亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

自主系統的最新進展對學術界和工業界都產生了重大影響,開辟了新的研究途徑。其中之一就是多個系統為實現共同目標而進行的協作,這就是所謂的合作系統。在缺乏人類智能、決策和感知能力的情況下,無人自主系統在一起部署和使用時,可以從彼此的能力中相互受益。本研究探討了無人駕駛航空系統(UAS)群的協作問題,在這種情況下,由于單個飛行器受到限制,需要進行不同程度的協調與合作。這種合作的形式可以是物理支持,即任務要求超出單個系統的物理能力;也可以是情報級支持,即總體上需要更好的感知、處理或決策能力。本研究的目標是為一組選定的無人機系統和受限任務場景開發和集成協同制導與控制算法,這些場景包括通過帶懸掛纜繩的多旋翼飛行器協同操縱空中有效載荷的任務,以及利用飛艇和多旋翼飛行器團隊協同編隊的任務。此外,本研究還旨在將所開發的個體和合作模型算法集成到高保真模擬中,以便在現實飛行任務中研究多智能體協作的有效性。

研究的第一部分側重于單個航空系統的建模和仿真。案例研究中考慮的系統包括帶有柔性電纜懸掛有效載荷的多旋翼飛行器和飛艇。在這一部分中,分別采用歐拉-拉格朗日法和牛頓-歐拉法推導出這些系統的數學模型。分析了柔性纜索模型的動力學特性,并將其與分析性貓尾式解法進行了比較。此外,為了提高仿真精度,還針對帶柔性纜繩懸掛有效載荷系統的多旋翼飛行器實施了動量和幾何結構保全變分積分器。

第二部分是為每個系統設計制導和控制法則,以提供姿態穩定和軌跡跟蹤。首先,研究了一種基于線性化系統模型的游戲理論方法,用于減弱懸掛有效載荷的擺動。這種方法考慮了多旋翼飛行器與懸掛載荷系統的各種狀態反饋情況。基于從這些線性分析中獲得的啟示,我們開發了一種以導管形狀為依據的幾何控制方法,用于該系統的姿態和軌跡跟蹤控制。對于飛艇,則開發了線性和非線性控制方法。這些方法分別包括基于增益調度的線性二次控制和非線性動態反演(NDI)方法。然后對這兩種方法進行了比較,重點關注它們的優勢和實施的難易程度。

最后,針對任務目標受限的現實場景,開發了合作制導和控制法,要求一組無人機在物理或智能層面上進行合作。借鑒對柔性電纜的延展性分析,構建了一個合作控制場景。該場景展示了飛行器之間的合作,利用多旋翼飛行器對懸掛的剛性有效載荷進行空中操縱,其中的限制因素來自單個飛行器的有效載荷能力和飛行器之間通過柔性纜線的物理連接。其次,在涉及多旋翼飛行器團隊的編隊控制場景中采用了領導者-跟隨者通信圖拓撲結構,突出了基于擴展狀態觀測器(ESO)的總干擾估計模型的集成。該模型大大增強了系統對外部干擾和未建模動態的魯棒性。最后,我們在一個示例場景中展示了這些研究的實際應用,在搜救任務中需要通過無人機系統提供合作編隊支持。在這個場景中,我們還利用飛艇將多旋翼飛行器運送和部署到任務目的地,在那里執行編隊任務,以適應各種編隊形狀和圖形拓撲。這一場景需要物理和信息層面的協作,以增強區域覆蓋、改善感知和態勢感知。這里的限制來自單個飛行器的物理限制(如尺寸、續航時間、有效載荷能力和運行環境)和信息級限制(如處理能力、傳感和通信能力)。這種情況形成了在現實生活中具有實際應用價值的基線。

圖 1.1: 多旋翼協同飛行器攜帶通過纜繩懸掛的應急包執行空中有效載荷操縱任務的示意圖

圖 1.2:空中有效載荷操縱任務工作項目

圖 1.3:合作編隊飛行任務示意圖,多旋翼飛行器小組在飛艇的協助下作為領隊節點引導編隊飛行

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

軍事戰略投資和作戰行動必然是相互交織的,但要在分析上將這兩個層面結合起來卻頗具挑戰性。在本論文中,通過隨機博弈和兵力設計模型提供了一個統一這兩個層面的框架。從作戰層面入手,利用軍事博弈的結構來構建大規模問題的可操作性表征。然后,在戰略層面,利用這一表征來評估戰略投資決策。

在第 1 章中,闡述了整合戰略部隊設計和作戰計劃所面臨的挑戰,從而奠定了基礎。通過展示軍事力量設計的重要性以及將戰略層面與作戰層面統一起來的必要性來激發問題。還介紹了在軍事決策領域的貢獻。

在第 2 章中,考慮了軍事領導層準備并在必要時打擊武裝沖突的作戰層面。開發了戰役隨機博弈(CSG),這是一種雙人、貼現、零和隨機博弈模型,用于軍事戰役中的動態作戰計劃。在每個階段,博弈者都要管理多個指揮官,由他們下令對可通過現有補給線到達的目標采取軍事行動。當為控制一個目標而發生戰斗時,其隨機結果取決于其他目標的控制所提供的行動和有利支持。每個玩家的目標都是最大限度地增加他們所控制目標的累計數量,并根據其關鍵性進行加權。為了解決這一大規模隨機博弈,利用后勤和軍事行動指揮與控制結構,推導出其馬爾可夫完美均衡的屬性。證明了最優值函數相對于部分有序狀態空間的等調性,這反過來又導致了狀態和行動空間的顯著縮小。還通過消除受支配的行動和研究每次迭代求解的矩陣博弈的純均衡來加速沙普利值迭代和范德瓦爾算法。在一個案例研究中展示了均衡結果的計算價值,該案例描述了一場具有地緣政治影響的作戰級軍事戰役。分析揭示了均衡狀態下博弈參數和動態之間復雜的相互作用,為戰役分析師、作戰計劃人員和領導層提供了新的軍事見解。

在第 3 章中,考慮了戰略層面的軍事力量設計問題,即戰略領導層必須分配軍事資源(資產、活動和技術)以配備、訓練和裝備未來的軍事力量。設想了未來的全球格局,由以不同概率發生的 CSG 組成,并在投資實施后實現。為了解決具有挑戰性的軍事力量設計問題,直接在可能使用這些設計的作戰環境中對軍事力量設計進行評估。為了衡量投資的有效性,通過 CSG 值來評估部隊設計。展示了 CSG 值相對于部分有序部隊設計空間的等調性,證明只需搜索非支配組合空間。通過加速范德瓦爾算法從 CSG 生成訓練數據。然后,擬合一個回歸模型,得出一組候選軍事投資組合。為了有效搜索這些候選投資組合,引入了一種篩選算法,該算法固定了對手策略,并利用了馬爾可夫決策過程相對于隨機博弈的效率。開發了一個戰略案例研究,考慮在不確定的全球環境下,以有限的預算投資于一系列資源。分析揭示了各種軍事戰役中部隊設計的非線性表現,為領導層提供了啟示。本章為軍事部隊設計者提供了一種新穎的技術,用于快速評估作戰背景下的戰略決策。最后,總結了本論文的貢獻,并提出了未來工作的方向。

總之,本文各章代表了一種整合軍事戰略和作戰決策的原創方法。戰略領導層可以直接依靠投資的作戰效果做出理想決策。作戰領導層可以發現,當新資源引入其責任區時,他們的作戰計劃會受到怎樣的影響。統一框架為加強這兩個層面的軍事整合提供了可能。

付費5元查看完整內容

本研究探討了政府和國防機構的情報搜索人員所面臨的數據超載問題。研究利用認知系統工程(CSE)文獻中的方法,對情報搜索工作領域進行深入分析。這些見解被應用于設計和評估專門用于情報搜索任務的人類-人工智能智能體團隊的支持概念和要求。領域分析揭示了 “價值結構 ”的動態性質,“價值結構 ”是一個術語,用于描述管理情報搜索過程的不斷變化的標準集。此外,領域洞察力還提供了搜索聚合和概念空間的詳細信息,可將價值結構有效地應用于情報搜索。利用這些發現的支持系統設計可以使情報搜索者在更抽象的層次上與數據互動并理解數據,從而提高任務效率。此外,新的系統設計還可以通過相關的系統提示,促進對大型數據域中未被選擇對象的 “環境感知”,從而為搜索者提供支持。通過支持概念和人工智能團隊實現的 “環境感知 ”有可能解決數據超載問題,同時提高搜索覆蓋范圍的廣度和深度。

圖 4. FAN 領域模型。為了強調整個 FAN 的抽象功能結構和目標互動,圖中模糊了流程塊的細節。詳細的智能搜索功能模型見補充材料圖 S1。

政府和國防機構的情報搜索人員面臨著越來越多的數據和文件,他們需要從中查找或 “發現 ”信息,以獲得支持明智決策的見解。這種情況被稱為數據超載問題,即個人在系統或其他代理的幫助下,難以選擇、組合或綜合所需的數據子集,以完成需要在更大的數據領域進行態勢評估的任務[1]。在這種情況下,情報搜索人員與同事一起利用搜索工具,協同努力從幾乎無限的可用于任務的文件中查找、收集和評估文件,以完成為情報目標提供信息的任務。具體地說,數據超載妨礙了搜索人員識別數據子集的能力,而這些數據子集能提供足夠的細節來滿足情報目標,這對行動任務的完成至關重要。

用于一般情報搜索任務的系統可能會導致數據超載癥狀。具體來說,情報搜索工具會表現出與 “鎖孔脆性”[2] 概念有關的缺陷。這里所說的 “鎖孔 ”是指縮小呈現數據的范圍,將剩余數據分配到更多的隱藏屏幕上。這種呈現方式要求研究人員手動瀏覽和綜合來自多個數據屏幕的信息,以了解搜索的效用。同時,這些現有工具的脆性與它們支持從情報搜索工作領域的數據中提取意義的潛力有關。因此,“脆性 ”產生于搜索工具對信息的狹隘表述。對于需要從大量數據中提取意義的復雜任務來說,這種局限性導致了效率的下降,而這些數據又超出了給定系統的表述范圍。此外,由于情報搜索工作和信息領域的結構復雜,無法充分捕捉和傳達,妨礙了對支持行動所需的信息的理解和管理。這就導致效率低下,搜索人員往往會錯過有價值的見解和與目標相關的數據,同時還要花費更多的時間瀏覽各個屏幕來完成任務。

情報工作領域的搜索所面臨的這些廣泛挑戰構成了本研究要探究的問題,圖 1 的頂部對此進行了總結。圖 1 中還列出了應對這些挑戰常用的術語和縮略語,作為本研究的路線圖。

付費5元查看完整內容

無人機已成為現代戰爭中不可或缺的一部分,其向更大自主性的演進是不可避免的。本研究探討了軍用無人機向智能化、最小程度依賴人類方向發展的軌跡,并詳細介紹了必要的技術進步。我們模擬了無人機偵察行動,以確定和分析新出現的挑戰。本研究深入探討了對提高無人機智能至關重要的各種技術,重點是基于物體檢測的強化學習,并提供了實際實施案例來說明這些進步。我們的研究結果證實了增強軍用無人機智能的巨大潛力,為更自主、更有效的作戰解決方案鋪平了道路。

圖 3 智能無人機偵察場景和應用技術。

在最近的沖突中,如俄羅斯入侵烏克蘭和亞美尼亞-阿塞拜疆戰爭,無人機被認為是不可或缺的力量。目前,大多數可用于作戰的無人機都是遙控的。雖然無人機在一定程度上實現了自動化,但由于技術和道德問題,仍需要操作人員。從戰術角度看,無人機的最大優勢是 "低成本 "和 "大規模部署"。然而,這兩個優勢只有在無人機無需操作人員即可控制時,也就是無人機智能化時才能發揮作用。

自主無人機本身并不是一個新概念,因為人們已經進行了廣泛的研究。例如,我們生活在一個無人機用于送貨和搜救任務的時代 [1]、[2]、[3]。然而,民用智能無人機技術能否直接用于軍事目的呢?我們的答案是'不能',因為軍用無人機的操作在以下情況下與民用無人機有明顯區別。首先,軍用環境比民用環境更加復雜。想想特斯拉在未鋪設路面的道路上自動駕駛時,駕駛員必須干預的頻率有多高。軍事行動并不發生在 "鋪設良好的道路上"。此外,軍事行動涉及在任意地點分配任務。其次,伴隨軍事行動而來的是敵人無數次的反擊。這些反作用包括主動和被動拒絕,主動拒絕包括試圖攔截,被動拒絕包括隱藏和欺騙。這些敵方活動增加了問題的復雜性。第三,由于軍事的特殊性和安全性,缺乏與軍事行動相關的數據。例如,缺乏坦克和運輸機發射器(TEL)的鳥瞰數據,而這些都是物體探測的常用目標。第四,軍用智能無人機執行任務時需要考慮安全和道德問題。智能無人機在執行任務時如果缺乏穩定性,就會產生不可預測的行為,導致人員濫傷和任務失敗。從倫理角度考慮,即使無人機的整體操作實現了智能化,也需要有最終攻擊決策由人類做出的概念。換句話說,關鍵的考慮因素不應該是無人機是否能自主做出攻擊決定,而是無人機如何提供信息,協助人類做出攻擊的最終決定。這些倫理問題與人類的責任和機器的作用有關。

鑒于這些軍事方面的考慮,對自主軍用無人機和民用無人機的研究應以不同的理念推進。有關軍用智能無人機的研究正在積極進行中,但與民用研究不同的是,大部分研究都沒有進入公共領域。因此,本研究有以下目標。

  • 首先,考慮到軍事行動的特殊性,本研究探討了智能軍用無人機的概念。

  • 其次,我們對該領域出現的各種問題進行案例研究,從工程師的角度看待這些問題,并討論從案例研究中得出的直覺。

圖 1. 智能無人機在民用領域的工程研究

智能偵察無人機案例研究

軍用無人機根據其使用目的分為偵察、攻擊、欺騙、電子戰和作為目標等類別 [38],[39]。在本案例研究中,我們重點關注偵察無人機的智能化。案例研究中的無人機以韓國 "Poongsan "公司的無人機為模型。根據應用模塊的不同,該模型可以執行多種任務。不過,本研究使用的是配備偵察模塊的無人機。模塊包括攝像頭、LRF、GNSS 等傳感器和系統。在規范假設方面,假定無人機能夠配備物體檢測和強化學習神經網絡。

圖 4. 用于訓練 YOLOv4 微型目標檢測模型的跟蹤車輛圖像。

圖 12. 根據 Unity 中的情景驗證技術應用

付費5元查看完整內容

遙控飛機執行的軍事任務類型不斷擴展到包括空對空作戰在內的各個方面。雖然未來的視距內空對空作戰將由人工智能駕駛,但遙控飛機很可能將首先投入實戰。本研究旨在量化延遲對高速和低速交戰中一對一視距內空對空作戰成功率的影響。研究采用了重復測量實驗設計,以檢驗與指揮和控制延遲相關的各種假設。有空對空作戰經驗的參與者在使用虛擬現實模擬器進行的一對一模擬作戰中受到各種延遲輸入的影響,并對每次交戰的作戰成功率進行評分。這項研究是與美國空軍研究實驗室和美國空軍作戰中心合作進行的

因變量 "戰斗得分 "是通過模擬后分析得出的,并對每次交戰進行評分。自變量包括輸入控制延遲(時間)和交戰起始速度(高速和低速)。輸入延遲包括飛行員輸入和模擬器響應之間的六種不同延遲(0.0、0.25、0.50、0.75、1.0 和 1.25 秒)。每種延遲在高速和低速交戰中重復進行。采用雙向重復測量方差分析來確定不同處理方法對戰斗成功率的影響是否存在顯著的統計學差異,并確定延遲與戰斗速度之間是否存在交互作用。

結果表明,在不同的潛伏期水平和交戰速度下,戰斗成功率之間存在顯著的統計學差異。潛伏期和交戰速度之間存在明顯的交互效應,表明結果取決于這兩個變量。隨著潛伏期的增加,戰斗成功率出現了顯著下降,從無潛伏期時的 0.539 降至高速戰斗中 1.250 秒潛伏期時的 0.133。在低速戰斗中,戰斗成功率從無延遲時的 0.659 降至 1.250 秒延遲時的 0.189。最大的遞增下降發生在高速潛伏期 1.00 至 1.25 秒之間,低速潛伏期 0.75 至 1.00 之間。高速交戰期間戰斗成功率的總體下降幅度小于低速交戰期間。

這項研究的結果量化了視距內空對空作戰中戰斗成功率的下降,并得出結論:當遇到延遲時,希望采用高速(雙圈)交戰,以盡量減少延遲的不利影響。這項研究為飛機和通信設計人員提供了信息,使他們認識到延遲會降低預期作戰成功率。這種模擬配置可用于未來的研究,從而找到減少延遲影響的方法和戰術

付費5元查看完整內容

在未知和不確定的環境中開辟安全路徑是領導者-追隨者編隊控制的一項挑戰。在這種結構中,領導者通過采取最佳行動向目標前進,追隨者也應在保持理想隊形的同時避開障礙物。該領域的大多數研究都將編隊控制和障礙物規避分開考察。本研究提出了一種基于深度強化學習(DRL)的新方法,用于欠驅動自主水下航行器(AUV)的端到端運動規劃和控制。其目的是為 AUV 的編隊運動規劃設計基于行動者批判結構的最優自適應分布式控制器。這是通過控制 AUV 的速度和航向來實現的。在避障方面,采用了兩種方法。第一種方法的目標是為領導者和跟隨者設計控制策略,使每個領導者和跟隨者都能學習自己的無碰撞路徑。此外,跟隨者遵守整體編隊維護策略。在第二種方法中,領跑者只學習控制策略,并安全地帶領整個團隊向目標前進。在這里,跟隨者的控制策略是保持預定的距離和角度。在存在洋流、通信延遲和傳感誤差的情況下,展示了所提出方法在現實擾動環境下的魯棒性。通過大量基于計算機的模擬,對算法的效率進行了評估和認可。

付費5元查看完整內容

在本技術說明中,報告了有關傳感器技術和避讓方法的最新研究與開發文獻綜述,這些技術和方法可用于未來在有人-無人協同(MUM-T)行動中在小型無人系統上實施感知與避讓(SAA)能力。

在傳感器技術方面,研究了協作和非協作傳感器,其中非協作傳感器又分為主動和被動傳感器。我們認為:(1) 被動非協作傳感器在尺寸、重量和功率(SWAP)方面比其他傳感器更有優勢。被動工作可確保無人平臺在惡劣環境中的安全。為了補充單個傳感器能力的約束和限制,我們還認為,(2) 傳感器和數據融合的趨勢和未來需求前景廣闊,能夠在動態、不確定的環境中進行連續和彈性測量。此外,我們還認為應關注無人系統領域正在開發的 (3) 新型傳感器套件。

在探測和規避方法方面,我們按照 SAA 流程進行了全面研究,從探測沖突、危險或潛在威脅,到跟蹤目標(物體)的運動;評估風險和可信度;根據評估參數確定沖突的優先級;然后宣布或確認沖突以及沖突的程度;確定正確的沖突解決方法;隨后下達命令并最終執行。為了支持這一過程,我們審查了各種 SAA 算法,包括探測算法、跟蹤算法和規避策略。我們認為,(4)基于學習的智能算法需要列入未來 SAA 的要求中,因為它們具有支持任務的自適應能力。

最后,從不同的使用案例中回顧了支持 MUM-T 行動的 SAA。我們認為,(5) 與蜂群式小型 UxV 的人機系統接口可提供半自主的 SAA 能力,而人的參與程度有限。這種集成的人機交互提供了智能決策支持工具。該系統旨在使單個人類操作員能夠有效地指揮、監控和監督一個 UxV 系統。根據技術重點的發展趨勢,我們的最終觀點是:(6) 就研發進展而言,現階段實現無士兵參與的完全自主還為時過早,但我們將積極關注該領域的最新發展。

付費5元查看完整內容

作為分布式海上作戰(DMO)的一個關鍵原則,盡管有人和無人、水面和空中、作戰人員和傳感器在物理時空上都有分布,但它們需要整合成為一支有凝聚力的網絡化兵力。本研究項目旨在了解如何為 DMO 實現有凝聚力的作戰人員-傳感器集成,并模擬和概述集成實施所需的系統能力和行為類型。作為一個多年期項目,本報告所述的第一項工作重點是建立一個適用于 DMO 建模、模擬和分析的計算環境,尤其側重于有人和無人飛機的情報、監視和偵察 (ISR) 任務。

在半個世紀的建模和仿真研究與實踐(例如,見 Forrester, 1961; Law & Kelton, 1991),特別是四分之一世紀的組織建模和仿真工作(例如,見 Carley & Prietula, 1994)的基礎上,獲得了代表當前技術水平的計算建模和仿真技術(即 VDT [虛擬設計團隊];見 Levitt 等人, 1999)。這種技術利用了人們熟知的組織微觀理論和通過基于代理的互動而產生的行為(例如,見 Jin & Levitt, 1996)。

通過這種技術開發的基于代理的組織模型在大約三十年的時間里也經過了數十次驗證,能夠忠實地反映對應的真實世界組織的結構、行為和績效(例如,參見 Levitt, 2004)。此外,幾年來,已將同樣的計算建模和仿真技術應用到軍事領域(例如,見 Nissen, 2007),以研究聯合特遣部隊、分布式作戰、計算機網絡行動和其他任務,這些任務反映了日益普遍的聯合和聯盟努力。

本報告中描述的研究項目旨在利用計算建模來了解如何為 DMO 實現有凝聚力的戰斗傳感器集成,并建模和概述集成實施所需的系統能力和行為類型。作為一個多年期項目,本報告所述的第一項工作重點是建立一個適用于 DMO 建模、模擬和分析的計算環境。在這第一項工作中,將對當今的海上行動進行建模、模擬和分析,重點是有人駕駛和無人駕駛飛機的情報、監視和偵察(ISR)任務。這為與執行 ISR 任務的一個或多個 DMO 組織進行比較確立了基線。這也為與其他任務(如打擊、防空、水面戰)進行比較建立了基線。第二階段接著對一個或多個備用 DMO 組織進行建模、模擬和分析。

在本技術報告的其余部分,首先概述了 POWer 計算實驗環境,并列舉了一個實例,以幫助界定 DMO 組織和現象的計算建模。依次總結了研究方法。最后,總結了沿著這些方向繼續開展研究的議程。這些成果將極大地提高理解和能力,使能夠為 DMO 實現戰斗員與傳感器的集成,并為集成實施所需的系統能力和行為建模和概述。

付費5元查看完整內容

本文通過機器學習方法提出了一種雷達任務選擇的主動方法,并將其設計在雷達調度流程之前,以提高雷達資源管理過程中的性能和效率。該方法由兩個過程組成:任務選擇過程和任務調度過程,其中任務選擇過程利用強化學習能力來探索和確定每個雷達任務的隱藏重要性。在雷達任務不堪重負的情況下(即雷達調度器超負荷工作),將主動選擇重要性較高的任務,直到任務執行的時間窗口被占滿,剩余的任務將被放棄。這樣就能保證保留潛在的最重要任務,從而有效減少后續調度過程中的總時間消耗,同時使任務調度的全局成本最小化。本文對所提出的方法進行了數值評估,并將任務丟棄率和調度成本分別與單獨使用最早開始時間(EST)、最早截止時間(ED)和隨機偏移開始時間EST(RSST-EST)調度算法進行了比較。結果表明,與EST、ED和RSST-EST相比,本科學報告中提出的方法分別將任務丟棄率降低了7.9%、6.9%和4.2%,還將調度成本降低了7.8倍(EST為7.8倍)、7.5倍(ED為7.5倍)和2.6倍(RSST-EST為2.6倍)。使用我們的計算環境,即使在超負荷的情況下,擬議方法所消耗的時間也小于 25 毫秒。因此,它被認為是提高雷達資源管理性能的一種高效實用的解決方案。

雷達資源管理(RRM)對于優化作為飛機、艦船和陸地平臺主要傳感器的現代相控陣雷達的性能至關重要。報告》討論了雷達資源管理,包括任務選擇和任務調度。該課題對國防科技(S&T)非常重要,因為它與現代相控陣雷達的大多數應用相關。它對當前的海軍雷達項目尤為重要,該項目探索了雷達波束控制的人工智能(AI)/機器學習(ML)方法。所提出的算法有可能升級未來的艦船雷達,從而做出更好的決策并提高性能。

付費5元查看完整內容

人工智能驅動的軟件飛行員有可能實現美國空軍對負擔得起的戰術空中力量能力的追求;然而,對啟用空戰自主算法的數據的基礎性要求并沒有得到充分理解。

本文討論了空軍戰術空中力量數據管理的挑戰,承認反對數據對協同作戰飛機(CCA)實戰的重要性的論點,并確定了四個具體原因,即資助和實施一個深思熟慮的數據管理計劃對加速CCA的成功開發和實戰至關重要。這個米切爾論壇的初稿的目的是提供清晰度,并邀請大家討論訓練CCA算法的戰斗所需的數據集,因為美國空軍尋求履行其 "隨時隨地飛行、戰斗和贏得......空中力量 "的使命。

該論壇介紹了來自美國和全球各地航空航天專家的創新概念和發人深省的見解。

付費5元查看完整內容

在有環境因素的城市區域內安全有效地使用四旋翼飛行器,對美國軍事和民用部門具有巨大的重要性。本技術報告探討了一個高度適應性的模擬設置,其中有一個包含學習元素的非線性控制器。其他模型因素--如無人機的幾何形狀、權重和風的力量--在所提出的框架內很容易被修改。用虛幻引擎進行的模擬,可以結合現實世界的城市數據、現實的風和現有的開源軟件。

引言及與美國陸軍的相關性

無人系統和無人駕駛航空系統(UAS)的使用在全世界的軍隊中激增,在通信、監視、偵察和戰斗中都有應用(Nacouzi等人,2018)。在敵對地區,無人機系統將受到多種威脅,包括網絡和物理威脅,以及環境危害。生存和任務的成功往往取決于以最小的通信或依賴全球導航衛星系統(GNSS)的能力,如GPS(Guvenc等人,2018;Sathyamoorthy等人,2020;Fan等人,2022)。例如,無人機系統的通信可用于檢測和獲得無人機系統的位置,而基于衛星的導航很容易被欺騙或干擾,因為信號非常弱。其他傳感器也經常被用來增強GNSS的位置分析,并可以用來取代它,如光學系統--包括照相機、雷達、光探測和測距(LiDAR)系統和慣性測量單元(IMU)(Angelino等人,2012)。這些都提出了自己的挑戰。慣性測量單元是標準設備,但只能檢測線性和角加速度,同時通過檢測地球的局部磁場來確定方向(共9個自由度)。因此,位置誤差,即測量的加速度的第二個時間積分,會隨著時間的推移而累積。在使用IMU進行UAS導航時,其他令人擔憂的來源包括環境影響(即風或降水)。 UAS結構的物理變化,如增加一個傳感器或武器包,包括武器發射后的變化,使工作進一步復雜化。這種質量和質量分布的變化改變了UAS的質量中心和慣性張量。光學傳感器、雷達和LiDAR系統增加了重量,并經常發射射頻或光,使它們更容易被探測到和/或需要處理資源。增加的重量和/或處理可能對電池壽命產生不利影響,從而影響運行時間和整體可靠性。

為了解決這些問題,我們正在研究在大風環境中使用控制算法,以了解IMU信號如何在控制中被用來考慮(和/或改變)UAS的位置計算。再加上不確定性措施,這些最終可用于檢測UAS飛行性能的變化,或對GNSS信號的欺騙。

城市環境是安全和可靠的無人機系統運行的第二個關注領域(Watkins 2020)。它們被認為是國防部行動的一個挑戰領域,也是政府和商業服務的一個巨大的技術增長領域。在這份報告中,我們展示了一個模擬空間,我們正在建立專門用于模擬城市環境中的無人機系統,以解決自主和半自主控制的問題,重點是環境的相互作用,包括風和靜態碰撞威脅。物理學和控制的關鍵部分直接用C++實現。除此之外,在可能的情況下,我們正在利用當前的免費和開源資源(即軟件、軟件框架和數據),但要注意的是,我們包括使用一些在產品商業化成功后需要付費的工具。我們采取了一種模塊化的方法,隨著其他軟件框架和系統的成熟,將能夠靈活地過渡到其他軟件框架和系統。我們目前的系統已經基于用于小型無人機系統的PX4控制器庫和實時發布-訂閱(RTPS)數據傳輸協議。RTPS應能使我們的發展在其他工具成熟時過渡到其他工具,并使用通用的應用編程接口(即API)過渡到其他工具和數據,如計算的風數據。對于圖形和用戶界面,我們使用虛幻引擎(UE)(Matej 2016),這是一個游戲引擎,提供最先進的圖形功能和我們的模型中使用的一些物理學--最重要的是無人機系統和其環境之間的碰撞檢測。

第2-4節詳細介紹了整個模擬的主要計算部分:納入現實世界的城市數據,生成現實的風模型,無人機的幾何和物理建模,以及線性和非線性控制。我們對整體模擬的這些主要部分中的每一個都依賴開源軟件,如UE、OpenStreetMap(OSM)(Anderson等人,2019年)、Mapbox和AirSim(Shah等人,2017年),并根據需要詳細說明(見圖1;例如,真實城市的模型導入游戲引擎中)。第5節和第6節提供了樣本結果和結語。

圖1 將城市數據納入UE進行大規模模擬的兩個例子。伊利諾伊州的芝加哥(上);弗吉尼亞州的水晶城(下)。這兩張圖片都是使用開源工具創建的,將開源的Mapbox城市數據導入UE中。

付費5元查看完整內容
北京阿比特科技有限公司