亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

深度學習是人工智能的一個子類別,在自動識別水下傳感器數據中的各種目標方面具有巨大潛力。這項工作的目標是支持未來使用深度學習的水下戰爭領域目標自動識別系統的發展,首先要展示什么是可能的,其次要讓研究人員深入了解如何通過建議和經驗教訓來構建這種定制系統。目標受眾是水下戰爭領域的研究人員,他們或是深度學習的新手,或是水下傳感器數據的新手。深度學習的基礎知識可以從許多在線課程中獲得。本參考文檔重點介紹如何應用這些工具識別目標,該領域不同于機器視覺和自然語言處理的常規應用。這些水下戰爭自動目標識別系統處理的不是標準圖像或文本,而是來自聲學傳感器的數據。這些小型定制神經網絡不是下載標準的現成網絡,利用充足的計算資源從大型訓練數據集中學習,而是設計用于從相對較小的訓練數據集中學習,而且往往受到硬件的計算限制。這項工作概述了定制神經網絡在各種水下戰爭自動目標識別任務中的應用,包括側視聲納中的類雷物體、寬帶聲納散射數據中的未爆彈藥、被動聲學數據中的水面艦艇以及主動聲納中的水下目標。此外,還分享了關于高效神經網絡設計和使用來自水下傳感器的小型訓練數據集的建議。

先進的自動目標識別系統可以快速自動分析傳入的傳感器數據,并對感興趣的目標進行探測、分類和定位,從而提高水下作戰能力。這有助于減少從獵雷到被動聲學監測、魚雷防御和反潛戰等各種應用中操作員的工作量。深度學習是在遠程和無人平臺上進行水下作戰自動目標識別應用的一種特別有前途的方法。越來越多的研究人員希望獲得相關建議,因此編寫了本文檔,以鼓勵和支持深度學習技術在未來自動目標識別系統開發中的應用,從而提高水下作戰領域的防御能力。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

本文探討了如何在軍隊中開發和訓練強大的自主網絡防御(ACD)智能體。本文提出了一種架構,將多智能體強化學習(MARL)、大型語言模型(LLM)和基于規則的系統組成的混合人工智能模型集成到分布在網絡設備上的藍色和紅色智能體團隊中。其主要目標是實現監控、檢測和緩解等關鍵網絡安全任務的自動化,從而增強網絡安全專業人員保護關鍵軍事基礎設施的能力。該架構設計用于在以分段云和軟件定義控制器為特征的現代網絡環境中運行,從而促進 ACD 智能體和其他網絡安全工具的部署。智能體團隊在自動網絡操作 (ACO) gym中進行了評估,該gym模擬了北約受保護的核心網絡,可對自主智能體進行可重復的培訓和測試。本文最后探討了在訓練 ACD 智能體理過程中遇到的主要挑戰,尤其關注訓練階段的數據安全性和人工智能模型的穩健性。

圖 1:四個網絡位置(A-D)容納五個藍色智能體(1-5)的情景。

本文探討了為自主網絡防御(ACD)智能體訓練混合人工智能(AI)模型時所面臨的挑戰和機遇,尤其是在戰術邊緣環境中。這些挑戰源于此類環境所特有的獨特、不可預測和資源受限的設置。北約研究任務組 IST-162 和 IST-196 的工作重點是 “軍事系統的網絡監控和檢測”[1]、[2] 和 “虛擬化網絡中的網絡安全”。虛擬化網絡中的網絡安全"[3] 至 [5],本研究旨在利用混合人工智能框架推進 ACD 智能體的設計和功能,以確保整個聯盟網絡的穩健網絡安全。多智能體強化(MARL)、大型語言模型(LLM)和基于規則的系統的采用構成了我們 ACD 架構的核心,增強了智能體在戰術邊緣環境中普遍存在的斷開、間歇、有限(DIL)帶寬條件下有效執行自主網絡防御任務的能力。這些條件要求系統具有彈性,能在網絡和資源嚴重變化的情況下保持高性能水平,這對傳統的網絡安全系統來說是一個重大挑戰。例如,將深度強化學習(DRL)與生成式人工智能相結合,有利于開發能夠進行復雜決策和自適應學習的智能體,提高其在動態網絡環境中應對復雜網絡威脅的能力[3]。此外,本文還討論了如何將 ACD 智能體集成到模擬的北約啟發的受保護核心網絡環境中,并在此環境中針對一系列網絡威脅對其進行評估。智能體利用人工智能技術的戰略組合,自動執行監控、檢測和緩解等關鍵防御行動,支持對關鍵軍事和民用網絡基礎設施的持續保護。

本文的貢獻如下: 第一,在一個集成了 MARL、LLM 和基于規則的系統的代理層次結構中使用代理智能體范例的方法論,以增強自主網絡防御能力。第二,討論在戰術邊緣環境中為 ACD 智能體訓練混合人工智能模型的挑戰和機遇。第三,定義一套評估指標,用于衡量 ACD 代理在數據和訓練保護方面的性能。本文的組織結構如下: 第二節回顧了相關文獻并解釋了研究原理。第三節詳細介紹了使 ACD 智能體適應戰術邊緣環境的方法。第四節介紹了我們的實證評估結果。最后,第 V 節總結了本研究的意義并概述了未來的研究方向。

付費5元查看完整內容

本文介紹了在戰場數字孿生框架內使用貝葉斯優化(BO)、遺傳算法(GA)和強化學習(RL)等先進技術優化軍事行動的綜合方法。研究重點關注三個關鍵領域:防御作戰中的部隊部署、火力支援規劃和下屬單位的任務規劃。在部隊部署方面,BO 用于根據戰場指標優化營的部署,其中湯普森采樣獲取函數和周期核取得了優異的結果。在火力支援規劃中,采用了 GA 來最小化威脅水平和射擊時間,解決了資源有限條件下的資源受限項目調度問題(RCPSP)。最后,為任務規劃開發了一個 RL 模型,該模型結合了多智能體強化學習 (MARL)、圖注意網絡 (GAT) 和層次強化學習 (HRL)。通過模擬戰場場景,RL 模型展示了其生成戰術演習的有效性。這種方法使軍事決策者能夠在復雜環境中提高行動的適應性和效率。研究結果強調了這些優化技術在支持軍事指揮和控制系統實現戰術優勢方面的潛力。

基于戰場數字孿生的 COA 生成概念

戰場數字孿生是一個數字復制品,代表了真實戰場環境的組成部分和行為特征。它可以通過接收來自實際戰場的實時或接近實時的戰場、敵方和友軍單位信息,并將其動態反映到數字孿生中,從而對數字孿生模型進行評估和調整。換句話說,模型可以根據真實世界的數據不斷更新,以實現更具適應性的分析。這一概念與深綠的自適應執行相一致,后者也依賴于動態更新的信息。通過這種方式,可以向真實戰場系統提供改進的決策反饋,幫助用戶根據數字孿生模型做出更好的決策,而數字孿生模型是根據實際作戰數據更新的。

本節提出了 “基于戰場數字孿生的作戰行動選擇生成與分析 ”概念,通過各種技術方法,利用戰場數字孿生生成作戰行動選擇。然后對這些選項進行評估、效果比較,并推薦最合適的 COA 選項。基于戰場數字孿生的作戰行動選擇生成和分析的基本概念是,利用戰場數字孿生的預測模擬生成作戰行動選擇,同時考慮若干戰術因素(METT+TC:任務、敵人、地形和天氣、可用部隊和支持、可用時間和民用因素)。然后,可在數字孿生環境中對生成的作戰行動方案進行快速評估。圖 2 展示了這一流程的概念圖。生成和分析 COA 的四個關鍵輸入--威脅分析、相對戰斗力分析結果、戰場信息以及指揮官和參謀部的指導--假定來自其他分析軟件模塊和用戶輸入,從而完成智能決策支持系統。有關鏈接分析軟件模塊的更多信息,請參閱 Shim 等人(2023,2024)。

圖 2:基于戰場數字孿生系統的 COA 生成和分析概念。

可以按照圖 1 中概述的戰術規劃流程生成并詳細說明 COA 選項。然而,如前所述,規劃過程中的許多任務都需要人工干預,而人工智能技術的應用仍然有限。因此,我們將重點放在 COA 生成階段,在研究適用技術的同時,找出可以實現自動化和智能化的方面。本研究介紹了在 COA 生成過程中可實現自動化和智能化的三個概念:確定友軍部隊部署、規劃間接火力支援和規劃部隊戰術任務。友軍部隊部署是指部隊到達戰場后如何安排和使用,而部隊部署則是指如何將部隊轉移到指定的大致位置。我們將貝葉斯優化方法應用于友軍部署優化問題,作為 COA 方案生成的一部分。隨著人工智能技術的快速發展,許多研究都探索了基于最先進機器學習算法的全局優化方法。其中,使用高斯過程的貝葉斯優化法作為一種針對實驗成本較高的黑盒函數的全局優化方法受到了廣泛關注(Brochu,2010 年)。對于炮兵作戰,我們將火力支援調度問題歸結為一個項目調度問題,該問題力求在遵守資源限制的同時,最大限度地減少敵方總威脅和發射時間。將項目調度與資源管理相結合的任務被稱為資源約束項目調度問題(RCPSP)。最后,我們利用強化學習(RL)技術為下屬單位規劃戰術任務,以找到最優行動策略。強化學習已經證明,它是在動態和不確定環境中解決復雜決策問題的有效框架。特別是,我們利用多智能體強化學習(MARL)、分層強化學習(HRL)和圖注意網絡(GAT)的原理,為多個單位有效地學習任務及其相應參數,同時從每個智能體的角度考慮其重要性。

在使用所提出的方法生成一系列作戰行動(COA)選項后,將在戰場數字孿生系統中對這些選項進行模擬評估。然后對模擬結果進行評估,以推薦最合適的 COA 選項。在下一章中,將詳細解釋用于實現所建議的 COA 生成概念的技術方法,并提供全面的實驗評估結果,以突出所建議方法的有效性。

圖 8:強化學習的擬議架構。

付費5元查看完整內容

美國海軍陸戰隊人工智能(AI)戰略是該部隊數字化現代化努力的一個里程碑。該戰略為將人工智能整合到海軍陸戰隊的各個層面提供了一個框架,以支持更好、更快的決策,將各種職能的決策時間從幾分鐘縮短到幾秒鐘。該戰略有五個目標,每個目標都支持創建和利用優化決策優勢。海軍陸戰隊全體人員將認識到,向負責任的人工智能模型轉型將改善我們在正確的時間和正確的地點獲取正確數據的方式。

現代戰場上的成功取決于幾個關鍵要求,其中之一就是對作戰環境的全面了解。這種了解使軍隊能夠進行調整,為多領域作戰做好準備,并提高對態勢的認識。烏克蘭戰爭繼續證明,人工智能正在提高決策速度。該戰略為提供現代人工智能能力創造了條件,以支持在有爭議環境中的遠征先進基地行動和瀕海行動的決策優勢。

海軍陸戰隊員了解創新,該戰略將為投資于擅長數據分析和以數據為中心的行動的海軍陸戰隊員提供途徑。在數字化戰場上,從接受任務到執行戰術任務,人工智能都是加快決策和取得成功的助推器。

圖 1. 支持海軍陸戰隊人工智能的指導原則。

美國海軍陸戰隊利用技術進步進行智能作戰,簡化業務操作,并比對手更快、更可靠地關閉殺傷鏈。人工智能(AI)就是這樣一種迅速崛起的技術,只要應用得當,就能極大地改變海軍陸戰隊的訓練、計劃和作戰方式。

美國國防部(DoD)將人工智能定義為 “機器執行通常需要人類智慧才能完成的任務的能力 ”。這項技術適用于海軍陸戰隊的所有作戰職能、業務運作和支持機構,以加強決策和提高運作效率。

美國防部的人工智能需求層次結構以高質量數據為基礎。從企業到邊緣的人工智能部署取決于高效的數據管理實踐以及數據的生成、收集、標記和整理。為了與國防部更廣泛的目標保持一致,海軍陸戰隊的方法將在梯隊和規模上整合企業能力,增強海軍陸戰隊的智能作戰能力。

問題陳述

人工智能繼續快速發展,在條令、組織、領導、物資、培訓和教育、人員、設施和政策制定等領域給海軍陸戰隊帶來了挑戰。數據管理是當今人工智能應用所面臨的規模最大、影響最深的一系列挑戰。海軍陸戰隊正在進行數據管理現代化的戰略努力,因此本文件重點關注以下以人工智能為中心的挑戰:

  • 人工智能與任務目標不符。
  • 人工智能能力的差距越來越大。
  • 從企業到戰術邊緣難以大規模部署人工智能。
  • 傳統治理框架扼殺創新。
  • 合作與伙伴關系的障礙。

海軍陸戰隊必須明智地推進我們的方法,以有效、高效、負責任的方式加速人工智能的發展--全面了解我們對手的風險和速度--從而在競爭和作戰中取得優勢。應對這些挑戰需要大量資源。

范圍

本戰略將指導企業努力為后續方向和指導奠定基礎。它適用于整個部隊、聯合部隊、盟國和合作伙伴,應作為核心文件加以利用,以調整資源和活動。

目標

美海軍陸戰隊的人工智能愿景進一步細分為以下目標,其中每個目標都包含成功實現海軍陸戰隊人工智能愿景所需的目標:

1.人工智能任務調整 2.具備人工智能能力的員工隊伍 3.大規模部署人工智能 4.人工智能治理 5.伙伴關系與合作

付費5元查看完整內容

本研究探討了無人駕駛飛行器(UAV)與有人駕駛飛機合作進行集中任務規劃的發展情況。我們采用經過近端策略優化(PPO)訓練的單一智能體來模擬敵方防空壓制(SEAD)場景。我們的目標是掌握最佳任務策略。我們的模型在各種環境條件下進行了測試,在 100 次測試中,消除敵方防御的成功率達到 78%。我們的模型所取得的巨大成功強調了它在未來戰爭場景中的應用潛力,代表了空戰和強化學習應用領域的重大進展。

方法

集中式任務規劃架構

集中式任務規劃架構是指一種先進的技術架構,能夠在復雜多變的作戰場景中高效協調和管理無人機。該架構從各種信息來源收集數據,實時評估局勢,并規劃和執行最佳戰略,以最大限度地提高整個任務的成功潛力。

該架構的主要組成部分如下:

  1. 戰斗信息管理: 該組件持續監控當前的戰斗態勢并跟蹤信息,以提供實時戰場情報。信息來源多種多樣,包括各種傳感器、傳感器網絡和人工觀察,從而能夠深入了解動態復雜的作戰環境。這相當于強化學習中收集環境信息的過程,為有效的學習過程提供了第一步。

  2. 戰斗狀態(觀察): 在這一階段,戰場信息被提供給智能體。在戰場上收集到的各種信息會被實時處理,并傳遞給強化學習智能體。這樣,智能體就能通過綜合戰場態勢感知了解當前形勢,預測未來的可能性,并決定下一步行動。

3)任務規劃器(智能體): 作為中心的核心要素,這個基于強化學習的智能體根據傳入的實時作戰態勢數據做出最優行動。這一決策過程由一個預訓練的強化學習模型執行,該模型學習如何在復雜環境中實現任務目標。

  1. 指揮官: 最后,智能體的決策將交由指揮官執行。智能體決定的行動將作為指令傳遞給實際的無人機,從而實現移動、目標探測和攻擊等具體任務。

因此,集中任務規劃架構實現了從各種信息源收集和處理數據、規劃和調整無人機行動以適應實時戰場條件的戰略。這就實現了實時戰略決策和快速反應,提高了整體作戰效率和生存能力。

強化學習環境的構建

我們為 MUM-T 問題開發了一個量身定制的強化學習環境。在這個環境中,我們部署了一架戰斗機無人機、一個干擾器和一個防空導彈系統,每個系統都有預定義的攻擊范圍和干擾距離。任務的主要目標是協同參與干擾行動,使目標防空導彈系統失效,隨后通過操縱戰斗機無人機將其消滅。任務的成功完成取決于是否到達指定的目標點。

在無人機任務規劃的背景下,我們為 MUM-T 構建了一個定制的強化學習環境。在 MUM-T 環境中,我們部署了一架戰斗機無人機、一個干擾器和防空導彈系統,每個系統都有明確的攻擊范圍和干擾距離。任務的最終目標是與干擾機進行合作干擾,使防空導彈無法攻擊,隨后通過操縱戰斗機無人機摧毀防空導彈。當無人機到達最終目的地(稱為 "目標點")時,即成功完成任務。

為了開發環境,我們使用了 Gym 庫,這是一個用于強化學習環境的開源框架。無人飛行器可以移動的空間用二維網格表示。由于無人機的航向和速度等低層次控制方面的問題假定由 AFRL ACL 5 級自主處理,因此集中式任務規劃框架側重于負責規劃任務相關值(即航點和任務點)的高層次控制,這些值基于多架無人機的信息和戰場狀態。為促進學習過程,我們將任務空間離散化為 30x30 的網格,共由 900 個單元組成。

每個無人機的行動空間被定義為離散的多行動空間,使每個智能體能夠獨立選擇行動。戰斗機無人機和干擾機有五種可能的行動:向左、向右、向上、向下和攻擊。行動空間的離散化簡化了學習和控制[圖 5、6]。

在每個時間步長內,智能體根據其選擇的行動在網格環境中移動。我們施加了邊界條件(懲罰),以防止無人機在網格邊界外移動。此外,我們還通過檢測碰撞并分配相應的懲罰來處理戰斗機和干擾機之間的潛在碰撞。為了解決無人飛行器之間的協作問題,我們為智能體之間的特定功能和互動建立了模型。當干擾機進行干擾時,如果薩母不在攻擊范圍內,則會產生懲罰。但是,如果防空導彈在攻擊范圍內,干擾成功則會獲得獎勵,使防空導彈無法使用。戰斗機總共有五次攻擊機會,攻擊失敗(當防空導彈不在攻擊范圍內時)會導致失去一次攻擊機會并受到懲罰。另一方面,如果防空導彈在規定的攻擊范圍內,防空導彈就會失效,并獲得獎勵。重要的是,如果戰斗機沒有進行干擾,則無法攻擊,因為戰斗機的攻擊范圍小于干擾距離。

付費5元查看完整內容

本論文對增強現實技術(AR)在軍事訓練中的潛在應用進行了調查。這項研究是在延雪平大學工程學院計算機科學與信息學系進行的。研究旨在開發一種人工智能,解決識別士兵的技術問題,并從該領域的資深人士那里收集有關 AR 在軍事訓練中的深入見解。

研究發現,雖然增強現實技術在加強軍事訓練方面大有可為,但其實施需要慎重考慮。它應該對用戶友好、不顯眼,并且能夠創建逼真的訓練場景。調查參與者的反應不一,這表明,雖然 AR 可能是比目前使用的傳統設備更好的解決方案,但也存在保留意見和需要應對的潛在挑戰。

這項研究對該行業具有重大意義,有可能啟動從傳統筆記本電腦向 Meta Quest Pro 頭戴式耳機等更高效設備的過渡。目前有關 Meta Quest Pro 在軍事訓練中的應用的研究還很有限,本研究旨在為其他人繼續研究計算機科學的這一領域奠定基礎。

還可以開展進一步的研究,以測試和評估 AR 頭顯在真實軍事訓練環境(如射擊場)中的擬議應用。這需要進行實地研究,讓軍官在實戰演習中使用 AR 頭戴式耳機,并對結果進行比較。

付費5元查看完整內容

在小型、受控的實驗室環境中,現有的人類自動駕駛運動規劃研究產生了寶貴的知識;然而,據我們所知,文獻中沒有長期運行的大型研究。作為傳統實驗室研究中獲得的高保真研究數據的補充,這種 "野外"方法將以以前無法達到的方式改進人類自動駕駛系統。通過使用對普通消費者來說普遍存在的技術,如智能手機和可穿戴電腦,參與這種長期的移動研究是可行的。已經有人努力將人類自動化研究環境改編為手機游戲,并開發了一個采用消費級可穿戴傳感器的被動連續數據收集平臺。像這樣的系統為設計和部署大規模的人類自動化研究提供了必要的構建模塊。

本技術報告介紹了一項正在進行的大樣本縱向研究的初步結果,其中人類參與者在與自主智能體交換控制權的同時玩動態避障游戲。參與者注冊并安裝了 "Busy Beeway",這是實驗設置中的移動游戲部分,并佩戴了連接到 "StudentLife "應用程序的Garmin傳感器,以提供反映每個玩家生活背景的額外數據。這里提出的評估主要集中在分配不同配置的人工智能伙伴對游戲表現的結果,以發現任何出現的行為模式,并確定玩家的生物背景是否能影響他們的游戲。我們發現各種各樣的游戲模式取決于特定的玩家、分配的人工智能,有時甚至取決于玩家的生物背景的變化。這表明需要在未來的工作中找到一種方法,可以根據每個人所有這些因素的組合來預測什么樣的人工智能配置能產生最理想的結果。

付費5元查看完整內容

本報告記錄了通過利用深度學習(DL)和模糊邏輯在空間和光譜領域之間整合信息,來加強多模態傳感器融合的研究成果。總的來說,這種方法通過融合不同的傳感器數據豐富了信息獲取,這對情報收集、數據傳輸和遙感信息的可視化產生了積極的影響。總體方法是利用最先進的數據融合數據集,為并發的多模態傳感器數據實施DL架構,然后通過整合模糊邏輯和模糊聚合來擴展這些DL能力,以擴大可攝入信息的范圍。這項研究取得的幾項進展包括:

  • 將DL模型實施到片上系統(SoC)硬件中
  • 高光譜圖像(HSI)數據的DL
    • 1.在HSI上建立DL,以獲得水的特性和底層深度
    • 2.在HSI上使用開放集識別方法
  • 框架內融合方法的消融研究
  • 使用DL和模糊聚合的HSI和LiDAR多模態傳感器融合的新框架
  • 探討神經模糊邏輯在遙感數據中復雜場景的不確定性下自動推理的作用和實用性

出版物[1, 2, 3, 4, 5]進一步詳細介紹了取得的進展。

付費5元查看完整內容

在未來的空戰中,無人協同系統的整合將是一個潛在的巨大力量倍增器。其成功的關鍵因素將是編隊情報、協調任務規劃和跨平臺任務管理。因此,構思下一代機載武器系統的任務需要一個整體的系統方法,考慮不同的航空飛行器、其航空電子任務系統和針對未來威脅的整體作戰概念。為了盡早驗證可能的解決方案概念并評估其作戰性能,在過去幾年中,在空中客車防務與航天公司未來項目中開發了一個動態多智能體戰斗仿真。除了比實時更快的工程功能外,該仿真還可以進行實時人機對話實驗,以促進工程師、操作員和客戶之間的合作。本文介紹了動態任務仿真方法,以及在未來戰斗航空系統(FCAS)研究中應用此工具所得到的啟示,在此期間,我們清楚地認識到什么是未來應用的一個關鍵挑戰。實施一個強大的高層規劃算法,為復雜的空中行動生成臨時任務計劃,同時考慮反應性的低層智能體行為、人類操作員和在線用戶輸入。

1 引言

每一代新的戰斗機都可以通過一個或多個技術飛躍來定義,這些技術飛躍使其與上一代的設計有很大區別。毫無疑問,自從大約15年前第一架第五代戰斗機投入使用以來,幾乎所有的設計學科都有了顯著的進步。不同的飛機制造商,包括空客,已經宣布他們目前正在構思或研究第六代戰斗機[1] [3]。與目前最先進的飛機相比,這些項目很可能在各個領域都有改進,如飛行性能、全方面和全模式隱身、低概率攔截雷達和通信或武器裝備。但問題仍然存在:什么將是這一代的決定性因素,一個真正改變未來戰斗空間的因素?

一個常見的假設是,未來的戰斗空間將是 "高度網絡化 "的,即所有參與的實體都可以交換他們的態勢視圖,并以近乎實時的方式創建一個共享的戰術畫面。一方面,這使得多個平臺在空間和時間上可靠同步達到了以前不可能達到的程度。許多算法,特別是發射器定位或目標測距的算法,如果能從多個位置產生測量結果,會產生明顯更好的效果。另一方面,高質量數據的可靠交換通過分配以前由單一平臺執行的任務,使戰術更加靈活。對作戰飛機的主要應用可能是所謂的合作交戰概念(CEC),這已經是美國海軍針對反介入/區域拒止(A2/AD)環境的海軍綜合火控-反空(NIFC-CA)理論的一部分[4],但其他應用也是可能的,例如合作電子攻擊。所提到的概念主要適用于任務期間單一情況的短期范圍,例如偵察或攻擊薩母基地、空對空(A2A)作戰等。然而,就整個任務而言,還有一個方面需要提及。鑒于所有參與實體之間的可靠通信,規劃算法可以交換任務計劃變更的建議,并根據其目標和當前的戰術情況自動接受或拒絕。這在一個或多個不可預見的事件使原來的任務計劃無效的情況下特別有用,盡管所有預先計算的余量。與其估計一個替代計劃是否可行,并通過語音通信與所有其他實體保持一致(考慮到船員在某些任務階段的高工作負荷和參與實體的數量,這是一項具有挑戰性和耗時的任務),一個跨平臺的任務管理系統可以快速計算出當前任務計劃的替代方案,并評估是否仍然可以滿足諸如開放走廊等時間限制。然后,一組替代方案被提交給機組人員,以支持他們決定是否以及如何繼續執行任務。

將上述想法與現在可用的機載計算能力結合起來,由于最近在硬件和軟件方面的進步,可以得出結論,未來一代戰斗機將很有可能在強大的航空電子系統和快速可靠數據交換的基礎上,采用卓越的戰術概念進行作戰。然而,這還不是我們正在尋找的明確游戲改變者--甚至現有的第五代戰斗機已經應用了一些提到的概念,例如,在NIFC-CA背景下的F-35[4]。因此,下一步不僅要改進飛機的航電系統,而且要在完全網絡化環境的前提下連貫地優化航電、戰術和平臺設計。這種方法允許思考這樣的概念:如果得到網絡內互補實體的支持,并非每個平臺都需要擁有完整的傳感器套件和完整的決策能力。因此,不同的平臺可以針對其特殊任務進行高度優化,從而與 "單一平臺做所有事情 "的方法相比,減少了設計過程中需要的權衡數量。很明顯,一個專門的傳感器平臺不需要或只需要非常有限的武器裝備,因此現在可用的空間可以用來建造更好的傳感器或更大的燃料箱。這已經可以使該平臺專門從事的任務性能得到顯著提高,但有一樣東西可以去掉,它的影響最大:飛行員。在這一點上,必須明確指出,目前沒有任何算法或人工智能能夠接近受過訓練的機組人員態勢感知和決策能力。這就是為什么在不久的將來,人類飛行員在執行戰斗任務時將始終是必要的。然而,如果飛行員(或更準確地說,決策者)被提供了指揮無人駕駛同伴的所有必要信息,那么就不需要在同一個平臺上了。因此,我們提出了一個概念,即一個或多個載人平臺由多個無人駕駛和專門的戰斗飛行器(UAV)支持。在下文中,我們將把至少一個載人平臺和一個或多個由載人平臺指揮的專用無人機組成的小組稱為包。我們聲稱,由于以下原因,無人平臺將作為有人平臺的力量倍增器發揮作用:

  • 無人機是可擴展的,而空勤人員是不可擴展的。因此,無人機可以執行高風險的任務,并允許采用只用載人平臺無法接受的戰術。

  • 無人機更便宜(即使不考慮機組人員的價值),因為它們可以在性能相同的情況下比載人平臺建造得更小。這意味著,在相同的成本下,更多的平臺可以執行任務,更多的平臺會導致更高的任務成功率。首先,因為有更多的冗余,其次,如果有更多的資產參與其中,一些任務可以更好地完成,例如發射器的定位。

  • 不同的無人機和載人平臺可以任意組合。在任務開始前,可以根據需要組成包。在任務期間,在某些限制條件下,也可以重新組合軟件包,例如,如果交戰規則禁止不受控制的飛行,則指揮平臺之間的最大距離。這使得任務規劃和執行有了更大的靈活性,預計也能保持較低的運行成本和材料損耗("只使用你需要的東西")。

像往常一樣,沒有免費的午餐這回事。在我們的案例中,所有上述優勢對飛機設計師來說都是有代價的。不是按照一組技術要求優化單一設計的性能,而是必須設計多個平臺及其子系統,使其在各種任務和組合配置中最大限度地提高整個系統的性能。在本文的其余部分,我們將介紹FCAS原型實驗室(FPL),這是一個在FCAS背景下開發的模擬環境,用于解決這一高度復雜的問題。在第2章中概述了它在概念設計和跨學科技術原型開發中的作用后,我們將在第3章中介紹底層動態多智能體任務仿真的概念和架構。在第4章中,我們將介紹選定項目的結果,以概述該工具的多功能性。本文最后將介紹可能是未來最大的挑戰之一,不僅對模擬,而且對一般的無人系統的引進。實施一個強大的高層規劃算法,為復雜的空中行動生成臨時任務計劃,同時考慮反應性的低層智能體行為、人類操作員和在線用戶輸入。

FCAS原型實驗室(FPL):動態多智能體任務仿真

FPL的核心是一個動態多智能體任務仿真,可以在一臺計算機上運行,也可以分布在多臺機器上,并使用不同的附加硬件組件。為了方便兵棋推演的進行,對人機界面技術進行原型測試,或用于一般的演示目的,模擬中的所有載人機載資產都可以選擇由硬件駕駛艙控制。如果沒有人類操作員參與,模擬必須能夠比實時運行更快。這對于在可能需要數小時的大規模任務中進行有效的開發和權衡分析尤為必要。為了以客觀和公正的方式評估概念和技術,每個模擬任務的過程都是由預先定義的系統屬性、物理效應的模擬和可配置的智能體行為和合作演變而來。不存在任何腳本事件,每一次新的模擬運行的結果都是完全開放的。藍軍和紅軍是在相同的假設下,以可比的抽象水平進行模擬。以下各章概述了如何在FPL中動態地模擬當前和未來機載系統的任務。介紹了我們的仿真結構,在對這類系統進行建模時最重要的設計權衡,以及行為建模的高層次規劃/低層次控制方法。

架構

FPL的仿真架構由三個邏輯部分組成:應用、仿真控制和通信中間件。該架構的一個核心特征是,模擬被分割成幾個應用程序。每個應用程序運行不同的模型,例如,有一個應用程序用于模擬自己的(藍色)航空器、敵方(紅色)航空器、綜合防空系統(IADS)以及更多的模型,如下所示。所有的應用程序共享相同的標準化接口,并且可以任意組合。這種模塊化允許只運行某個任務或項目所需的部分模型。所有的應用程序都是獨立的可執行文件,可以在同一臺計算機上以并行進程運行,也可以分布在幾臺機器上。通過交換編譯后的二進制文件,來自不同公司的模型的整合是可能的,而不會暴露詳細的基本功能。一般來說,不同公司之間的快速和容易的合作是FPL架構的一個主要驅動力。為此,提供了一個基礎應用類,它提供了所有與仿真有關的功能,如仿真控制狀態機、通信中間件接口和通用庫,例如用于不同坐標系的地理空間計算。通過簡單地實現一個新的基礎應用實例,新的模型可以被添加到仿真框架中。所有應用程序的執行都由一個中央仿真控制實例控制。它提供了一個圖形化的用戶界面,可以根據需要啟動、停止和加速模擬。在執行過程中,所有應用程序的運行時間被監控,仿真時間被動態地調整到最慢的模型。這使得分布式的比實時更快的模擬具有自適應的模擬時間加速。應用程序之間的通信是通過數據分配服務(DDS)標準[2]實現的。它使用發布-訂閱模式在網絡中實現了可靠和可擴展的數據交換。兩個不同的分區用于廣播仿真數據(如實體狀態、仿真控制命令等)和多播命令和控制數據(如通過BUS系統或數據鏈路實際發送的數據)。DDS標準的開放源碼實施被用來進一步方便與外部伙伴的合作。

圖1提供了我們的模擬架構的概況,包括大多數任務所需的應用程序。如前所述,這個架構并不固定,幾乎任何應用都可以根據需要刪除或交換。如黑色虛線箭頭所示,通過DDS中間件在仿真控制處注冊一個基本的應用實現,可以集成新的模型。藍色/紅色背景的方框描述了己方/敵方系統,混合顏色的方框可供雙方使用。仿真基礎設施組件的顏色為灰色,用戶界面的顏色為橙色。黑色箭頭表示模擬過程中的通信,灰色箭頭代表模擬運行前后的數據交換。

對于兵棋推演環節,不同的應用程序分布在FPL的多個房間內運行,以模仿真實的空中作業程序。在設置好一個場景后,藍方和紅方的操作人員使用任務配置工具,在不同的房間里計劃他們的任務。空中行動指揮官留在這些房間里,而飛行員則分成兩個房間,每個房間有兩個駕駛艙來執行任務。藍方和紅方空軍應用的任何飛機都可以從駕駛艙中控制,因此飛行員可以接管不同的角色,并相互對抗或作為一個團隊對抗計算機控制的部隊。所有房間都配備了語音通信模擬。任務結束后,各小組在簡報室一起評估任務,可以從記錄的模擬數據中回放。一個額外的房間配備了多個連接到模擬網絡的PC,可以選擇用于特定項目的任務,例如硬件在環實驗。

建模

為FPL選擇正確的建模范式事實上并不簡單,因為它涵蓋了操作分析工具(通常是隨機的)以及工程模擬(通常是確定性的或混合的)的各個方面。這個決定的影響可以用一個例子來說明,即如何確定一架飛機是否被導彈擊中。在隨機模型中,這個決定是基于可配置的概率,例如,被擊中的概率(導彈)和回避動作成功的概率(飛機)以及一個隨機數。為了使最終的任務結果對單一的隨機數不那么敏感,在實踐中經常用不同的隨機種子進行多次模擬運行。按照確定性的方法,導彈的飛出是根據導彈的發射方向、制導規律和固定的性能參數如推力、最大加速度等來模擬的。飛機在規避機動過程中的軌跡也是基于其初始狀態、空氣動力學、反應時間等。例如,當彈頭引爆時,如果導彈和飛機之間的距離低于某個閾值,那么飛機就會被認為被殺死。在一個確定性的模型中,在導彈發射時已經知道飛機是否會被擊中。確定性模型中必要的簡化通常是通過引入固定參數來完成的,比如導彈例子中的距離閾值。混合模型允許使用隨機數進行這種簡化,例如,作為失誤距離的函數的殺傷概率。

為了有效地測試和分析大規模的空中作業,在單臺機器上有幾十種藍色和紅色資產運行的情況下,模擬運行的速度至少要比實時快10倍(平均)。這對所用算法的時間離散性和運行時的復雜性提出了重大限制。為了保持快速原型設計能力,為新項目設置仿真或開發/集成新組件所需的時間應保持在較低水平。太過復雜的模型會帶來更多的限制,而不是顯著提高結果的質量。在這些方面,(更多的)隨機模型在運行時間和開發時間上都有優勢,更快。然而,在我們的案例中,有兩個主要因素限制了隨機模型的使用,使之達到最低限度。首先,模擬只有在給出他們的戰術和演習成功與否的確切原因時才會被操作者接受。此外,隨機模型是由數據驅動的,但對于未來自己和/或敵人的系統來說,所需的數據往往無法獲得。對于已經服役多年并在測試或實際作戰中多次射中的導彈,有可能估計其殺傷概率。然而,僅僅為未來的導彈增加這一概率是非常危險的,特別是因為隨機模型對這些參數非常敏感。從我們的觀點來看,通過將所有系統建模為基于技術系統參數的通用物理模型,可以實現對未來系統更健全的推斷。第一步,通過模擬已知技術和性能參數的現有系統,對模型本身進行驗證。對于未來的系統,技術參數會根據預期的技術進步、領域專家知識和他們的工具進行推斷。堅持最初的例子,未來戰斗機的回避機動性能的推斷,例如,基于從CAD和流體動力學模型計算出的更高的升力系數,或基于更高的導彈接近警告器的分辨率和靈敏度。

客觀評價未來概念在模擬中的表現的一個關鍵方面是環境和威脅的建模。必須考慮到,系統的方法在紅方和藍方都是有優勢的。現代國際防空系統的危險來自于結合不同的系統,從非常短的距離到遠距離。所有這些系統都有它們的長處和短處,但它們被組織起來,使個別的短處被其他系統所補償,并使整個系統的性能最大化。因此,第一個困難是必須對大量的系統進行模擬,并且必須確定這些系統的個別優勢和劣勢。通用物理模型的方法可用于這兩個方面。在通用防空系統模型被開發和驗證后,它可以迅速將新的系統整合到模擬中。根據模擬的物理效果,可以估計敵方系統的作戰優勢和弱點或未來可能的威脅概念。另一方面,使用通用模型的困難在于,必須將真實系統的功能映射到通用模型中,以便保留所有重要的單個系統屬性。這不可避免地導致了相當復雜和詳細的通用模型。我們將以地基雷達組件為例,概述我們平衡復雜性和保真度的方法。如圖2所示,IADS模擬中的一個實體由不同的組件組成。這些組件可以任意組合,以快速配置新系統。從功能角度看,地面雷達組件由控制器、探測模型和目標跟蹤器組成。根據實體的當前任務,控制器選擇所需的雷達模式,例如,360°搜索的監視或戰斗搜索,如果一個特定的部門必須優先考慮。為了對付干擾或地面雜波,可以使用不同的波形。根據雷達的類型,如機械或電子轉向的一維或二維,控制器有不同的可能性來適應搜索模式。在為一個波束位置選擇了波形的類型和數量后,探測模型根據目標、地面雜波、地形陰影、大氣衰減和電子對抗措施等方面的雷達截面模型,產生測量結果。測量誤差是由取決于隨機模型的信噪比引起的。由此產生的測量結果然后由目標跟蹤器處理,它執行測量-跟蹤關聯和跟蹤過濾。

這種詳細模型產生的另一個困難是必須估計的參數總數。在這一點上也要注意,模擬中的所有數據都是不受限制的。這一方面是由于大多數項目的限制,但另一方面,它在日常工作中也有實際優勢。我們必須牢記,模擬是用于概念驗證,而不是用于詳細的系統設計,所以在這個早期階段使用機密的威脅數據會對基礎設施和開發過程造成重大限制,而不會給結果帶來重大價值。基于此,所有的威脅數據都必須根據公開的來源或來自內部項目和外部合作伙伴的非限制性數據進行估算。這再次導致了大量的數據,而這些數據的詳細程度往往是非常不同的,或者是不一致的,例如,由于對限制性數據的去分類。隨著我們模型的不斷發展和多年來獲得的工程專業知識,我們有可能為不同的當前和推斷的未來威脅系統估計出一致的參數。這主要是在一個自下而上的迭代過程中完成的。根據現有的技術和性能參數,對缺失的模型參數進行估計以適應組件的性能。然后對單一系統的不同組件之間的行為和相互作用進行調整,以達到理想的系統性能。最后,在不同的情況下測試IADS內這些系統的協調,以使整個系統的性能最大化。

付費5元查看完整內容

這個項目的目標是開發在具有挑戰性的多目標環境中自主分布式傳感器管理和融合所需的基礎方法。這涉及到開發能夠自動跟蹤多個目標的算法,根據從具有數據關聯不確定性和高誤報率的多個平臺收到的信息進行分類并分配資源。在研究者最近在多目標跟蹤和分布式傳感器融合方面的發展基礎上,該工作方案開發了能夠在大規模多傳感器多目標跟蹤應用中基于信息理論標準實現自主傳感器分配的方法。這是通過重新評估信息理論中的關鍵工具來實現的,這些工具適用于基于點過程理論的多目標監視的挑戰,該理論旨在適應單個目標的狀態和目標數量的不確定性。所開發的信息理論方法被應用于多傳感器問題,使人們能夠決定如何分配傳感器資源,以及完善對場景的認識。所開發的工具將有助于減少監測單一傳感器饋電的勞動密集型負擔,并能做出適應性決定,以優化多模式網絡的運行,并增強對監測區域的整體認識。對多目標跟蹤情景的信息理論表述的關注,將使人們能夠驗證傳感器饋電是否能夠可靠地融合,以避免數據損壞的可能性。該項目在智能傳感方面提供了關鍵的先進技術,以實現動態環境中的連續和適應性監視。這些將是可擴展的,可用于從多個分布式傳感器對許多目標進行大規模跟蹤。

該項目的總體目標是研究和開發基于信息理論原則的分布式多傳感器多目標系統的自主傳感器控制的新策略:

  • 為大規模系統的多目標跟蹤開發可擴展的解決方案。

  • 開發基于信息論原理的多傳感器融合的分布式解決方案。

  • 確定多傳感器多目標跟蹤系統可以交換多少信息。

該項目為多傳感器多目標跟蹤開發了基本的解決方案:

  • 對許多目標進行大規模跟蹤。問題的規模越來越大,因此解決方案需要可擴展,跟蹤許多目標需要減輕組合復雜性的算法。多目標跟蹤的低復雜度解決方案將被開發出來,并在復雜環境中進行測試。開發了一種用于穩健地跟蹤大量目標的方法,該方法在目標數量和測量數量上是可擴展的,這使得數百萬目標可以被跟蹤。

  • 確定多傳感器多目標跟蹤系統的信息含量。在具有高密度信息的傳感器網絡中,帶寬可能是多傳感器多目標跟蹤的一個制約因素。這個項目得出了確定用于多目標跟蹤的傳感器網絡的信息含量的結果。預計這將有助于評估傳感網絡的效率和有效性,并與發送數據的數量和頻率相平衡。

  • 來自多個傳感器的數據的分布式整合。操作員需要根據來自多個跟蹤系統的信息做出決定,以提高整體的態勢感知。為多傳感器集成開發了一種分布式多傳感器多目標跟蹤的新方法,該方法可減輕來自不準確或誤導性數據源的損壞。

  • 對多目標監視應用中的威脅進行評估。對許多物體的大規模跟蹤能夠識別直接威脅。然而,有些威脅可能比其他威脅更有針對性。開發了一種新的對抗性風險的表述,為操作人員提供態勢感知,以幫助確定傳感資產的優先次序。

  • 目標跟蹤估計器的性能界限。費舍爾信息的倒數,即克拉默-拉奧約束,為參數的估計器提供了一個約束,是統計分析的基礎。它為一個參數提供了一個可實現的最小方差或協方差。根據量子場理論的數學概念,為點過程推導出克拉默-拉奧約束,將這一概念推廣到具有空間變量的變量。

付費5元查看完整內容
北京阿比特科技有限公司