機器人和圖像字幕將被展示,以說明應用的可能性。

本文對自然語言處理中各種方法的介紹是接下來討論的基礎。小冊子的各個章節將介紹現代的NLP方法,并提供了一個更詳細的討論,以及各種示例的潛力和限制。

付費5元查看完整內容

在本論文中,我們研究了兩類涉及大規模稀疏圖的問題,即圖數據的壓縮問題和網絡中的負載均衡問題。我們利用局部弱收斂的框架,或所謂的目標方法來實現這一點。這個框架提供了一個觀點,使人們能夠理解稀疏圖的平穩隨機過程的概念。

利用局部弱收斂框架,我們引入了有根圖上概率分布的熵概念。這是Bordenave和Caputo將熵概念推廣到頂點和邊帶有標記的圖上。這樣的標記可以表示關于真實數據的信息。這種熵的概念可以看作是稀疏圖數據世界中香農熵率的自然對應。我們通過介紹一種用于稀疏標記圖的通用壓縮方案來說明這一點。此外,我們研究了圖數據的分布式壓縮。特別地,我們介紹了一個關于稀疏標記圖的Slepian-Wolf定理的版本。

除了研究壓縮問題外,我們還研究了網絡中的負載均衡問題。我們通過將問題建模為超圖來實現這一點,其中每個超邊表示承載一個單元負載的任務,而每個頂點表示一個服務器。配置是分配此負載的一種方式。我們研究平衡分配,粗略地說,就是沒有需求希望改變其分配的分配。將局部弱收斂理論推廣到超圖,研究了均衡分配的某些漸近行為,如典型服務器上的漸近經驗負荷分布,以及最大負荷的漸近性。

本文所研究的問題可以作為實例來說明局部弱收斂理論和上述熵概念的廣泛適用性。事實上,這個框架為稀疏標記圖提供了平穩隨機過程的觀點。時間序列理論在控制理論、通信、信息論和信號處理等領域有著廣泛的應用。可以預料,平穩隨機過程的組合結構理論,特別是圖形,將最終有類似廣泛的影響。

//www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-166.html

付費5元查看完整內容

Ronghang Hu (胡戎航)

胡戎航(Ronghang Hu)是Facebook人工智能研究(FAIR)的研究科學家。他的研究興趣包括視覺和語言推理和視覺感知。他于2020年在Trevor Darrell教授和Kate Saenko教授的指導下獲得UC Berkeley的計算機科學博士學位。2019年夏天和2017年夏天,他在FAIR做研究實習生,分別與Marcus Rohrbach博士和Ross Girshick博士一起工作。2015年獲得清華大學學士學位。2014年,他在中國科學院計算技術研究所進行研究實習,得到了山時光教授和王瑞平教授的指導。

//ronghanghu.com/

視覺與語言推理的結構化模型

視覺和語言任務(例如回答一個關于圖像的問題,為參考表達做基礎,或遵循自然語言指令在視覺環境中導航)需要對圖像和文本的兩種模式共同建模和推理。我們已經見證了視覺和語言推理的顯著進展,通常是通過在更大的數據集和更多計算資源的幫助下訓練的神經方法。然而,解決這些視覺和語言的任務就像用更多的參數建立模型,并在更多的數據上訓練它們一樣簡單嗎?如果不能,我們怎樣才能建立數據效率高、易于推廣的更好的推理模型呢?

這篇論文用視覺和語言推理的結構化模型為上述問題提供了答案——這些模型的架構考慮了人類語言、視覺場景和代理技能中的模式和規律。我們從表達式的基礎開始,我們在第二章中展示了通過考慮這些表達式中的組合結構,我們提出的組合模塊網絡(CMNs)可以實現更好的準確性和泛化。在第三章中,我們使用基于與問題推理步驟一致的動態組合模塊的端到端模塊網絡(N2NMNs)進一步解決了可視化的問題回答任務。在第四章中,我們擴展了模塊化推理的研究,提出了基于可解釋推理步驟的堆棧神經模塊網絡(SNMNs)。模塊化推理之外,我們也提出構建環境敏感的視覺表征與Language-Conditioned場景圖網絡(LCGNs)。第五章對于關系推理和解決問題的閱讀文本圖像的問答迭代pointer-augmented多通道變形金剛。在第六章,我們說明了嵌入任務也需要結構化模型,并在第7章中提出了說話者-跟隨者模型,其中說話者模型和跟隨者模型互為補充。在所有這些場景中,我們表明,通過考慮任務中的結構和輸入模式,我們的模型的執行和泛化明顯優于非結構化對應模型。

付費5元查看完整內容

【導讀】牛津大學的博士生Oana-Maria Camburu撰寫了畢業論文《解釋神經網絡 (Explaining Deep Neural Networks)》,系統性介紹了深度神經網絡可解釋性方面的工作,值得關注。

作者介紹:

Oana-Maria Camburu,來自羅馬尼亞,目前是牛津大學的博士生,主修機器學習、人工智能等方向。

Explaining Deep Neural Networks

深度神經網絡在計算機視覺、自然語言處理和語音識別等不同領域取得了革命性的成功,因此越來越受歡迎。然而,這些模型的決策過程通常是無法向用戶解釋的。在各種領域,如醫療保健、金融或法律,了解人工智能系統所做決策背后的原因至關重要。因此,最近研究了幾個解釋神經模型的方向。

在這篇論文中,我研究了解釋深層神經網絡的兩個主要方向。第一個方向由基于特征的事后解釋方法組成,也就是說,這些方法旨在解釋一個已經訓練過的固定模型(事后解釋),并提供輸入特征方面的解釋,例如文本標記和圖像的超級像素(基于特征的)。第二個方向由生成自然語言解釋的自解釋神經模型組成,也就是說,模型有一個內置模塊,為模型的預測生成解釋。在這些方面的貢獻如下:

  • 首先,我揭示了僅使用輸入特征來解釋即使是微不足道的模型也存在一定的困難。我表明,盡管有明顯的隱含假設,即解釋方法應該尋找一種特定的基于真實值特征的解釋,但對于預測通常有不止一種這樣的解釋。我還展示了兩類流行的解釋方法,它們針對的是不同類型的事實基礎解釋,但沒有明確地提及它。此外,我還指出,有時這兩種解釋都不足以提供一個實例上決策過程的完整視圖。

  • 其次,我還介紹了一個框架,用于自動驗證基于特征的事后解釋方法對模型的決策過程的準確性。這個框架依賴于一種特定類型的模型的使用,這種模型有望提供對其決策過程的洞察。我分析了這種方法的潛在局限性,并介紹了減輕這些局限性的方法。引入的驗證框架是通用的,可以在不同的任務和域上實例化,以提供現成的完整性測試,這些測試可用于測試基于特性的后特殊解釋方法。我在一個情緒分析任務上實例化了這個框架,并提供了完備性測試s1,在此基礎上我展示了三種流行的解釋方法的性能。

  • 第三,為了探索為預測生成自然語言解釋的自解釋神經模型的發展方向,我在有影響力的斯坦福自然語言推斷(SNLI)數據集之上收集了一個巨大的數據集,數據集約為570K人類編寫的自然語言解釋。我把這個解釋擴充數據集稱為e-SNLI。我做了一系列的實驗來研究神經模型在測試時產生正確的自然語言解釋的能力,以及在訓練時提供自然語言解釋的好處。

  • 第四,我指出,目前那些為自己的預測生成自然語言解釋的自解釋模型,可能會產生不一致的解釋,比如“圖像中有一只狗。”以及“同一幅圖片中沒有狗”。不一致的解釋要么表明解釋沒有忠實地描述模型的決策過程,要么表明模型學習了一個有缺陷的決策過程。我將介紹一個簡單而有效的對抗性框架,用于在生成不一致的自然語言解釋時檢查模型的完整性。此外,作為框架的一部分,我解決了使用精確目標序列的對抗性攻擊的問題,這是一個以前在序列到序列攻擊中沒有解決的場景,它對于自然語言處理中的其他任務很有用。我將這個框架應用到e-SNLI上的一個最新的神經模型上,并表明這個模型會產生大量的不一致性。

這項工作為獲得更穩健的神經模型以及對預測的可靠解釋鋪平了道路。

地址: //arxiv.org/abs/2010.01496

付費5元查看完整內容

與經典的監督學習不同,強化學習(RL)從根本上是交互式的: 一個自主的智能體必須學習如何在一個未知的、不確定的、可能是對抗的環境中表現,通過與環境的積極互動來收集有用的反饋,以提高其序列決策能力。RL代理還將干預環境: 代理做出決策,進而影響環境的進一步演化。

由于它的普遍性——大多數機器學習問題可以看作是特殊情況——RL很難。由于沒有直接的監督,RL的一個主要挑戰是如何探索未知的環境并有效地收集有用的反饋。在最近的RL成功案例中(如視頻游戲中的超人表現[Mnih et al., 2015]),我們注意到它們大多依賴于隨機探索策略,如“貪婪”。同樣的,策略梯度法如REINFORCE [Williams, 1992],通過向動作空間注入隨機性進行探索,希望隨機性能導致良好的動作序列,從而獲得高總回報。理論RL文獻已經開發出了更復雜的算法來進行有效的探索(例如,[Azar等人,2017]),然而,這些接近最優算法的樣本復雜度必須根據底層系統的關鍵參數(如狀態和動作空間的維數)呈指數級增長。這種指數依賴性阻礙了這些理論上優雅的RL算法在大規模應用中的直接應用。總之,如果沒有進一步的假設,無論在實踐上還是在理論上,RL都是困難的。

在本文中,我們試圖通過引入額外的假設和信息源來獲得對RL問題的支持。本文的第一個貢獻是通過模仿學習來提高RL樣本的復雜度。通過利用專家的示范,模仿學習極大地簡化了探索的任務。在本論文中,我們考慮了兩種設置:一種是交互式模仿學習設置,即在訓練期間專家可以進行查詢;另一種是僅通過觀察進行模仿學習的設置,在這種設置中,我們只有一組由對專家狀態的觀察組成的演示(沒有記錄專家行為)。我們在理論和實踐中研究如何模仿專家,以減少樣本的復雜性相比,純RL方法。第二個貢獻來自于無模型的強化學習。具體來說,我們通過構建一個從策略評估到無后悔在線學習的總體約簡來研究策略評估,無后悔在線學習是一個活躍的研究領域,具有良好的理論基礎。這樣的約減創造了一個新的算法族,可以在生成過程的非常弱的假設下證明正確的策略評估。在此基礎上,對行動空間和參數空間兩種無模型勘探策略進行了理論和實證研究。這項工作的第三個貢獻來自基于模型的強化學習。我們提供了基于模型的RL方法和一般無模型的RL方法之間的第一個指數樣本復度分離。然后,我們提供了基于PAC模型的RL算法,可以同時實現對許多有趣的MDPs的采樣效率,如表列MDPs、因子MDPs、Lipschitz連續MDPs、低秩MDPs和線性二次控制。通過將最優控制、模型學習和模仿學習結合在一起,我們還提供了一個更實用的基于模型的RL框架,稱為雙重策略迭代(DPI)。此外,我們給出了一個通用的收斂分析,將現有的近似策略迭代理論推廣到DPI。DPI對最近成功的實用RL算法如ExIt和AlphaGo Zero進行了概括和提供了第一個理論基礎[Anthony et al., 2017, Silver et al., 2017],并為統一基于模型的RL方法和無模型的RL方法提供了一種理論健全和實踐高效的方法。

//www.ri.cmu.edu/publications/towards-generalization-and-efficiency-in-reinforcement-learning/

付費5元查看完整內容

使用生成模型的無監督學習具有發現3D場景豐富表示的潛力。這種神經場景表示可能隨后支持各種下游任務,從機器人技術到計算機圖形再到醫學成像。然而,現有的方法忽略了場景最基本的屬性之一:三維結構。在這項工作中,我們使神經場景表征與一個感應偏差的三維結構的情況。我們證明了這種歸納偏差如何使無監督的發現幾何和外觀,只給定的二維圖像。通過學習一組這樣的三維結構感知神經表征的分布,我們可以執行聯合重建的三維形狀和外觀只給出一個單一的二維觀察。我們表明,在這個過程中學習到的特征使整個類對象的三維語義分割成為可能,只訓練了30個帶標記的例子,證明了三維形狀、外觀和語義分割之間的緊密聯系。最后,我們討論了場景表示學習在計算機視覺本身中的本質和潛在作用,并討論了未來工作的前景。

付費5元查看完整內容

在過去的20年里,基因組學、神經科學、經濟學和互聯網服務等許多領域產生了越來越多的大數據集,這些數據集有高維、大樣本,或者兩者兼之。這為我們從數據中檢索和推斷有價值的信息提供了前所未有的機會。同時,也對統計方法和計算算法提出了新的挑戰。一方面,我們希望建立一個合理的模型來捕獲所需的結構,并提高統計估計和推斷的質量。另一方面,面對越來越大的數據集,計算可能成為一個巨大的障礙,以得出有意義的結論。這篇論文站在兩個主題的交叉點,提出了統計方法來捕獲所需的數據結構,并尋求可擴展的方法來優化計算非常大的數據集。我們提出了一種可擴展的靈活框架,用于利用lasso/elastic-net解決大規模稀疏回歸問題; 提出了一種可伸縮的框架,用于在存在多個相關響應和其他細微差別(如缺失值)的情況下解決稀疏縮減秩回歸問題。分別在snpnet和multiSnpnet R包中以PLINK 2.0格式為基因組數據開發了優化的實現。這兩種方法在超大和超高維的英國生物樣本庫研究中得到了驗證,與傳統的預測建模方法相比有了顯著的改進。此外,我們考慮了一類不同的高維問題,異質因果效應的估計。與監督學習的設置不同,這類問題的主要挑戰在于,在歷史數據中,我們從未觀察到硬幣的另一面,因此我們無法獲得處理之間真正差異的基本真相。我們提出適應非參數統計學習方法,特別是梯度增強和多元自適應回歸樣條,以估計處理效果的預測器可用。實現被打包在一個R包causalLearning中。

付費5元查看完整內容

近年來,神經網絡已成為分析復雜和抽象數據模型的有力工具。然而,它們的引入本質上增加了我們的不確定性,即分析的哪些特征是與模型相關的,哪些是由神經網絡造成的。這意味著,神經網絡的預測存在偏差,無法與數據的創建和觀察的真實本質區分開來。為了嘗試解決這些問題,我們討論了貝葉斯神經網絡:可以描述由網絡引起的不確定性的神經網絡。特別地,我們提出了貝葉斯統計框架,它允許我們根據觀察某些數據的根深蒂固的隨機性和我們缺乏關于如何創建和觀察數據的知識的不確定性來對不確定性進行分類。在介紹這些技術時,我們展示了如何從原理上獲得神經網絡預測中的誤差,并提供了描述這些誤差的兩種常用方法。我們還將描述這兩種方法在實際應用時如何存在重大缺陷,并強調在使用神經網絡時需要其他統計技術來真正進行推理。

付費5元查看完整內容

【導讀】紐約大學的Andrew Gordon Wilson和Pavel Izmailov在論文中從概率角度的泛化性對貝葉斯深度學習進行了探討。貝葉斯方法的關鍵區別在于它是基于邊緣化,而不是基于最優化的,這為它帶來了許多優勢。

貝葉斯方法的關鍵區別是邊緣化,而不是使用單一的權重設置。貝葉斯邊緣化可以特別提高現代深度神經網絡的準確性和校準,這是典型的不由數據完全確定,可以代表許多令人信服的但不同的解決方案。我們證明了深度集成為近似貝葉斯邊緣化提供了一種有效的機制,并提出了一種相關的方法,通過在沒有顯著開銷的情況下,在吸引域邊緣化來進一步改進預測分布。我們還研究了神經網絡權值的模糊分布所隱含的先驗函數,從概率的角度解釋了這些模型的泛化性質。從這個角度出發,我們解釋了那些對于神經網絡泛化來說神秘而獨特的結果,比如用隨機標簽來擬合圖像的能力,并證明了這些結果可以用高斯過程來重現。最后,我們提供了校正預測分布的貝葉斯觀點。

付費5元查看完整內容
北京阿比特科技有限公司