近年來,從一般物體抓取到手部操作,深度學習實現了許多令人興奮的機器人操作能力。盡管如此,能夠進入以前從未見過的家庭環境,并像人類一樣完成各種任務的典型家用機器人還遠遠不現實。雖然在實現這一目標方面有許多問題要解決,但中心瓶頸之一在于從機器人傳感器輸入中學習控制策略,這些策略可以泛化到新的任務、對象和環境。例如,一個在家做飯的機器人無法負擔從頭開始學習每一道菜,也無法為機器人可能遇到的每個新廚房硬編碼狀態特征。實現這種泛化的一個潛在途徑是在包含許多任務、對象和環境的廣泛數據分布上訓練機器人。事實上,這種將大型、多樣化的數據集與可擴展的離線學習算法(例如,自監督或廉價監督學習)相結合的方法,是自然語言處理(NLP)和視覺最近取得成功的關鍵。然而,直接將此方法擴展到機器人領域并非易事,因為我們既沒有足夠大和多樣化的機器人交互數據集,也不清楚哪種類型的學習算法或監督來源可以使我們從這些數據集中可擴展地學習技能。
本文的目標在于解決這些挑戰,并在機器人操縱的背景下重現大規模數據和學習的方法。
本文的第一部分將討論如何可擴展地收集在物理世界中交互的機器人的大型和多樣化數據集,以及如何在這種離線機器人數據集上有效地預訓練自監督世界模型。然后,我們將探討如何使用這些預訓練的世界模型,通過將它們與規劃相結合來解決任務,首先用于解決長視距操縱任務,其次用于完成自然語言指定的任務。最后,我們將討論如何超越機器人數據,并解鎖存在于網絡上的廣泛數據源,如人類的視頻,以使機器人更有效地學習,特別是通過獎勵學習和視覺預訓練。本文將通過討論公開的挑戰來結束,特別是如何統一模擬、真實世界的數據收集和人類視頻的范式,以實現通用家用機器人的愿景。
近年來,機器人領域發展迅速,機器人被用于越來越多的應用中,從制造業到醫療健康再到家務勞動。機器人技術的關鍵挑戰之一是使機器人能夠在非結構化和動態環境中執行復雜的操作任務。雖然機器人學習和控制已經取得了重大進展,但許多現有方法受到限制,因為它們依賴于預定義的運動基元或通用模型,而這些模型沒有考慮到個人用戶、其他合作智能體或交互對象的特定特征。為了在這些不同的環境中有效地工作,機器人需要能夠適應不同的任務和環境,并與不同類型的智能體進行交互,如人類和其他機器人。本論文研究學習方法,使機器人能夠適應他們的行為,以實現智能機器人行為。
在本文的第一部分中,我們專注于使機器人更好地適應人類。我們首先探索如何利用不同的數據源為人類用戶實現個性化。研究了人類如何喜歡用低維控制器(如操縱桿)遙控輔助機器人手臂。本文提出一種算法,可以有效地開發輔助機器人的個性化控制。這里的數據是通過最初演示機器人的行為,然后詢問用戶以從操縱桿收集他們相應的首選遙操作控制輸入來獲得的。探索了利用較弱的信號來推斷智能體的信息,如物理修正。實驗結果表明,人工修正是相互關聯的,共同推理這些修正可以提高精度。最后,研究了機器人如何通過推理和利用團隊結構更有效地與人類團隊合作和影響人類團隊,而不是只適應單個人類用戶。將該框架應用于兩種類型的群體動力學,即領導-跟隨和捕食者-被捕食者,并證明機器人可以首先開發一種群體表示,并利用這種表示成功地影響一個群體以實現各種目標。
在本文的第二部分,我們將研究范圍從人類用戶擴展到機器人智能體。本文解決了分散的機器人團隊如何通過只觀察其他智能體的行動來相互適應的問題。本文發現了團隊中存在無限推理循環的問題,并通過為機器人智能體分配不同的角色,如"發言人"和"聽眾",提出了解決方案。這種方法使我們能夠將觀察到的行動視為一個溝通渠道,從而實現分散團隊內的有效協作。在本文的第三部分,我們探討了如何通過開發定制的工具來適應不同的任務。強調了工具在確定機器人如何與物體交互方面的關鍵作用,使它們在為特定任務定制機器人方面變得重要。為解決這個問題,本文提出一個端到端的框架,通過利用可微物理模擬器來自動學習富接觸操作任務的工具形態學。最后,對全文進行了總結,并對未來的研究方向進行了展望。
本文為強化學習和計算機視覺應用構建深度學習模型,重點是設計新穎有效的表示學習框架。所提出的方法有兩個主要方面:神經網絡模型架構設計和目標工程。為演示如何操縱每個方面,深入研究了人工智能中兩個重要研究領域的代表性應用,即強化和計算機視覺。在這兩個領域,都強調了如何操縱抽象表示,以從目標任務和可用數據類型中建立強大的歸納偏差。我們希望我們的例子可以為今后處理相關領域和其他領域的問題提供啟發。 論文的第一部分研究了強化學習中的代表性任務。我們的貢獻如下:
作為起點,旨在改善通用和探索性行為,并反映一類流行的無模型、基于策略的強化學習算法、actor - critic方法的環境不確定性。本文提出隨機actor-critic方法(Shang et al., 2019b; Chapter 2;第2章)它采用了一種有效而靈活的方式將隨機性注入到actor-critic模型中。隨機性被注入到高級抽象表示中。測試了幾個用隨機激活增強的actor-critic模型,并在廣泛的Atari 2600游戲、連續控制問題和賽車任務中證明了它們的有效性。
接下來,我們將注意力轉向如何在一個更具體但更常見的RL問題設置中進行結構化探索:一個承載著不同任務套件的持久環境或世界。本文提出對環境進行世界圖分解,以加速強化學習(Shang et al., 2019a; Chapter 3;第3章)世界圖的節點是重要的航路點狀態,邊表示它們之間的可行遍歷。在識別世界圖之后,該框架將其應用于分層強化學習算法,以將探索偏向于與任務相關的航路點和區域。在一套具有挑戰性的迷宮任務上徹底評估了所提出方法,并表明使用環境的世界圖抽象可以顯著加速強化學習,實現更高的回報和更快的學習。
最后,考慮多智能體必須合作以實現共同目標的場景,這是多智能體強化學習的一個子集。建議將以智能體為中心的表示納入多智能體強化學習(Shang等人,2020a;第四章)以兩種方式。引入了一個以智能體為中心的注意力模塊,具有跨智能體的顯式連接。注意力模塊建立在智能體的抽象表示之上。利用了一個以智能體為中心的無監督預測目標,作為輔助損失或預訓練步驟的基礎。在谷歌Research Football環境和DeepMind Lab 2D上評估了這些方法,表明它們導致了智能體之間更復雜的合作策略的出現,并提高了樣本效率和泛化能力。
論文的第二部分將重點轉移到各種計算機視覺任務和領域的無監督學習。我們的貢獻如下:
為了更好地利用無標簽數據并增強無監督圖像建模,本文提出通道遞歸變分自編碼器(crVAE) (Shang等人,2018;第5章)。它將抽象卷積特征的跨通道循環連接集成到推理和生成步驟,允許以全局到局部、粗到細的方式捕獲由此產生的高級特征。結合對抗性損失,產生的通道循環VAE-GAN (crVAE-GAN)在生成不同光譜的高分辨率圖像方面優于基線VAE-GAN,同時保持相同的計算效率水平。
下一步,進一步擴展通道循環框架,并提出了注意力的條件通道循環自編碼;)屬性條件人臉合成。評估通過定性的視覺檢查和定量的指標進行,即inception分數、人類偏好和屬性分類精度。
考慮對無標記視頻序列進行無監督學習,并建議學習視頻級靜態和動態表示(Shang等人,2020b;第7章從時間一致性和動力學角度對視頻進行分解。本文展示了在幾個應用中學習到的表示的重要性,包括一個新的動力學檢索任務,在人臉、人類活動和機器人抓取數據集上。
**最近機器學習方法的大部分成功都是通過利用過去幾年產生的大量標記數據而實現的。**然而,對于一些重要的實際應用來說,如此大規模的數據收集仍然是不可行的。這包括機器人、醫療健康、地球科學和化學等領域,在這些領域獲取數據可能既昂貴又耗時。在本文中,我們考慮三個不同的學習問題,其中可以收集的數據量是有限的。這包括在在線學習期間限制對標簽、整個數據集和生成經驗的訪問的設置。本文通過采用序列決策策略來解決這些數據限制,這些策略在收集新數據和根據新獲得的證據做出明智的決策之間迭代。**首先,解決標簽獲取成本較高時如何高效地收集批量標簽的問題。**概率主動學習方法可用于貪婪地選擇信息量最大的待標記數據點。然而,對于許多大規模問題,標準的貪心算法在計算上變得不可行。為緩解這個問題,本文提出一種可擴展的貝葉斯批量主動學習方法,其動機是近似模型參數的完整數據后驗。
**其次,我們解決了自動化分子設計的挑戰,以加速對新藥物和材料的搜索。**由于迄今為止只探索了化學空間的一個小區域,可用于某些化學系統的數據量是有限的。本文通過將3D分子設計問題制定為強化學習任務,克服了生成模型對數據集的依賴,并提出了一種對稱感知策略,可以生成用以前方法無法實現的分子結構。
**最后,我們考慮了如何在不同任務中有效地學習機器人行為的問題。**實現這一目標的一個有希望的方向是在不同的任務上下文中泛化局部學習的策略。上下文策略搜索通過顯式地將策略約束在參數化上下文空間上,從而提供數據高效的學習和泛化。進一步構建上下文策略表示,在各種機器人領域實現更快的學習和更好的泛化。
**人類通過被動觀察和主動互動來學習世界的心理模型,從而在環境中導航。他們的世界模型允許他們預測接下來可能發生的事情,并根據潛在的目標采取相應的行動。**這樣的世界模型在自動駕駛等復雜環境的規劃方面具有強大的前景。人類司機或自動駕駛系統用眼睛或相機感知周圍環境。他們推斷出世界的一種內部表示應該:(i)具有空間記憶(例如遮擋),(ii)填充部分可觀測或有噪聲的輸入(例如被陽光蒙蔽時),以及(iii)能夠概率地推理不可觀測的事件(例如預測不同的可能的未來)。它們是具身的智能體,可以通過其世界模型在物理世界中預測、計劃和行動。本文提出一個通用框架,從攝像機觀察和專家演示中訓練世界模型和策略,由深度神經網絡參數化。利用幾何、語義和運動等重要的計算機視覺概念,將世界模型擴展到復雜的城市駕駛場景。**在我們的框架中,我們推導了這種主動推理設置的概率模型,其目標是推斷解釋主動代理的觀察和行動的潛在動力學。**我們通過確保模型預測準確的重建以及合理的操作和過渡來優化日志證據的下界。首先,我們提出了一個模型,預測計算機視覺中的重要量:深度、語義分割和光流。然后,我們使用三維幾何作為歸納偏差在鳥瞰空間中操作。我們首次提出了一個模型,可以從360?環繞單目攝像機鳥瞰動態代理的概率未來軌跡。最后,我們展示了在閉環駕駛中學習世界模型的好處。我們的模型可以聯合預測城市駕駛環境中的靜態場景、動態場景和自我行為。我們表明,學習世界模型和駕駛策略可以生成超過1小時的預測(比訓練序列大小長2000倍)。
深度強化學習(RL)在各個領域取得了顯著的成功,包括在圍棋和國際象棋等游戲中的使用。最近,深度多智能體強化學習(MARL)引起了廣泛關注,因為大量現實世界的問題可以自然地在MARL環境中表示。例如,自主車輛與無人機或機器人編隊的協調控制需要多個智能體根據局部觀察采取行動并協調其行為。然而,單智能體深度強化學習和多智能體深度強化學習都面臨著一個共同的挑戰:數據效率低和訓練時間長。本文向解決該問題邁出了一步:如何使(多智能體)深度強化學習更有效,即如何使用更少的數據和減少訓練時間?本文從五個方面解決深度強化學習的訓練時間長和數據效率低的問題:(1)并行高通量訓練;(2)更好的表示學習;(3)遷移學習;(4)高效探索;(5)訓練智能體以利用外部知識。對于1),為了實現更高的強化學習訓練吞吐量,我們提出了一個快速強化學習訓練框架,該框架并行收集數據,而不犧牲強化學習算法的數據效率。對于2),研究了圖卷積網絡的使用,以捕獲MARL中常用的集中式批評器的排列不變性質。我們發現這可以導致更有效的學習。研究了一種以物體為中心的表示,將多智能體RL算法擴展到復雜的視覺環境。3)為了讓強化學習智能體利用經過訓練的智能體的"知識",本文提出了一個遷移學習框架,該框架允許學生模型利用多個教師模型的"知識"。我們發現這種遷移可以導致更快的學習。對于4),研究了協調的多智能體探索,這允許智能體協調它們的探索努力,并更快地學習。最后,對于5),本文提出了"知識詢問" (AFK),一個學習生成語言命令以查詢有意義的知識的智能體,以更有效地解決給定的任務。綜上所述,本文研究了提高深度強化學習數據效率和訓練時間的方法。我們相信,通過更短的訓練時間和更好的數據效率,(多智能體)深度強化學習可以應用于各種現實世界的問題,本文提出的方法使我們更接近這一目標。
魯棒的、通用的機器人可以在半結構化環境中自主地操縱物體,可以為社會帶來物質利益。通過識別和利用半結構化環境中的模式,數據驅動的學習方法對于實現這種系統至關重要,使機器人能夠在最少的人類監督下適應新的場景。然而,盡管在機器人操作的學習方面有大量的工作,但在機器人能夠廣泛應用于現實世界之前,仍有很大的差距。為了實現這一目標,本文解決了三個特殊的挑戰:半結構化環境中的感知、適應新場景的操作以及對不同技能和任務的靈活規劃。在討論的方法中,一個共同的主題是通過將“結構”,或特定于機器人操作的先驗,合并到學習算法的設計和實現中,實現高效和一般化的學習。本文的工作遵循上述三個挑戰。
我們首先在基于視覺的感知難以實現的場景中利用基于接觸的感知。在一項工作中,我們利用接觸反饋來跟蹤靈巧操作過程中手持物體的姿態。另一方面,我們學習定位機器人手臂表面的接觸,以實現全臂感知。接下來,我們將探討針對基于模型和無模型技能的新對象和環境調整操作。我們展示了學習面向任務的交互式感知如何通過識別相關動態參數來提高下游基于模型的技能的性能。本文還展示了如何使用以對象為中心的行動空間,使無模型技能的深度強化學習更有效和可泛化。
探索了靈活的規劃方法,以利用低水平技能完成更復雜的操縱任務。我們開發了一個基于搜索的任務計劃,通過學習技能水平動態模型,放松了之前工作中關于技能和任務表示的假設。該計劃器隨后應用于后續工作中,使用混合力-速度控制器的已知前提條件來執行多步接觸豐富的操作任務。我們還探索了用自然語言描述的更靈活的任務的規劃,使用代碼作為結構化的動作空間。這是通過提示大型語言模型直接將自然語言任務指令映射到機器人策略代碼來實現的,策略代碼協調現有的機器人感知和技能庫來完成任務。
盡管數據規模在增長,但我們希望將學習算法的許多應用都受到數據數量和質量的限制。生成模型提出了一個框架,可以自然地將先驗信念與現實世界的數據結合起來。生成式方法的核心是概率推理的挑戰,或估計給定觀測的潛變量。這一挑戰催生了涵蓋多種統計技術的豐富研究領域。最近,深度學習方法被用來解決推理查詢,被恰當地命名為深度推理。在我的論文中,我將探索深度推理的擴展,以應對現實世界的稀疏性和效率的挑戰。我將介紹實際應用的案例研究,其中深度推理在以前的工作上取得了相當大的改進。
本文主要圍繞三個部分展開。我們介紹了生成模型和深度推理的背景,重點是現代變分方法。第一部分將提出新的泛化推理算法,以對不同的稀疏性概念(如多模態數據、缺失數據或計算約束)具有魯棒性。其次,我們研究了元平攤推理,或“推斷如何推斷”。一種雙平攤推理算法將能夠廉價地解決一個新的生成模型的推理查詢。我們將展示一種新的算法來重新利用掩碼語言建模來實現這一點。
第三,我們提出了深度推理在教育中的兩個現實應用:(a)在項目反應理論和相關心理測量模型下估計學生的能力,(b)為學生學習解決編程問題推理教育反饋。總之,這些貢獻展示了深度推理在教育中的豐富性和實用性,以及在現實世界中更廣泛的應用。
在許多現實世界的應用中,多主體決策是一個普遍存在的問題,如自動駕駛、多人視頻游戲和機器人團隊運動。多智能體學習的主要挑戰包括其他智能體行為的不確定性,以及由聯合觀察、行動和策略空間的高維性導致的維數災難。由于未知的智能體意圖和意外的、可能的對抗性行為,這些挑戰在對抗性場景中進一步加劇。本文提出了魯棒和可擴展的多智能體學習方法,目標是高效地構建可以在對抗性場景中魯棒運行的自主智能體。通過觀察智能體的行為準確推斷其意圖的能力是魯棒決策的關鍵。在這種情況下,一個挑戰是對手實際行為的高度不確定性,包括潛在的欺騙,這可能與先驗行為模型有很大的不同。捕捉自我主體和對手之間的交互以及對雙方主體可用信息的推理,對于建模這種欺騙行為至關重要。本文采用博弈論對手建模方法解決了這一意圖識別問題,該方法基于一種新的多樣性驅動的信念空間集合訓練技術,用于實現對欺騙的魯棒性**。為了將集成方法擴展到具有多個智能體的場景,本文提出了一種可擴展的多智能體學習技術,該技術通過稀疏注意力機制促進了接近最優的聯合策略學習。該機制的結果是集中的參數更新,這大大提高了采樣效率**。此外,本文還提出了一種新的隱式集成訓練方法,該方法利用多任務學習和深度生成策略分布,以較低的計算和內存成本獲得更好的魯棒性。將魯棒的意圖識別和可擴展的多智能體學習結合起來,可以實現魯棒的、可擴展的離線策略學習。然而,完全自主的智能體還需要能夠不斷地從新的環境和對等智能體中學習(并適應)。因此,本文還提出了一種安全的適應方法,既能適應新的對手,又能在對抗場景中對任何可能的對手剝削保持低可利用性。本文的貢獻有助于構建自主代理,使其能夠在具有不確定性的競爭多智能體場景下做出魯棒的決策,并通過計算效率學習安全地適應以前未見的對等智能體。
利用深度神經網絡進行機器學習的最新進展,在從大型數據集學習方面取得了重大成功。然而,這些成功主要集中在計算機視覺和自然語言處理方面,而在序列決策問題方面的進展仍然有限。強化學習(RL)方法就是為了解決這些問題而設計的,但相比之下,它們很難擴展到許多現實世界的應用中,因為它們依賴于成本高昂且可能不安全的在線試錯,而且需要從頭開始逐個學習每個技能的低效過程。本文將介紹設計RL智能體的工作,這些智能體直接從離線數據中訓練,能夠掌握多種技能,以解決上述挑戰。
在本文的第一部分中,我們首先介紹了一種算法,從離線數據集中學習高性能策略,并通過使用學習到的動力學模型生成的推出來擴展離線數據,提高離線強化學習智能體的泛化能力。然后,我們將該方法擴展到高維觀測空間,如圖像,并表明該方法使現實世界的機器人系統能夠執行操作任務。在論文的第二部分,為了避免在之前的強化學習工作中從頭開始學習每個任務的問題,同時保持離線學習的好處,討論了如何使強化學習智能體通過跨任務共享數據從不同的離線數據中學習各種任務。此外,我們表明,共享數據需要標記來自其他任務的數據的獎勵,這依賴于繁重的獎勵工程,也是勞動密集型的。為了解決這些問題,我們描述了如何有效地利用離線RL中的各種未標記數據,繞過獎勵標記的挑戰。最后,我們列出了未來的研究方向,如利用異構無標簽離線數據集的有效預訓練方案、離線預訓練后的在線微調以及離線RL的離線超參數選擇。
機器人研究的一個長期目標是創建能夠從零開始自動學習復雜控制策略的算法。將這種算法應用到機器人上的挑戰之一是表示的選擇。強化學習(RL)算法已經成功地應用于許多不同的機器人任務中,如帶有機器人手臂的cup中的Ball-in-a-Cup任務和各種機器人世界杯機器人足球啟發的領域。然而,RL算法仍然存在訓練時間長、所需訓練數據量大的問題。為狀態空間、行動空間和策略選擇合適的表示可以大大減少所需的訓練時間和所需的訓練數據。
本文主要研究機器人的深度強化學習。具體來說,狀態空間、動作空間和策略表示的選擇如何減少機器人學習任務的訓練時間和樣本復雜度。特別集中注意兩個主要領域: 1)通過張量狀態-動作空間表示 2)多狀態表示的輔助任務學習
第一個領域探索了在環境變化中改進機器人策略遷移的方法。學習策略的成本可能很高,但是如果策略可以在類似的環境中傳輸和重用,那么訓練成本可以平攤。遷移學習是一個被廣泛研究的領域,涉及多種技術。在這篇論文中,我們著重設計一個易于傳輸的表示。我們的方法將狀態空間和動作空間映射為多維張量,設計成當環境中機器人和其他對象的數量變化時保持固定維數。我們還提出了全卷積Q-Network (FCQN)策略表示,這是一種特殊的網絡架構,與張量表示相結合,允許跨環境大小進行零距離傳輸。我們在模擬的單代理和多代理任務上演示了這種方法,靈感來自于RoboCup Small - Size League (SSL)和Atari Breakout的修改版本。我們還表明,在真實世界的傳感器數據和機器人中使用這樣的表示和模擬訓練策略是可能的。
第二個領域考察了一個機器人深度RL狀態表示的優勢如何彌補另一個機器人深度RL狀態表示的劣勢。例如,我們經常想要利用機器人可用的傳感器來學習任務,其中包括像攝像機這樣的高維傳感器。最近的Deep RL算法可以通過圖像進行學習,但是數據的數量對于真實的機器人來說是難以接受的。或者,可以使用任務完成所需的最小集創建狀態。這樣做的好處是:1)減少策略參數的數量,2)刪除不相關的信息。然而,提取這些特征通常會在工程、額外硬件、校準和實驗室之外的脆弱性方面有很大的成本。我們在仿真和現實世界的多個機器人平臺和任務上演示了這一點。我們證明它在模擬的RoboCup小型聯賽(SSL)機器人上工作。我們還演示了這樣的技術允許在真實的硬件上從零開始學習,通過機器人手臂執行一個球在一個杯子的任務。