大模型(LLM)的興起在自然語言處理領域引起了廣泛關注,其涌現能力在各個垂直領域(如金融、醫療、教育等)也取 得一定進展。然而,大模型自身面臨解釋性不足、知識實時性差、生成結果存在虛假信息等諸多挑戰。為了應對這些問題,知 識圖譜與大模型的融合逐漸成為了研究熱點。知識圖譜作為一種結構化的知識模型,其真實性和可靠性,成為提高大模型解 釋和推理能力的有力工具。同時大模型具備語義理解能力,為知識圖譜的構建和更新提供了有力支持。因此,知識圖譜和大 模型是互補的(本文稱為圖模互補)。本文系統性地介紹知識圖譜與大模型融合的方法,分別從 1)大模型增強知識圖譜,2)知 識圖譜增強大模型,兩個角度進行全面的回顧和分析。最后,本文從醫學診斷預測和時間知識圖譜出發,介紹圖模互補的領域 應用,并討論圖模互補未來發展的方向,為知識圖譜與大模型的進一步研究提供幫助。 近年來,自然語言領域出現了一項令人矚目的 技術:大模型。大模型(LLM)是指通過超大規模文 本數據訓練出來的神經網絡模型,由預訓練語言模 型(PLM)發 展 而 來,其 特 點 是 模 型 規 模 較 大,參 數 通 常 在 數 十 億 乃 至 萬 億 級 別。相 較 于 傳 統 的 預 訓 練語言模型,大模型在處理復雜任務時表現出特殊 的 能 力(涌 現 能 力[1] 、推 理 能 力[2] )。相 關 研 究 表 明, 大 模 型 不 僅 能 夠 理 解 和 處 理 大 規 模 的 文 本 數 據[3] , 同時還具備上下文學習能力[4] 和領域泛化能力。這 使得它們成為各種自然語言下游任務的通用選擇, 能夠輕松進行少樣本遷移學習[5] 。如今,AI 領域中 涌現出許多具有代表性的大模型,例如對話式語言 大 模 型 ChatGPT[6] 、增 強 推 理 能 力 的 多 模 態 大 模 型 GPT-4[7] 等等。這些模型不僅在傳統的自然語言處 理領域(如搜索引擎[8] 和機器翻譯[9] )取得一定進展, 還在金融[10] 、醫療[11] 、教育[12] 等各種領域提供有效幫 助。大模型對傳統的自然語言處理領域帶來沖擊, 促使學者重新思考通用人工智能的可能性[13] 。 目 前,雖 然 大 模 型 引 起 了 廣 泛 的 關 注,但 它 仍 然 面 臨 著 諸 多 挑 戰,包 括 模 型 內 部 的 不 可 控 性,缺 乏解釋性[14] 、無法保證知識實時性[5] 、語言數據質量 的 不 確 定 性,以 及 產 生 幻 覺 和 有 毒 信 息 的 潛 在 風 險[15] 。為了應對這些挑戰,學者們開始思考將知識 圖譜與大模型融合[5] 。知識圖譜是一種用于表示和 存 儲 知 識 的 網 絡 圖 形 結 構,其 中 節 點 表 示 實 體,邊 表示實體之間的關系[16] 。知識圖譜以其數據的真實 性而著稱,這一特點可以有效地減輕大模型產生幻 覺 的 問 題 。 例 如 KELM 語 料 庫[17] 、通 用 模 型 KG? PT[18] 為大模型提供基于知識圖譜轉化的真實文本 信 息。大 模 型 作 為 一 個“黑 盒 模 型”其 輸 出 結 果 通 常難以解釋,而知識圖譜內部的結構知識更接近人 類認知。因此,知識圖譜可以提供一種解釋和推理 知識的手段,探究大模型內部復雜的工作步驟和推 理 過 程。例 如 個 性 化 知 識 庫 與 大 模 型 集 成 的 檢 索 框 架 KnowledGPT[19] ,提 高 處 理 復 雜 搜 索 和 歧 義 的 能 力。此 外,知 識 圖 譜 還 可 以 作 為 外 部 檢 索 工 具, 幫助大模型解決公平、隱私和安全等問題[20] 。 如今知識圖譜的規模越來越大,傳統的圖譜構 建、補全技術也面臨許多難題,如數據獲取、實體識 別、知識抽取和實體消歧等[21] 。大規模知識圖譜的 構 建 往 往 需 要 投 入 大 量 的 人 力、物 力 和 時 間 成 本, 且 依 舊 無 法 保 證 知 識 圖 譜 質 量 和 可 用 性。而 大 模 型 能 有 效 解 決 這 些 問 題。大 模 型 內 部 存 在 海 量 的 知 識 信 息,在 處 理 復 雜 的 文 本 數 據 信 息 時,能 夠 迅 速地進行實體識別與抽取,有效應對知識構建和補 全的挑戰[22] 。此外,鏈接預測是知識圖譜推理和問 答 的 關 鍵 步 驟,在 零 樣 本 和 少 樣 本 學 習 中,大 模 型 同 樣 能 夠 有 效 地 挖 掘 實 體 間 的 邏 輯 關 系。根 據 知 識圖譜和大模型的上述特點,本文認為知識圖譜和 大模型是相互補充的,稱為“圖模互補”,圖 1 為知識 圖譜與大模型的優缺點總結。 知 識 圖 譜 與 大 模 型 融 合 是 一 個 熱 門 研 究 領 域[23~25] 。文獻[25]提出了統一大模型與知識圖譜的 前瞻性路線圖,總結了現有的大模型與知識圖譜的 先進技術,并討論大模型與知識圖譜融合的相關挑 戰和發展方向。其整體路線劃分與本文有所差異, 本文從作用功能角度進行劃分,根據知識圖譜和大 模型在領域中的地位,將其融合劃分為兩個不同的 類 別:大 模 型 增 強 知 識 圖 譜 和 知 識 圖 譜 增 強 大 模 型。并從增益的效果出發,將每個大類別細分為不 同的小類別,最后探究圖模互補的領域應用。
擴散模型是一種通過模擬擴散過程的概率模型,逐步向數據中添加和去除噪聲,從而生成逼真的樣本。這些模型由于能夠生成高質量的樣本,已經在圖像處理、語音合成和自然語言處理等領域中獲得了廣泛的關注。隨著擴散模型在各個領域的廣泛應用,現有的文獻綜述往往集中在特定領域,如計算機視覺或醫學影像,因此可能無法滿足跨多個領域的更廣泛受眾。因此,本綜述對擴散模型進行了全面概述,涵蓋了其理論基礎和算法創新。我們重點介紹了它們在媒體質量、真實性、合成、圖像轉換、醫療保健等各個領域的應用。通過整合當前的知識并識別新興趨勢,本綜述旨在促進對擴散模型的更深入理解和更廣泛的應用,并為來自不同學科的未來研究人員和實踐者提供指導。
關鍵詞:擴散模型 · 生成建模 · 合成數據生成 · 圖像合成 · 圖像到圖像轉換 · 文本到圖像生成 · 音頻合成 · 時間序列預測 · 異常檢測 · 醫學影像 · 數據增強 · 計算效率 · 不確定性量化 · 黎曼流形 · 分子動力學 · 超分辨率 · 語義圖像合成 · 零樣本分類 · 大氣湍流校正
擴散模型(Diffusion Model,DM)是一類通過逆向擴散過程生成數據的生成模型,該過程逐步向數據中添加噪聲,直至其變為高斯分布。這些模型首次由Sohl-Dickstein等人于2015年提出,已在圖像、音頻和視頻合成等多個領域展示了出色的性能,能夠生成高質量的樣本 [1, 2]。該過程涉及一個迭代程序,模型在每一步訓練時預測已添加到樣本中的噪聲,實質上是在學習對數據進行去噪。這種方法顯著推動了生成細致且連貫輸出的能力,使得DM成為諸如文本到圖像合成和提高低分辨率圖像等任務的強大工具 [3]。圖1展示了用于高分辨率圖像合成的擴散模型。
擴散模型(DM)已在多個領域中變得流行,尤其是在圖像生成領域,它們能夠基于文本描述創建逼真的圖像、藝術作品和編輯內容 [3, 5]。在自然語言處理(NLP)中,DM也逐漸流行,用于文本生成和增強,展現了生成連貫且上下文相關文本的能力 [6]。在音頻合成中,DM被用于生成逼真的聲景、音樂和擬人化的語音,推動了創意和交流人工智能(AI)應用的邊界 [7]。此外,它們的應用還擴展到分子和材料科學領域,用于設計新的化學化合物和材料,展示了其多樣性。DM的流行源于其穩健性、靈活性和生成高保真度輸出的能力,使其成為AI驅動的創意和科學領域中的突破性工具 [8]。
圖2提供了過去五年在各種學科中發表的關于DM的論文的統計概覽。從圖2(a)中可以看出,自2020年以來,發表的論文數量一直在不斷增長。圖2(b)顯示,醫學領域的論文占比29%,居首位,其次是計算機科學,占17%,以及工程學,占14%。化學和材料科學等領域的論文較少,分別占總量的4%和6%。這些趨勢突顯了DM在醫學和計算機科學中的廣泛應用,而在其他領域的潛力尚未得到充分探索。
本綜述旨在為DM在各個領域的應用提供全面概述,幫助廣泛受眾理解其能力和多樣性。通過展示多樣的應用,本綜述鼓勵跨學科合作和創新,潛在地解決超出傳統應用如計算機視覺領域的未探索領域中的開放挑戰。
DM在各個領域的快速進展展示了其潛力和多樣性。盡管相關出版物數量不斷增加,但現有的綜述通常集中于特定應用或狹窄領域,未能涵蓋DM應用的廣泛范圍。考慮到這一機會,本綜述旨在通過提供DM的全面概述來填補現有文獻中的空白。
我們的貢獻總結如下: ? 本綜述涵蓋了DM的多個關鍵方面,包括理論、算法、創新、媒體質量、圖像轉換、醫療應用等。我們概述了截至2024年3月的相關文獻,突出最新的技術和進展。 ? 我們將DM分為三大類:去噪擴散概率模型(DDPM)、噪聲條件分數網絡(NCSN)和隨機微分方程(SDE),有助于理解其理論基礎和算法變種。 ? 我們重點介紹了與DM應用相關的創新方法和實驗方法,涵蓋數據類型、算法、應用、數據集、評估和限制。 ? 最后,我們討論了研究結果,識別了未解決的問題,并提出了關于DM未來研究方向的疑問,旨在為研究人員和實踐者提供指導。 圖3基于本研究中引用的文獻展示了DM的框架,在第2至第8節中進行了討論。
數據來源于Scopus,初步通過標題、摘要和關鍵詞使用搜索詞“Diffusion Model” AND (“image” OR “audio” OR “text” OR “speech”)篩選出3746篇文章。將搜索范圍限制為2020年至2024年間發表的英文、同行評審和開放獲取的論文后,數量減少至473篇。進一步過濾排除了“human”(人類)、“controlled study”(對照研究)、“job analysis”(工作分析)、“quantitative analysis”(定量分析)、“comparative study”(比較研究)、“specificity”(特異性)等無關的關鍵詞,最終篩選出326篇文章。
一位研究人員(Y.L.)將這326篇期刊文章導入Excel CSV文件以供詳細分析。隨后,利用Excel的重復檢測工具識別并刪除重復項。兩位獨立評審者(M.A.和Z.S.)評估了剩余論文的標題和摘要,確定了65篇相關文獻。此外,還納入了另外20篇相關文獻,最終涵蓋了來自各個領域的85篇論文。
** **擴散模型(DM)是一類通過模擬擴散過程來構建或重建數據分布的生成模型,這一過程通過隨機過程實現。這包括一個雙階段操作,在該操作中逐步添加噪聲,并隨后進行反向操作 [9]。DM的算法骨干包含幾個關鍵階段 [1, 9]:
初始化:從原始數據形式x0x_0x0 開始。
前向過程(噪聲添加):在TTT 個時間步內逐漸添加噪聲,根據預定義的噪聲計劃β\betaβ,將數據從x0x_0x0 轉化為xTx_TxT。
反向過程(去噪):利用學習到的參數θ\thetaθ 從xtx_txt 順序估計xt?1x_{t-1}xt?1,有效地逆轉噪聲添加,以重建原始數據或生成新的數據樣本。
輸入:原始數據X={x1,x2,…,xn}X = {x_1, x_2, \dots, x_n}X={x1,x2,…,xn}、總時間步數TTT、噪聲計劃β\betaβ。
輸出:去噪或合成的數據X′X'X′。
訓練:通過學習條件分布pθ(xt?1∣xt)p_\theta(x_{t-1}|x_t)pθ(xt?1∣xt) 來訓練模型,以近似逆向噪聲添加過程,對每個時間步ttt 從TTT 到 1 進行訓練。 * 數據合成:從一個隨機噪聲樣本xTx_TxT 開始,迭代地應用學習到的逆向過程:xt?1′=從pθ(xt?1∣xt)中采樣x'{t-1} = 從 p\theta(x_{t-1}|x_t) 中采樣xt?1′=從pθ(xt?1∣xt)中采樣最終得到x0′x'_0x0′,即最終的合成或重建數據。
多年來,已經提出了幾種基于擴散的模型,每一種都在生成建模的進步中作出了獨特貢獻。圖4展示了一些重要和有影響力的擴散模型及其時間線。其中,有三種擴散模型因其對各種應用的影響而非常流行并廣泛采用:去噪擴散概率模型(DDPMs)、噪聲條件分數網絡(NCSNs)和隨機微分方程(SDEs)。
近年來,由于擴散模型(DM)能夠生成高質量、逼真且多樣化的數據樣本,其受到了極大的關注,使得它們在多個前沿應用領域中得到了廣泛部署。DM廣泛應用于以下幾個最受歡迎的領域: ? 圖像合成:DM用于從噪聲分布中創建詳細的高分辨率圖像。它們可以生成新圖像或通過提高清晰度和分辨率來改善現有圖像,使其在數字藝術和圖形設計等領域中尤為有用 [13]。 ? 文本生成:DM能夠生成連貫且上下文相關的文本序列。這使其適用于諸如創作文學內容、在虛擬助手中生成逼真的對話以及自動生成新聞文章或創意寫作的內容 [14]。 ? 音頻合成:DM能夠從噪聲信號中生成清晰且逼真的音頻。這在音樂制作中非常有價值,因為需要創建新的聲音或改善錄制音頻的清晰度,還包括在各種輔助設備中使用的語音合成技術 [7]。 ? 醫療保健應用:盡管不限于醫學影像,DM在合成醫療數據方面發揮了重要作用,包括磁共振成像(MRI)、計算機斷層掃描(CT)以及其他影像模態。這種能力對于培訓醫療專業人員、改進診斷工具以及開發更精確的治療策略至關重要,同時不會影響患者隱私 [15]。
表1總結了2020年至2023年間一些著名的DM論文,提出的算法、使用的數據集和應用。不同顏色用于區分各種算法和應用類型。從表1中可以看出,大多數論文主要集中在基于圖像的應用上,如圖像生成、分割和重建。
結論
擴散模型(DM)通過生成逼真的樣本來解決數據生成和處理中的挑戰,有望在許多領域帶來變革。因此,解決當前的局限性并在DM的優勢基礎上進行改進,將使其在未來各個領域得到更廣泛的應用并產生更大的影響。我們的研究發現,DM生成高質量合成數據的能力提高了應用中的表現,如文本到圖像生成,其中像Diffusion Transformers(DT)用于穩定擴散的模型在數據隱私方面展示了進展 [35]。在網絡物理系統安全中,時序和特征TFDPM通過使用圖注意網絡(Graph Attention Networks)關聯通道數據來幫助檢測攻擊 [36]。此外,在云服務異常檢測中,像Maat這樣的模型通過結合度量預測和異常檢測來實現更高的準確性 [37]。 在圖像處理方面,基于擴散的技術在圖像去模糊和超分辨率等任務中表現出色。例如,使用DM進行的隨機圖像去模糊在感知圖像塊相似性和結構相似性指數測量上取得了高分 [31]。此外,用于MRI重建的加速CMD在提高圖像質量方面展現了潛力 [32]。此外,選擇性擴散蒸餾方法在平衡圖像保真度和可編輯性方面表現出色,適用于各種圖像操作任務 [33]。 然而,盡管DM可以生成逼真的數據,它們也引發了倫理問題。一個主要問題是潛在的濫用,例如創建深度偽造和合成媒體,可能會傳播虛假信息或侵犯隱私。為了降低這一風險,建立強大的檢測機制至關重要。確保模型保持公正性也同樣重要,這可以通過引入公平性算法和多樣化的訓練數據來實現。此外,DM的透明度和可解釋性至關重要,LIME和SHAP等技術可以提供模型生成結果的洞見。除此之外,還需要確保數據符合GDPR和健康隱私保護法(HIPAA)等法規的要求 [99, 100, 98]。 高計算需求和對更好采樣或網絡架構的需求是DM中反復出現的問題。模型通常需要廣泛的超參數調優,并且可能在離散信號建模或在不同上下文中泛化方面遇到困難 [36, 37]。此外,對某些模型而言,為語義引導選擇正確的時間步可能會限制其靈活性 [33]。較慢的推理速度和高資源需求阻礙了實時部署和可擴展性 [32, 31]。 因此,未來的研究應通過開發更高效的算法和利用計算技術的進步來解決這些局限性。探索半監督或無監督學習方法,并結合預訓練模型的遷移學習,可以幫助克服數據稀缺問題。提高DM對噪聲的魯棒性及其處理不同數據類型的能力至關重要。此外,持續的跨學科合作和明確的倫理準則對于在各個領域中負責任且有效地使用DM至關重要。
強化學習作為機器學習的一種范式,因其強大的策略試錯學習能力,受到關注 .隨著深度學習的融入,強 化學習方法在許多復雜的控制任務中取得了巨大成功.然而,深度強化學習網絡作為黑盒模型,其缺乏可解釋性所 帶來的不安全、不可控及難理解等問題限制了強化學習在諸如自動駕駛、智慧醫療等關鍵領域中的發展.為了解決 這一問題,科研人員開展了對強化學習可解釋性的研究 .然而,這些研究開展相對較晚,且缺少針對多智能體強化 學習可解釋性方法的系統性總結,同時,可解釋性的定義存在人為主觀性,導致系統性面向強化學習過程的可解釋 性研究較為困難.本文對當前強化學習的可解釋性研究工作進行了全面的整理與總結.首先,對強化學習的可解釋 性進行定義并總結了相關評估方法.隨后,基于馬爾可夫決策過程,劃分了行為級解釋、特征級解釋、獎勵級解釋及 策略級解釋四個類別 .此外,在每個類別中,分析了單智能體及多智能體的策略解釋方法,并特別關注可解釋性研 究中的人為因素,描述了人機交互式的解釋方法.最后,對當前強化學習可解釋性研究面臨的挑戰以及未來的研究 方向進行總結與展望.
大型語言模型(LLMs)在靜態、預先收集的通用數據集上的訓練取得的最近成功,已經引發了眾多研究方向和應用。其中一個方向解決了將預訓練的LLMs整合到動態數據分布、任務結構和用戶偏好中的非平凡挑戰。這個問題的主要挑戰在于平衡模型適應性和知識保存。為特定需求量身定制的預訓練LLMs經常在之前的知識領域經歷顯著的性能退化——這一現象被稱為“災難性遺忘”。雖然在持續學習(CL)社區進行了廣泛研究,但在LLMs領域呈現出新的表現形式。在這篇綜述中,我們提供了一個關于大型語言模型在持續學習背景下當前研究進展的全面概覽和詳細討論。除了介紹初步知識外,這篇綜述被分為四個主要部分:我們首先描述了持續學習LLMs的概覽,包括兩個連續性方向:垂直連續性(或垂直持續學習),即從一般到特定能力的持續適應;和水平連續性(或水平持續學習),即跨時間和領域的持續適應(第3節)。在垂直連續性之后,我們總結了在現代CL背景下學習LLMs的三個階段:持續預訓練(CPT)、領域適應性預訓練(DAP)和持續微調(CFT)(第4節)。然后我們提供了LLMs的持續學習評估協議的概覽,以及當前可用的數據來源(第5節)。最后,我們討論了有關LLMs持續學習的引人深思的問題(第6節)。這篇綜述揭示了持續預訓練、適應和微調大型語言模型這一相對未受到足夠研究的領域,表明需要社區更多的關注。需要立即關注的關鍵領域包括開發實用且易于訪問的評估基準,以及專門設計的方法論,以對抗遺忘和在不斷演變的LLM學習范式中啟用知識轉移。在這項綜述中檢查的完整論文列表可在//github.com/Wang-ML-Lab/llm-continual-learning-survey找到。
近期大型語言模型(LLMs)的進步顯示了實現人工普遍智能(AGI)的巨大潛力。研究人員觀察到,隨著參數規模的增加,多步驟推理、小樣本上下文學習和指令跟隨等復雜能力有所提高。LLMs的發展具有重大影響和革命性,促使機器學習從業者重新考慮傳統的計算范式,用于處理一些曾經具有挑戰性的人類水平任務,如問答、機器翻譯和對話系統。然而,LLMs通常在包含通用領域的靜態、預先收集的數據集上進行訓練,導致性能隨時間逐漸降低,并且在不同內容領域之間也會降低。此外,單一的預訓練大模型無法滿足每個用戶的需求,需要進一步的微調。盡管重新收集預訓練數據和根據額外的具體需求重新訓練模型是一種潛在的解決方案,但這種方法在現實世界場景中代價高昂且不切實際。為了有效地適應LLMs到下游任務,同時盡量減少對以前知識領域的性能退化,研究者采用了持續學習的方法,也稱為終身學習或增量學習。持續學習受到人類大腦中觀察到的增量學習模式的啟發,涉及按順序在一系列任務上訓練機器學習模型,期望在所有任務中保持性能。在訓練過程中,模型對以前的數據有限或無法訪問,這在保留過去知識時構成了一個挑戰,因為在當前任務學習時,來自未見過的以前數據的優化約束是不存在的。這一挑戰,被稱為災難性遺忘,自持續學習研究開始以來一直是研究的中心焦點。多年來,研究者探索了各種技術來減輕機器學習模型中的遺忘,這些技術包括基于重放的方法、參數規范化和模型架構擴展。這些技術共同顯著推進了在不同任務、模型架構和學習范式中實現零遺忘的持續學習目標。在順序訓練和適應LLMs的背景下,CL的重要性也正在發生自身的語義轉變。為了更好地突出這一持續的轉變,在這篇綜述中,我們提供了一個關于LLMs在CL背景下當前研究進展的全面概覽和詳細討論。對于持續學習LLMs的總體情況,我們將其分為兩個需要由從業者解決的連續性方向(第3節):
在圖1中,繼垂直連續性之后,我們勾畫了現代CL中LLM學習的三個關鍵階段:持續預訓練(CPT)、領域適應性預訓練(DAP)和持續微調(CFT)(第4節)。在CPT中,現有研究主要調查三種類型的分布式轉變:時間、內容層次和語言層次。每種都呈現出獨特的焦點和挑戰。在DAP中,雖然它主要被視為為下游任務準備LLMs的過程,但頻繁地使用CL評估和技術。然而,這些技術的多樣性明顯不足,考慮到傳統CL社區的成熟度。在CFT中,我們關注的是學習LLMs的新興領域,涵蓋持續指令調整(CIT)、持續模型精煉(CMR)、持續模型對齊(CMA)和持續多模態LLMs(CMLLMs)等主題。接下來,我們呈現了一系列公開可用的評估協議和基準(第5節)。我們總結我們的綜述,討論了LLMs持續學習的最新出現的特性,傳統增量學習類型和LLMs持續學習中的記憶約束的角色變化,以及這個主題的潛在研究方向(第6節)。總結而言,本文提供了一份詳盡的現有持續學習研究LLMs的綜述,顯著區別于相關主題的現有文獻。我們的綜述突出了持續開發LLMs的研究領域,特別是在持續預訓練(CPT)和領域適應性預訓練(DAP)領域的研究。我們強調需要社區更多的關注,迫切需要包括開發實用、易于訪問且廣為認可的評估基準。此外,需要定制方法來解決在新興的大型語言模型學習范式中的遺忘問題。我們希望這篇綜述能提供一個系統而新穎的持續學習視角,在迅速變化的LLMs領域中,幫助持續學習社區為開發更有效、可靠和可持續的LLMs做出貢獻。
組織結構
本文的其余部分安排如下。我們首先在第2節介紹大型語言模型和持續學習的背景和初步知識。然后我們在第3節展示了大型語言模型的現代持續學習概覽。從垂直角度來看,它可以大致分為三個階段的LLMs持續訓練,我們將在第4節逐一介紹每個階段。在4.3節中,將介紹持續微調LLMs的獨特方面,包括持續指令調整(4.3.3節)、持續模型精煉(4.3.4節)、持續模型對齊(4.3.5節)和持續多模態大型語言模型(4.3.6節)。在第5節中,我們提供了公開可用的LLMs持續學習評估協議和基準的全面介紹。最后,在第6節中,我們討論了在大型語言模型時代持續學習的角色,包括大規模持續LLMs的新興能力(6.1節)、三種類型的持續學習(6.2節)、LLMs持續學習中的記憶角色(6.3節)以及未來的研究方向(6.4節)。 持續學習與大型語言模型相遇:概覽****大型語言模型(LLMs)在多個維度上都非常龐大,包括模型參數的大小、預訓練數據集、計算資源、項目團隊和開發周期。LLMs的巨大規模為開發團隊帶來了顯著的挑戰,特別是在快速變化的環境中保持更新。舉例來說,2023年,用戶發布的新推文的平均每日流量超過5億,即使是在這么大量數據的“小”子集上進行訓練也是不可承受的。在考慮到它們對下游應用的連鎖影響時,有效且可靠地適應LLMs變得更為關鍵。下游用戶通常缺乏收集和存儲大規模數據、維護大規模硬件系統以及自行訓練LLMs的專業知識。《可回收調整》是首個明確概述現代LLM生產流水線供應商-消費者結構的先導研究。在供應商側,模型在一系列大規模未標記數據集上持續進行預訓練。每次預訓練模型發布后,消費者需要利用更新、更強大的上游模型以獲得更好的下游性能。為了提高下游消費者微調的效率,他們最初對持續預訓練的LLMs進行了幾項關鍵觀察,聚焦于模式連接性和功能相似性。此外,他們提出在上游預訓練LLM進行重大更新后,復用過時的微調組件。基于《可回收調整》引入的概念框架,我們在本綜述中提出了一個包含各種研究的現代生產流水線的全面框架,涉及持續LLM預訓練、適應和部署,如圖1所示。我們的框架與現有研究的不同之處在于融入了兩個連續性方向:垂直連續性和水平連續性。
結論
在這項工作中,我們提供了一份關于持續LLMs的綜述,從持續學習的角度總結了它們在訓練和部署方面的最新進展。我們根據它們在我們提出的現代分層持續學習LLMs的更廣框架內的位置,對問題和任務進行了分類。雖然這一領域在社區中的興趣廣泛且日益增長,但我們也注意到幾個缺失的基石,包括算法多樣性以及對大模型行為(如知識遺忘、轉移和獲取)的基本理解。通過全面而詳細的方法,我們希望這篇綜述能激勵更多從業者探索持續學習技術,最終有助于構建健壯和自我進化的人工智能系統。
數據可視化以圖表形式在數據分析中發揮著關鍵作用,提供關鍵洞察并輔助做出知情決策。隨著近年來大型基礎模型的興起,自動圖表理解取得了顯著進展。基礎模型,如生成預訓練變換器(Generative Pre-trained Transformers, GPT),已經革新了多種自然語言處理(NLP)任務,并越來越多地應用于圖表理解任務中。這篇綜述文章提供了這些基礎模型背景下圖表理解最近發展、挑戰和未來方向的全面概覽。文章從背景部分開始,定義圖表理解,概述問題表述,并討論研究圖表理解任務至關重要的基本構建塊,包括視覺編碼器、圖表到表格的翻譯、OCR模塊、文本編碼器和文本解碼器。在任務和數據集部分,我們探討了圖表理解內的各種任務,包括圖表問答、圖表字幕制作、圖表到表格轉換、圖表事實核查和圖表字幕事實錯誤校正。我們討論了評價指標和圖表及文本輸入的來源。然后檢視了建模策略,包括分類基礎和生成基礎的方法,以及增強圖表理解性能的工具增強技術。此外,我們討論了每項任務的最新性能并探討如何提升性能。在一個專門的部分中,我們討論了挑戰和未來方向,強調了諸如特定領域圖表、以及關于真實性、覆蓋范圍、相關性、穩健性、公平性和數據偏見的評價標準等問題。我們還深入探討了這些多模態基礎模型的組成部分,包括調整LM主干的必要性、多階段訓練過程的有效性,以及合成數據的潛在充分性。探索了與用戶或其他系統交互的代理導向設置。最后,我們討論了如自然圖像理解、表格理解和文檔理解等相關任務,提供了對視覺和文本數據理解更廣闊景觀的洞察。這篇綜述文章為自然語言處理、計算機視覺和數據分析領域的研究人員和實踐者提供了一個全面的資源,為利用大型基礎模型進行圖表理解的未來研究提供了寶貴的見解和方向。本文提及的研究以及新興的研究將持續更新于: //github.com/khuangaf/Awesome-Chart-Understanding。
在信息交流中圖表理解的重要性:在我們當代的多媒體信息世界里,數據的體量和復雜性持續膨脹,圖表在促進事實信息的連貫且富有洞察力的交流、傳達見解和做出決策中的角色至關重要。跨越學術界、科學研究、數字媒體和商業領域,圖表作為將原始數據轉換成可理解的視覺敘事的不可或缺的工具。它們能夠以簡潔直觀的格式封裝復雜的數據集,使決策者能夠迅速把握關鍵見解,輔助知情推理和戰略規劃。認識到圖表在現代信息傳播中的關鍵作用,計算社區持續對自動圖表理解表現出興趣,如自動圖表理解的大量研究所證明。特別是,關于圖表問答、圖表字幕制作、圖表到表格轉換、圖表事實核查和圖表字幕事實錯誤校正的工作奠定了探索圖表理解技術中圖表語義復雜性的基礎框架。
在大型基礎模型時代的圖表理解挑戰與機遇:傳統的圖表理解工作聚焦于微調方法,通常在領域可移植性和推理魯棒性方面遇到限制。令人興奮的是,大視覺-語言基礎模型(例如,GPT-4V、LLaVA)的出現引發了在自動推理能力上的范式轉變,催化了包括通過基于文本的提示實現強零/少次推理能力在內的各種多媒體認知任務的前所未有的進步。但在這一變革性創新的景觀中,圖表理解領域仍舊深陷固有的復雜性和巨大挑戰。圖表因其多面向的視覺表現和細膩的語義呈現出一系列獨特的障礙。從條形圖、折線圖到餅圖和散點圖,每種圖表類型都采用獨特的視覺語法來傳達數據關系,需要超越簡單的像素級模式識別的復雜解釋機制。圖表作為揭示如新興趨勢、挑戰假設的異常值和變量間可能不會從僅僅是表格形式的原始數據立即顯現的關系的深刻見解的渠道。它們使得可以進行跨數據點的比較分析,為簡潔地并置不同實體或時間段提供一個視覺平臺。此外,從簡單的數字關系到復雜的多維實體,底層數據集的內在多樣性為圖表理解任務增加了另一層復雜性。盡管面臨這些挑戰,自動圖表理解位于機遇與影響的交匯處,提供了一扇解鎖埋藏在視覺敘事像素中的可行動見解的大門。通過利用大型基礎模型的能力,圖表理解展示了在彌合原始視覺數據與有意義見解之間的差距方面的提升潛力,從而使技術可擴展地用于易于訪問的應用和增強人類認知。
盡管已有數項研究綜述了圖表理解研究的領域,但這些綜述往往在全面性或特定性上表現出一定的缺口。一些綜述沒有涵蓋在圖表理解研究中使用的現代數據集,以及最新的建模方法,如涉及預訓練的視覺-語言模型和大型基礎模型。相反,其他綜述主要集中在可視化方面(即數據轉換為圖表的過程),因此忽視了圖表解釋的細膩任務。本綜述旨在彌合這些缺口。我們首先在第2節定義自動圖表理解和問題表述的基本構建塊。我們討論了圖表理解的多面性,包括從解釋圖表視覺到分析底層數據的任務,以及概述了圖表理解的結構性建模組件,如視覺編碼器、OCR模塊、文本解碼器及其在將原始圖表圖像和文本查詢轉換為有意義見解中的角色。然后,在第3節,我們檢查了推動圖表理解研究的數據集和模型評估指標。本節分析了這些數據集的來源、多樣性和局限性,提供了對當前圖表理解數據景觀的見解。它還回顧了各種評估指標,強調了魯棒且細膩的評估方法的必要性。有了這些特征的見解,我們進一步提供了自動圖表理解的流行建模策略。第4節深入探討了圖表理解中的多樣化建模策略,包括從自然圖像理解、視覺-語言預訓練和基礎模型,如大型語言模型(LLMs)和大型視覺-語言模型(LVLMs)的調整。特別是,我們強調了視覺編碼器和文本解碼器在模型有效性上的選擇影響,并討論了工具增強在圖表理解中的作用。我們通過展示不同圖表理解任務上的最新性能以及我們如何改進它們來結束這一部分。最后,第5節討論了圖表理解中的挑戰和未來方向。我們強調了特定領域圖表的重要性、對全面評估指標的需求,以及對增強模型魯棒性和多功能性的敵對設置的潛力。我們還在第6節討論了圖表理解如何位于與自然圖像理解、表格理解和文檔理解相關工作的交匯處。本綜述文章通過確定未來研究的關鍵領域結束,如為復雜圖表開發模型、完善評估指標和多樣化數據集。我們不僅提供了對圖表理解當前狀態的深入概覽,而且為這一激動人心的數據可視化與機器學習交叉領域的未來進展奠定了基礎。
在人工智能(AI)的發展歷程中,高質量數據對于各種深度學習模型(如 ImageNet 對 AlexNet 和 ResNet)起到了重要的推動作用。近年來,相較于設計更為復雜的神經網絡結構(model-centric),人工智能社區的關注點逐漸轉向了以數據為中心的方法(data-centric)。這一方法注重更有效地處理數據,以增強神經模型的性能。與此同時,圖機器學習領域也取得了顯著的進展。然而,對于圖數據的內在特性,包括質量、多樣性、安全性等方面的研究卻相對較少。
近日,北郵GAMMA Lab師生發布了一篇名為“Data-centric Graph Learning: A Survey”的文章,從數據中心的視角全面回顧了圖學習方法,并旨在回答三個關鍵問題:(1) 何時修改圖數據,(2) 需要修改圖數據的哪部分來充分發揮各種圖模型的潛力,以及(3) 如何保護圖模型免受有問題的數據影響。
標題:Data-centric Graph Learning: A Survey 作者:Yuxin Guo*, Deyu Bo*, Cheng Yang?, Zhiyuan Lu, Zhongjian Zhang, Jixi Liu, Yufei Peng, Chuan Shi? 鏈接://arxiv.org/pdf/2310.04987.pdf 簡介:在過去的十年里,與圖相關的研究取得了顯著的進展,這得益于圖模型方面的創新,包括從圖核到圖嵌入的多種方法,及以圖神經網絡為代表的最新技術。但相反,很少有研究關注圖數據的內在特性,包括質量、多樣性、安全性等。 人工智能的革命一般是由大量高質量數據的可用性引發的,隨后才是強大的模型。一個典型的例子是ImageNet的成功,對深度卷積神經網絡如AlexNet的發展產生了重大貢獻。隨著對數據重要性認識的不斷提升,最近,人工智能社區的關注重心從以模型為中心(model-centric)的方法轉向了以數據為中心(data-centric)的方法。新興的以數據為中心的人工智能強調產生適當的數據以提高給定模型的性能。 那么,如何處理圖數據才能釋放圖模型的全部潛力?一個好的答案可以幫助我們理解圖數據與圖模型之間的關系。然而,與圖像和文字等歐幾里得數據不同,圖的不規則性質對以數據為中心的圖學習提出了幾個問題: 首先,我們應該何時修改圖數據以使圖模型受益?圖數據修改可能發生在圖學習的不同階段。例如,在訓練之前,我們可以啟發式地擾動邊,而在訓練過程中,我們還可以從節點表示中估計新的圖結構。其次,我們應該修改圖數據的哪一部分?圖數據涉及各種結構,包括邊、節點、特征和標簽,這些部分都在圖表示學習中發揮著重要作用。最后,我們應該如何防止圖模型受到有問題的圖數據的影響?由于手動定義的關系和特征,圖數據不可避免地會引入噪音和偏差,使得模型變得不可靠。 圖1:以數據中心的圖學習方法流程 本綜述從以數據為中心的角度系統地回顧和分類了現有的圖學習方法。具體來講,為了回答第一個問題,我們將圖學習過程分為四個階段:準備、預處理、訓練和推斷,如圖1所示。我們討論了每個階段對圖數據的重要性。接下來,我們從圖數據結構角度進一步對現有方法進行分類,以解決第二個問題。具體而言,我們考慮如何分別處理圖數據的拓撲、特征和標簽。最后,我們分析了現有圖數據中可能存在的問題,包括魯棒性、不公平性、選擇偏見和異質性。我們進一步討論了如何以以數據為中心的方式解決這些問題。本文的貢獻總結如下: (1)新穎分類法。我們根據圖學習流程中的各個階段(包括預處理、訓練和推斷)對現有的以數據為中心的圖學習方法進行分類。對于每個階段,我們介紹了其在以數據為中心的圖學習中的目標和重要性。 (2)多角度分析。我們強調了如何處理圖數據中不同的數據結構,包括拓撲、特征和標簽,以充分發揮給定圖模型的潛力。 (3)全面討論。我們分析了有問題的圖數據對圖模型的潛在影響,并討論了如何通過以數據為中心的方式緩解這些問題。此外,我們還提出了三個可能有益于該領域發展的以數據為中心的圖學習的未來方向。
表1:以數據為中心的圖學習方法的分類與代表性研究 本綜述的其余部分組織如下:第2章概述了以數據為中心的圖學習的背景,并描述了圖數據是如何手動處理的。第3-5 章分別介紹了在預處理、訓練和推斷階段的以數據為中心的圖學習方法。第6章介紹了圖數據的潛在問題,并討論了如何處理這些問題。最后,第7章對本文進行了總結,并提出了一些有可能有益于該領域發展的未來研究方向。
大型模型,包括大型語言模型和擴散模型,已在接近人類智能方面展現出卓越的潛力,引起了學術界和工業界的極大興趣。然而,這些大型模型的訓練需要大量的高質量數據,而且隨著這些模型的持續更新,現有的高質量數據資源可能很快就會耗盡。這一挑戰促使人們大量研究數據增強方法。利用大型模型,這些數據增強技術已超越傳統方法。本文提供了一篇關于大型模型驅動的數據增強方法的全面綜述。我們首先建立了相關研究的分類,分為三個主要類別:**圖像增強、文本增強和配對數據增強。**接著,我們深入探討了與基于大型模型的數據增強相關的各種數據后處理技術。我們的討論隨后擴展到這些數據增強方法在自然語言處理、計算機視覺和音頻信號處理等領域的應用范圍。我們繼續評估基于大型模型的數據增強在不同場景中的成功與局限性。在我們的綜述中,我們突出了數據增強領域未來探索的潛在挑戰和途徑。我們的目標是為研究人員提供關鍵洞察,最終有助于更復雜大型模型的發展。我們持續維護相關的開源材料在: //github.com/MLGroup-JLU/LLM-data-aug-survey。
數據增強,作為機器學習中的關鍵策略,解決了用有限的標記數據訓練不同任務模型的挑戰。它涉及增強訓練樣本的充足性和多樣性,而無需顯式收集新數據,因此在提高模型泛化方面起著至關重要的作用(Feng et al., 2021; Shorten and Khoshgoftaar, 2019)。數據增強的本質在于通過各種變換改變現有數據點來生成新數據。這防止了模型記憶無關的數據模式,增強的數據緊密反映了真實數據的分布(Cubuk et al., 2019; Wei and Zou, 2019)。這些技術直接適用于監督學習(Liu et al., 2021c)并且可以通過一致性規則化(Zhang et al., 2021a)在半監督學習中用于未標記數據。最初為計算機視覺(CV)開發的數據增強方法通過裁剪、旋轉和色彩調整等操作創建人工圖像(Kanwal et al., 2022; Krell and Kim, 2017; Takahashi et al., 2019)。在自然語言處理(NLP)中,類似的方法包括隨機字符插入、單詞刪除和同義詞替換(Liu et al., 2020; Shorten and Khoshgoftaar, 2019)。
數據增強的重要性在學術和工業領域引起了廣泛關注。作為一個活躍的研究領域,它解決了機器學習中對大量高質量標記數據的日益增長的需求,這一需求在現實世界中往往無法滿足。盡管在過去幾十年中,特別是在深度學習技術方面,數據增強取得了顯著進展,但這些方法仍然難以捕捉現實世界數據的復雜性(Feng et al., 2021),生成可擴展數據(Yang et al., 2022),并抵御對抗性示例(Qiu et al., 2020)。
為了應對這些限制,當前研究正在探索創新技術來增強數據增強方法的效果和多樣性。其中,大型模型,包括大型語言模型(Zhao et al., 2023)和擴散模型(Yang et al., 2023),顯示出相當大的潛力。大型語言模型(LLMs),如GPT-4(OpenAI, 2023a)和Llama2(Touvron et al., 2023b),已經革新了NLP。這些模型以Transformer架構(Vaswani et al., 2017)為特點,并在廣泛的語料庫上進行訓練,擅長理解和生成類似人類的文本,標志著機器學習能力的重大進步(Zhao et al., 2023)。這些擁有數十億參數的模型可以承擔包括代碼生成(Zhang et al., 2023b)和數據增強(Dai et al., 2023)在內的多樣化和復雜任務,為人工通用智能(AGI)的實現鋪平了道路。
擴散模型(Ho et al., 2020; Song et al., 2020),一種新的最先進的生成模型家族,在計算機視覺中的圖像合成方面超越了長期占據主導地位的生成對抗網絡(GANs)(Goodfellow et al., 2014)(Dhariwal and Nichol, 2021; Ho et al., 2020)。與變分自編碼器(VAEs)(Kingma and Welling, 2013)和GANs等先前模型不同,擴散模型通過迭代添加和逆轉噪聲來生成高質量的合成圖像,并已實現文本到圖像的生成(Saharia et al., 2022),擴展了數據增強的范圍。
方法論
大型模型的出現徹底改變了數據增強的方式,提供了與傳統方法相比更具多樣性的創新和有效手段來生成訓練數據。本節將現有的方法基于目標數據類型分為三個不同的類別:圖像增強、文本增強和配對數據增強。圖像增強涉及擴展圖像數據,文本增強涉及擴展文本數據,而配對數據增強則涉及兩者。這些方法反映了數據增強的最新趨勢,突出了大型模型的重要作用。
圖像增強圖像增強通過額外信息的指導來合成逼真的圖像。我們將這些技術分為基于提示的和基于主題的方法:在基于提示的類別中包括文本、視覺和多模態方法;在基于主題的類別中包括針對特定主題的策略。文本提示驅動的方法從文本描述中生成圖像,視覺提示驅動的方法使用視覺線索,而多模態提示驅動的方法結合了文本描述和視覺指導。基于主題的方法為特定主題量身定制增強。這些方法提升了深度學習任務的性能,有助于更加健壯的訓練體驗。現有方法在表3中總結。
文本增強
文本增強著重于利用大型模型的先進能力來增強文本數據集,包括兩種策略:基于標簽的和基于生成內容的。在基于標簽的方法中,模型被用于注釋文本數據,有效地豐富了文本數據集,增加了更多的標記實例。基于生成內容的策略指導模型合成新的文本數據,從而擴展了數據集,增加了新生成的文本材料。現有方法在表4中展示。
配對數據增強
MixGen(Hao et al., 2023)是一種用于視覺-語言表示學習的數據增強方法,通過圖像插值和文本連接生成具有保留語義關系的圖像-文本對。Bakhtiarnia等人(2023)提出了一種名為PromptMix的方法,該方法從現有數據集中提取文本描述,使用提取的文本作為輸入到潛在擴散模型以生成類似于現有數據集中的圖像,使用高性能的重量級網絡對生成的圖像進行注釋,并將這個假數據集與真實數據混合,以改善輕量級深度神經網絡的訓練。為了解決視覺語言數據集中的報告偏差問題,特別是對象屬性關聯對訓練模型的潛在有害影響,Wu等人(2023b)提出了一種稱為BigAug的雙模態增強方法。這種方法利用對象屬性解耦來合成不同的視覺語言示例,并創建跨模態的硬否定。LLM和基礎對象檢測器的整合有助于提取目標對象,其中LLM為每個對象提供詳細的屬性描述。這些描述以及相應的硬否定接著被用來通過修補模型生成圖像。這個明確的過程引入了缺失的對象和屬性以供學習,其中硬否定指導模型區分對象屬性。
總結
在本節中,我們提供了對我們在第3、4和5節中審查的主要發現的綜合概述。 基于大型模型的數據增強仍然是一個充滿機會和挑戰的領域。本調查旨在全面審查基于大型模型的數據增強方法,伴隨的數據后處理技術以及在下游任務中的應用。 它還仔細分類了現有的基于大型模型的數據增強方法。通過總結和分析當前的研究工作,我們確定了當前方法的成功和失敗,并辨別了基于大型模型的數據增強的新趨勢。此外,我們總結了用于評估基于大型模型的數據增強的現有方法。最重要的是,這些總結可以幫助提出未來研究的新挑戰和機會。
人工智能(AI)的歷史見證了高質量數據對各種深度學習模型的重大影響,例如ImageNet對于AlexNet和ResNet。最近,AI社區的關注點已從設計更復雜的神經結構(即模型為中心的方法)轉移到了數據為中心的方法,這種方法重點在于更好地處理數據以增強神經模型的能力。圖學習,操作于無處不在的拓撲數據上,也在深度學習時代中起到了重要作用**。在這次綜述中,我們從數據為中心的角度全面回顧了圖學習方法,并旨在回答兩個關鍵問題**:(1)何時修改圖數據以及(2)如何修改圖數據以發掘各種圖模型的潛力。因此,我們提出了一個基于圖學習流程中的階段的新分類法,并強調了圖數據中不同數據結構的處理方法,即拓撲、特征和標簽。此外,我們分析了嵌入在圖數據中的一些潛在問題,并討論了如何以數據為中心的方式解決它們。最后,我們為數據為中心的圖學習提供了一些建議的未來方向。
最近在非歐幾里得領域的進展引起了人工智能(AI)社區的大量關注。圖,作為典型的非歐幾里得數據,在現實世界中無處不在,并已在許多領域中得到廣泛應用,例如推薦、安全、生物信息學等。在過去的十年中,由于圖模型的創新,圖相關研究得到了推動,從圖核心[1][2]到圖嵌入[3][4],再到最新的圖神經網絡(GNNs)[5][6]。相反,關于圖數據的固有方面的研究較少,包括質量、多樣性、安全性等。 通常,AI的革命始終是由大量高質量數據的可用性引發的,隨后是強大的模型。一個顯著的例子是ImageNet[7]的成功,它為深度卷積神經網絡的發展做出了重要貢獻,例如AlexNet[8]和ResNet[9]。隨著數據的重要性得到越來越多的認可,最近,AI社區的關注點從以模型為中心的方法轉移到了以數據為中心的方法[10][11]。
新興的以數據為中心的AI強調產生適當的數據以提高給定模型的性能。“如何處理圖數據以發揮圖模型的全部潛力?”一個了解情況的答案可以幫助我們理解圖數據與圖模型之間的關系。然而,與圖像和表格數據等歐幾里得數據不同,圖的不規則性為以數據為中心的圖學習提出了幾個問題:首先,在什么時候我們應該修改圖數據以使圖模型受益?數據修改可能會在圖學習的不同階段發生。例如,我們可以在訓練之前啟發式地擾動邊,而在訓練期間我們也可以從節點表示中估計新的圖結構。其次,我們應該修改圖數據的哪一部分?圖數據涉及各種結構,包括邊、節點、特性和標簽,每一個都在圖表示學習中起到了重要作用。第三,如何防止圖模型受到有問題的圖數據的影響?由于手工定義的關系和特性,圖數據可能不可避免地引入噪聲和偏見,這使得模型變得不可靠。 本綜述系統地調研和分類了從數據中心的角度存在的圖學習方法。具體地說,為了回答第一個問題,我們將圖學習過程分為四個階段:準備、預處理、訓練和推斷,如圖1所示。我們討論了每個階段對圖數據的重要性。接下來,我們進一步從結構的角度對現有方法進行分類,以解決第二個問題。具體來說,我們考慮如何處理圖數據的拓撲、特征和標簽。最后,我們分析了現有圖數據中的潛在問題,包括脆弱性、不公平性、選擇偏見和異質性。并進一步討論如何從數據為中心的方式解決這些問題。
本文的貢獻可以總結如下:
? 新的分類法。我們按圖學習流程中的各個階段對現有的數據中心圖學習方法進行分類,包括預處理、訓練和推理。對于每個階段,我們都介紹了其在數據中心圖學習中的目標和重要性。 ? 多角度觀察。我們強調如何處理圖數據中的不同數據結構,包括拓撲、特征和標簽,以發揮給定圖模型的潛力。 ? 全面的討論。我們分析了有問題的圖數據對圖模型的潛在影響,并討論了如何以數據為中心的方式緩解這些問題。此外,我們提出了四個可能的數據中心圖學習的未來方向,這可能有助于這個領域的發展。 組織. 本調查的其余部分組織如下:第2節概述了數據中心圖學習的背景,并描述了如何手動處理圖數據。第3-5節分別介紹了預處理、訓練和推理階段的數據中心圖學習方法。第6節介紹了圖數據的潛在問題,并討論了如何處理這些問題。最后,第7節對本文進行了總結,并提出了一些有前途的未來方向。
2. 預處理階段
在本節中,我們將討論圖數據預處理階段的數據中心方法。具體來說,我們將現有的方法分為兩類:基于修改的方法和基于分布的方法。第一類旨在通過修改圖數據實例來提高圖模型的性能。第二類則著重于幫助圖模型捕捉數據集的分布,同時保持圖實例不變。此外,我們還考慮了不同的數據結構,包括拓撲、特征和標簽。相關方法列示在表1中。
圖的簡化 (Graph Reduction)
隨著圖的規模的增大,其計算所消耗的時間和空間也會增加。因此,如何在不失去太多有用信息的前提下減少圖的節點或邊成為了一個有價值的問題。圖的簡化可以加速模型的訓練,減少過擬合,并允許在更簡單的硬件條件下對模型進行訓練。圖的簡化可以分為兩大類:邊的簡化和節點的簡化。邊的簡化指的是圖的稀疏化,而節點的簡化包括圖的粗糙化和圖的凝縮。
圖的增強 (Graph Augmentation)
在深度學習中,數據增強被認為是非常重要的。由于圖數據的稀缺性和稀疏性相當嚴重,因此一個好的增強方法的重要性更為明顯。與其他數據形式相比,直接操作圖結構的圖增強是最具特色的圖數據增強類型。在這里,我們將介紹一些脫離訓練的啟發式方法。它們可能很簡單,但證明是非常有效和受歡迎的。 特征增強 (Feature Augmentation)
通過創建或修改節點特征,特征增強可以使后續模型避免過擬合并提高其性能。 對于已經有特征的圖,我們可以做一些直觀的調整來加強它們,例如特征損壞 [143]-[145],特征洗牌,特征掩碼 [66], [87], [146],特征添加,特征重寫 [147], [148],特征傳播,特征混合 [149]等 [15]。 對于最初沒有特征的節點,有適當生成特征的方法。為了獲取結構信息,Perozzi 提出了基于 word2vec [150] 的 deepwalk [3],它從每個節點開始,多次隨機走動,最后使用所有路徑為節點通過 word2vec [150]c 生成節點嵌入。接著,node2vec [4] 來自 deepwalk [3],它為節點添加了一個隨機行走的概率。另一條與隨機行走無關的線是 SDNE [151]。他們通過編碼器-解碼器架構得到圖的結構。具體來說,他們將鄰接矩陣的每一列作為初始節點嵌入,這是編碼器的輸入。并計算模型在初始嵌入和解碼嵌入之間的損失。 在非標記圖中,特征增強是通過無監督學習實現的。例如,GREET [211] 將原始圖分割成兩個子圖,一個包含同質邊,另一個包含異質邊,然后通過兩個單獨的 GNN 得到子圖嵌入,再連接這些子圖嵌入來獲取節點特征。 總的來說,特征增強是多種多樣和任意的,特殊的特征增強可以根據特定問題的需要進行定制。 位置編碼 (Position Encoding)
眾所周知,信息傳遞神經網絡 (MPNNs) 的表達能力受到1-Weisfeiler-Lehman (WL) 測試的限制,不能區分同構圖 [212]。為了打破這個限制,一個受歡迎的方法是用一些位置信息來增強節點特征,這被稱為位置編碼。在本節中,我們將介紹兩種類型的位置編碼:絕對方法和相對方法。 標簽混合 (Label Mixing)
標簽混合旨在將帶有標簽或嵌入的兩個不同實例混合為一個新的實例,并使用這些混合的實例來訓練模型。這樣得到的模型更具泛化性,不容易過擬合。 Mixup 在圖分類和節點分類任務中都扮演著重要的角色。一方面,面對圖分類任務,我們可以采用各種方法來增強模型。一種方法 [174] 涉及混合多個預先存在的圖嵌入。或者,我們可以隨機選擇一個子圖,并用另一個圖中的相應子圖替代它,同時保留原始圖的嵌入,使模型更好地集中于數據的相關方面 [175], [176]。另一方面,一些工作 [177] 提議將鄰近節點的標簽或嵌入進行混合,用于節點分類任務。 圖的課程學習 (Graph Curriculum Learning) 課程學習 (CL) [215] 是一種模仿人類學習過程的訓練策略,主張模型從簡單樣本開始學習,然后逐漸過渡到復雜樣本。這種策略可以幫助模型更快地收斂,并提高模型的泛化能力。圖的課程學習 (Graph CL) [216] 是一種基于圖的課程學習方法,主要用于圖神經網絡的訓練和優化。大多數 CL 方法有兩個重要功能,難度測量器和訓練調度器。難度測量器可以評估訓練數據的難度,以給予學習優先權,而訓練調度器決定如何從簡單到困難地進行學習。根據這兩者是否自動設計,CL 方法可以分為兩類,即預定義的 CL 和自動的 CL。在本節中,我們將介紹預定義的 Graph CL。 圖采樣 (Graph Sampling) 圖采樣方法使用不同的策略對節點進行采樣,并在計算節點的表示時僅聚合部分節點的信息,這加速了模型的收斂并減少了內存開銷。在這部分中,我們將討論啟發式采樣方法,這些方法可以進一步劃分為兩個類別:隨機采樣和重要性采樣。 圖生成 (Graph Generation) 在現實世界中,某些圖數據集對于圖模型來說太小,無法有效地理解其分布。圖生成器 [219], [220] 可以通過生成額外的圖數據來幫助緩解這個問題。圖生成的方法可以分為兩種類型:自回歸 (autoregressive) 和一次性生成 (one-shot)。 3. 訓練階段 (TRAINING STAGE)
在本節中,我們介紹了訓練階段的圖數據修改方法,其中數據修改模塊和信息傳遞模塊合作以提高性能。具體而言,我們介紹了三種模型-數據協同的訓練范式,包括聯合訓練 (joint training)、自訓練 (self training) 和雙層訓練 (bi-level training)。相關方法可以在表格 1 (Table 1) 中查看。 4. 推斷階段 (INFERENCE STAGE)
推斷階段是指使用預訓練的圖模型進行下游任務的階段。在這個階段,我們重新定義下游任務為一個統一的模板,以與我們的預訓練模型對齊。這有助于彌合我們的預文本任務與下游任務之間的差距,實現高質量的知識轉移和多任務適應。此外,推斷數據是指在預訓練模型的推斷階段使用的圖數據。從數據中心的角度看,調整推斷數據作為提示可以幫助在不改變模型參數的情況下獲得期望的目標。在本節中,我們討論了在圖的背景下逐漸受到歡迎的提示學習方法。為了詳細說明,我們將現有的圖提示方法分為兩類:預提示 (pre-prompt) 和后提示 (post-prompt),這取決于任務特定的提示是在信息傳遞模塊之前還是之后操作,如圖 1 (Figure 1) 所示。 結論 (CONCLUSION)
在這篇綜述中,我們對數據中心的圖學習進行了全面的回顧。我們從兩個角度對現有方法進行分類:一個是學習階段,包括預處理、訓練和推斷;另一個是數據結構,包括拓撲、特征和標簽。通過這兩個視角,我們仔細解釋了何時修改圖數據以及如何修改圖數據,以釋放圖模型的潛力。此外,我們還介紹了圖數據的一些潛在問題,并討論了如何用數據中心的方法解決它們。最后,我們提出了該領域的幾個有前景的未來方向。總的來說,我們相信數據中心的人工智能是通向一般人工智能的可行路徑,并且數據中心的圖學習將在圖數據挖掘中發揮重要作用。
深度模型融合/合并是一種新興的技術,它將多個深度學習模型的參數或預測合并成一個。它結合了不同模型的能力,以補償單一模型的偏差和錯誤,以實現更好的性能。然而,對于大規模深度學習模型(例如,LLMs 和基礎模型)的深度模型融合面臨著幾個挑戰,包括高計算成本、高維參數空間、不同異構模型之間的干擾等。盡管模型融合由于其解決復雜實際任務的潛力而引起了廣泛關注,但關于這種技術的完整和詳細的調查研究仍然缺乏。因此,為了更好地理解模型融合方法并推動其發展,我們提出了一項全面的調查以總結最近的進展。具體來說,我們將現有的深度模型融合方法分類為四種:(1)“模式連接”,通過非遞增損失的路徑連接權重空間中的解,以獲得模型融合的更好初始化;(2)“對齊”匹配神經網絡之間的單元以為融合創造更好的條件;(3)“權重平均”,一種經典的模型融合方法,對多個模型的權重進行平均,以獲得更接近最優解的精確結果。 (4)**“集成學習”**結合了多種模型的輸出,這是一種改善最終模型的準確性和魯棒性的基礎技術。另外,我們分析了深度模型融合面臨的挑戰,并提出了未來模型融合的可能研究方向。我們的評論對于深入理解不同模型融合方法之間的關系和實際應用方法是有幫助的,這可以啟發深度模型融合領域的研究。
//www.zhuanzhi.ai/paper/43bab5b376b2213134e1f99b305d4deb
近年來,深度神經網絡(DNNs)[129] 取得了顯著的發展,廣泛應用于計算機視覺(CV)[175]、自然語言處理(NLP)[30] 等領域。一般來說,單一深度學習模型通常具有一定的局限性,不能完全捕獲復雜網絡背后的所有潛在信息[195]。因此,經典的集成學習[15, 193, 198] 合并多個模型的輸出,以改善深度學習(DL)中模型的最終性能。但在測試時存儲和運行多個模型的成本很高[65, 204],尤其是模型的復雜性和大小增加時。例如,GPT-3[172] 有數十億參數,PaLM[31] 甚至達到5400億參數和7800億令牌。此外,從深度神經網絡[134, 196] 的損失景觀的角度來看,梯度優化的解通常聚集在寬平區域的邊界附近的點,而不是中心點[99]。這意味著經過訓練的網絡并不完全接近具有最小測試錯誤的最優解。需要融合相對最優點附近的解,以得到更好的結果。這激發了研究人員不僅將融合范圍限制于預測(例如,logits等),而且還包括模型參數的融合,而無需訪問訓練數據或保持所有單獨模型[110]。因此,深度模型融合[111, 159] 旨在將多個DNNs融合成一個網絡,保留其原始功能,甚至超越多任務訓練[3, 135]。此外,深度模型融合可以減少單一模型過度擬合特定樣本或噪聲的傾向,從而提高預測的準確性、多樣性和穩健性[207, 223]。由于數據隱私和實際節約資源的問題,深度模型融合引起了越來越多的關注。盡管深度模型融合的發展帶來了許多技術突破,但它也產生了一系列的挑戰,例如高計算負荷、模型異構性和通過組合優化對齊的速度慢[133, 204]等。
有些方法僅限于特定場景[227, 254],這激發了研究人員研究不同案例中模型融合的原理。然而,目前缺乏綜合評論來總結方法,以指示深度模型融合的內部機制。一些工作只關注從單一視角(例如,特征融合等)[45, 195] 和特定場景[213] 的模型融合,或者不同方式的信息融合(多模態融合[1, 103])而不是參數的融合。為了給開發者深入了解深度模型融合,我們分析了深度模型融合的原理和方法。此外,我們回顧了最近的進展和代表性應用,例如聯邦學習(FL)[160] 和微調[29] 等。我們的調查旨在說明深度模型融合的最新趨勢和潛在方向,并為研究人員提供指南,以提高性能和降低成本。因此,我們根據內部機制和目的將方法分為四類,如圖1所示。對于相互之間不在附近的獨立訓練的模型,“模式連接”和“對齊”使解更加接近,以獲得更好的平均原始條件。對于權重空間中存在某些差異的類似模型,“權重平均(WA)”傾向于直接平均模型,并在損失函數值較低的參數空間區域獲得更接近最優點的解[118]。此外,對于現有模型的預測,“集成學習”集成了模型的不同形式的預測,以獲得更好的結果。具體來說,這四個類別如下:
模式連接性指的是通過基于梯度的優化得到的解可以在權重空間中通過一條無障礙的路徑(連接器)進行連接。我們可以沿著低損失路徑獲得更適合模型融合的其他模型。根據路徑的數學形式和連接器所在的空間,我們將此部分劃分為“線性模式連接性”,“非線性模式連接性”和“子空間中的模式連接性”。模式連接性可以在訓練過程中解決局部優化問題。模式連接性的路徑的幾何關系也可以用來加速優化過程,如隨機梯度下降(SGD)的收斂、穩定性和準確性。簡而言之,模式連接性為解釋和理解模型融合的行為提供了一個新的視角。但是,特別是在大數據集上訓練模型時,應解決計算復雜性和參數調整的困難。
對齊是將多個模型的單元進行匹配,并對模型進行平均以獲得最終模型。對齊后,不同模型之間的特定數學度量(例如,歐幾里得距離)可以更為接近,從而減小模型之間的差異,進而增強深度模型融合的效果。對齊可分為“激活匹配”和“權重匹配”,取決于是否需要考慮數據分布。此外,Re-basin基于對齊引入,探討解決方案可以通過排列不變性被傳輸到一個單一的盆地(即,參數空間中相對低損失的區域)。然而,對齊通常面臨著計算量大、組合優化速度慢和架構差異的障礙,使得它不易擴展到具有不同目標的其他場景。例如,伴隨圖匹配而來的記憶負擔限制了深度模型融合的應用。
權重平均是將幾個母網絡融合成一個單一網絡的最直接和高效的方式。與模式連接性和對齊相比,權重平均不需要額外的計算復雜性或訓練來找到一個優越的起點,在模型包含一定程度的相似性時表現良好。根據聚合空間,權重平均可分為“權重平均”和“子空間中的平均”。此外,典型的方法“模型湯”,“模型算術”和“隨機權重平均”也對現有方法進行了顯著改進。然而,當參數被規范化和合并時,可能會在模型結構或參數數量存在較大差異的情況下引入一些偏差。盡管如此,權重平均仍然是深度模型融合的主流方法,因為它簡單且高效。
集成學習結合了幾種不同模型的輸出,以改善預測性能和魯棒性。我們專注于深度學習中的集成學習。基于集成學習,“模型重用”為每個模型提供了規格,這樣在給定新的學習任務時,有用的模型可以從模型池中被識別和合并。集成學習具有各種框架和便捷的界面,經常用于實際領域,例如物體檢測等。盡管集成學習需要維護多個訓練過的模型并在測試時運行每個模型,但它仍然是在深度學習中被廣泛采用的強大技術之一。
作為一項提高深度模型的準確性和魯棒性的技術,模型融合促進了許多應用領域的改進。聯邦學習,一種在中央服務器上聚合客戶端模型的應用,使得各方可以貢獻數據到功能的計算中(例如,各種統計、分類器),而無需泄露隱私。微調對預訓練模型進行小的調整,結合模型融合以減少訓練成本并適應特定任務或領域的需求。模型融合還涉及到“蒸餾”。即,將來自多個復雜模型的軟目標知識結合起來,為特定要求訓練一個小模型。模型融合在foundation/LLMs上的應用包括在大型基礎模型或大型語言模型(LLMs)上的工作,例如視覺變壓器(ViT)和GPT等。模型融合的應用幫助開發人員適應各種任務和領域的需求,并促進深度學習的發展。簡而言之,我們的調查回顧了深度模型融合技術。在前三節“模式連接性”,“對齊”和“權重平均”中,我們主要從模型參數融合的角度進行全面研究。在“集成學習”中,我們主要從模型輸出聚合的角度探討了這個問題。
本工作的主要貢獻總結如下:
? 我們從“模式連接性”,“對齊”,“權重平均”和“集成學習”的角度提出了一種新的深度模型融合分類方法,該方法涵蓋了模型融合的理論綜合方法,并為實現DNNs的高泛化和準確訓練提供了指導。
? 我們比較了融合方法的優缺點,并解釋了它們之間的機制和關系,為未來設計先進的模型融合方法提供了靈感。
? 我們總結了深度模型融合的廣泛應用。我們還討論了當前的研究趨勢,以便在未來引起更多的關注和反思。此外,本文的其余部分組織如下:在第2節到第5節,我們根據“模式連接性”、“對齊”、“權重平均”和“集成學習”的四個角度介紹深度模型融合的方法。第6節介紹了深度模型融合的應用:“聯邦學習”、“微調”、“蒸餾”和“在foundation/LLMs上的模型融合”。最后,在第7節中,我們總結了深度模型融合,并討論了未來的挑戰和潛在方向。另外,我們在全文中說明了符號及其相應的定義。Wi是第i個具有權重Wi ∈ R^d(i = 1, 2, ...k)和偏置項b的神經網絡。λ表示加權參數。σ表示非線性神經元激活函數。L是損失函數,用于量化預測值和實際值之間的差異。
圖像融合技術旨在將不同源圖像中的互補信息整合到單幅融合圖像中以全面表征成像場景,并促進后續的視覺任務。隨著深度學習的興起,基于深度學習的圖像融合算法如雨后春筍般涌現,特別是自編碼器、生成對抗網絡以及Transformer等技術的出現使圖像融合性能產生了質的飛躍。本文對不同融合任務場景下的前沿深度融合算法進行全面論述和分析。首先,介紹圖像融合的基本概念以及不同融合場景的定義。針對多模圖像融合、數字攝影圖像融合以及遙感影像融合等不同的融合場景,從網絡架構和監督范式等角度全面闡述各類方法的基本思想,并討論各類方法的特點。其次,總結各類算法的局限性,并給出進一步的改進方向。再次,簡要介紹不同融合場景中常用的數據集,并給出各種評估指標的具體定義。對于每一種融合任務,從定性評估、定量評估和運行效率等多角度全面比較其中代表性算法的性能。本文提及的算法、數據集和評估指標已匯總至//github.com/Linfeng-Tang/Image-Fusion。最后,給出了本文結論以及圖像融合研究中存在的一些嚴峻挑戰,并對未來可能的研究方向進行了展望。
面向知識圖譜的知識推理旨在通過已有的知識圖譜事實,去推斷新的事實,進而實現知識庫的補全。近年來,盡管基于分布式表示學習的方法在推理任務上取得了巨大的成功,但是他們的黑盒屬性使得模型無法為預測出的事實做出解釋。所以,如何設計用戶可理解、可信賴的推理模型成為了人們關注的問題。本文從可解釋性的基本概念出發,系統梳理了面向知識圖譜的可解釋知識推理的相關工作,具體介紹了事前可解釋推理模型和事后可解釋推理模型的研究進展;根據可解釋范圍的大小,本文將事前可解釋推理模型進一步細分為全局可解釋的推理和局部可解釋的推理;在事后解釋模型中,本文回顧了推理模型的代表方法,并詳細介紹提供事后解釋的兩類解釋方法。此外,本文還總結了可解釋知識推理在醫療、金融領域的應用。隨后,本文對可解釋知識推理的現狀進行概述,最后展望了可解釋知識推理的未來發展方向,以期進一步推動可解釋推理的發展和應用。
//www.jos.org.cn/jos/article/abstract/6522
知識圖譜(Knowledge Graph)本質是一種語義網絡,通常用 (頭實體,關系,尾實體)/ ( ,r, t) h 這樣 的三元組來表達事物屬性以及事物之間的語義關系。自谷歌提出知識圖譜概念以來,知識圖譜已經為智能 問答、對話生成、個性化推薦等多個 NLP 任務領域提供了有力支撐。雖然目前的知識圖譜中存在大量的實 體和事實數據,但是這樣大規模的數據仍然不完整,大量缺失的三元組嚴重限制了這些下游任務的性能。知識推理,這一旨在根據一定的推理機制去預測圖譜中缺失三元組的任務,也吸引了學術界越來越多的目光。
早在 2013 年,Li 等人[1] 提出利用表示學習的方法去做知識推理,通過將實體和關系映射到低維連續 的向量空間,將推理預測任務轉化為實體與關系所關聯的簡單的向量/矩陣操作。鑒于該方法的自由度高、 可計算性好、推理效率高等優點,該類方法在近幾年得到了廣泛關注和發展,并且廣泛的應用在推薦系統、 對話生成等互聯網場景。在這些場景下,研究者們更多的關注如何提高知識推理的性能,忽略知識推理發 生錯誤時的風險問題。即便推理模型在這些場景下產生錯誤推理時,通常來說,并不會招致非常嚴重的后果。然而,在當今人工智能技術應用的大趨勢下,知識推理不僅可以應用在上述互聯網場景,而且越來越 多的被應用在和人類的生產生活息息相關的一些領域(例如,智能醫療[98,99,100]、軍事[112] 、金融[90,111]、交 通運輸[113,114]),這些領域往往對模型的安全性能要求較高,風險高度敏感。例如,在醫療領域,推理的可 靠性會關系到人的生命安全。通常來說,在這些領域,僅僅獲得預測結果是不夠的,模型還必須解釋是怎 么獲得這個預測的,來建立用戶和推理模型之間的信任。
隨著深度學習的發展,知識推理方法的模型結構越來越復雜,僅僅一個網絡就可能包含幾百個神經元、 百萬個參數。盡管這些推理模型在速度、穩定性、可移植性、準確性等諸多方面優于人類,但由于用戶無 法對這類模型里的參數、結構、特征產生直觀理解,對于模型的決策過程和模型的推理依據知之甚少,對 于模型的決策過程知之甚少,不知道它何時會出現錯誤,在風險敏感的領域中,用戶仍然無法信任模型的 預測結果。因此,為了建立用戶和推理模型之間的信任,平衡模型準確率和可解釋性之間的矛盾,可解釋 性知識推理在近幾年的科研會議上成為關注熱點。
盡管有很多學者對知識推理領域進行了深入的研究,并從不同的角度(如分布式表示角度[120] 、圖神 經網絡角度[121] 、神經-符號角度[119] 等)對推理模型進行梳理和總結。然而,在推理模型的可解釋性方面 卻缺少深入的對比和總結。為了促進可解釋知識推理的研究與發展,本文對現有的可解釋推理模型進行了 系統梳理、總結和展望。本文首先闡述可解釋性的定義和可解釋性在推理任務中的必要性,并介紹常見的 可解釋模型劃分標準;然后,根據解釋產生的方式,對現有的可解釋知識推理模型進行總結和歸類,并討 論相關方法的局限性;接著,簡單介紹可解釋知識推理在金融領域和醫療領域的應用。最后,本文討論可 解釋知識推理面臨的挑戰以及可能的研究方向。
1 可解釋的知識推理
在詳細介紹現有的可解釋知識推理模型之前,首先介紹知識推理的基本概念,接著對什么是可解釋性 (Interpretability),以及為什么要在推理任務中注重可解釋性進行介紹,最后對本文的劃分標準做簡要說明。
1.1 知識推理的基本概念
2012 年,谷歌正式提出知識圖譜的概念,用于改善自身的搜索質量。知識圖譜通常用 ( ,r, t) h 這樣 的三元組表達實體及其實體之間的語義關系,其中 h 代表頭實體, r 代表實體之間的關系, t 代表尾實體。例如(詹姆斯·卡梅隆,執導,泰坦尼克號)即是一個三元組,其中頭實體和尾實體分別為“詹姆斯·卡梅隆” 和“泰坦尼克號”,“執導”是兩個實體之間的關系。代表性的知識圖譜,如 DBpedia[108] 、Freebase[53] 、 Wikidata[55] 、YAGO[107] 等,雖然包含數以億計的三元組,但是卻面臨非常嚴重的數據缺失問題。據 2014 年的統計,在 Freebase 知識庫中,有 75%的人沒有國籍信息,DBpedia 中 60% 的人缺少沒有出生地信息 [125] 。知識圖譜的不完整性嚴重制約了知識圖譜在下游任務中的效能發揮。因此,如何讓機器自動基于知 識圖譜中的已有知識進行推理,從而補全和完善知識圖譜,成為了工業界和學術界都亟待解決的問題。
總的來說,面向知識圖譜的知識推理實質上是指利用機器學習或深度學習的方法,根據知識圖譜中已 有的三元組去推理出缺失的三元組,從而對知識圖譜進行補充和完善。例如,已知(詹姆斯·卡梅隆,執導, 泰坦尼克號)和(萊昂納多·迪卡普里奧,出演,泰坦尼克號),可以得到(詹姆斯·卡梅隆,合作,萊昂納 多·迪卡普里奧)。知識推理主要包含知識圖譜去噪[12] 和知識圖譜補全(又稱之為鏈接預測)[1,27,94,95]兩個 任務[117] ,其中,知識圖譜去噪任務專注于知識圖譜內部已有三元組正確性的判斷;而知識圖譜補全專注 于擴充現有的圖譜。根據要推理元素的不同,知識圖譜補全任務可以進一步細分為實體預測和關系預測。其中,實體預測是指給定查詢 ( ,r,?) h ,利用已有事實的關系,推理出另一個實體并由此構成完整三元組, 同理,關系預測則是指給定查詢 ( ,?, t) h ,推理給定的頭尾實體之間的關系。由于知識圖譜中大多數三元組 都是正確的,知識圖譜去噪任務通常采用對已有三元組進行聯合建模并進一步判斷特定三元組是否成立的 方法。在這種情況下,知識圖譜補全任務可以轉化為知識圖譜去噪任務[123,124]。為此,在下面的內容里,本 文以知識圖譜補全任務為中心,對相關的可解釋性方法進行梳理和總結。
1.2 可解釋性及其在知識推理中的必要性
目前學術界和工業界對于可解釋性沒有明確的數學定義[62] ,不同的研究者解決問題的角度不同,為 可解釋性賦予的涵義也不同,所提出的可解釋性方法也各有側重。目前被廣泛接受的一種定義由 Miller (2017)[2,42]所提出,指可解釋性是人們能夠理解決策原因的程度。如果一個模型比另一個模型的決策過程 更簡單、明了、易于理解,那么它就比另一個模型具有更高的可解釋性。
在某些情況下,我們不必關心模型為什么做出這樣的預測,因為它們是在低風險的環境中使用的,這 意味著錯誤不會造成嚴重后果(例如,電影推薦系統),但是對于某些問題或任務,僅僅獲得預測結果是 不夠的。該模型還必須解釋是怎么獲得這個預測的,因為正確的預測只部分地解決了原始問題。通常來說, 以下三點原因推動了對可解釋性的需求:
1、高可靠性要求。盡管可解釋性對于一些系統來說并不是不可或缺的,但是,對于某些需要高度可靠 的預測系統來說很重要,因為錯誤可能會導致災難性的結果(例如,人的生命、重大的經濟損失)。可解釋性可以使潛在的錯誤更容易被檢測到,避免嚴重的后果。此外,它可以幫助工程師查明根 本原因并相應地提供修復。可解釋性不會使模型更可靠或其性能更好,但它是構建高度可靠系統 的重要組成部分。
2、道德和法律要求。第一個要求是檢測算法歧視。由于機器學習技術的性質,經過訓練的深度神經網 絡可能會繼承訓練集中的偏差,這有時很難被注意到。在我們的日常生活中使用 DNN 時存在公 平性問題,例如抵押資格、信用和保險風險評估。人們要求算法能夠解釋作出特定預測或判斷的 原因,希望模型的解釋能夠使“算法歧視”的受害者訴諸人權。此外,推理模型目前也被用于新 藥的發現和設計[124] 。在藥物設計領域,除了臨床測試結果以外,新藥還需要通常還需要支持結 果的生物學機制,需要具備可解釋性才能獲得監管機構的批準,例如國家藥品監督管理局 (NMPA)。
3、科學發現的要求。推理模型本身應該成為知識的來源,可解釋性使提取模型捕獲的這些額外知識成 為可能。當深度網絡達到比舊模型更好的性能時,它們一定發現了一些未知的“知識”。可解釋性 是揭示這些知識的一種方式。
1.3 本文的劃分標準
根據不同的劃分標準,知識推理模型可以被劃分成不同的類別。其中,根據解釋產生的方法,可以將 推理模型劃分為兩大類:事前可解釋和事后可解釋[41,62,96,97,102,118]。其中,事前可解釋模型主要指不需要額 外的解釋方法,解釋蘊含在自身架構之中的模型。事后可解釋性是指模型訓練后運用解釋方法進行推理過 程和推理結果的解釋,解釋方法自身是不包含在模型里面的。一種方法被看作能夠對黑盒模型進行解釋, 是指該方法可以:(1)通過可解釋和透明的模型(例如,淺決策樹、規則列表或者稀疏線性模型)對模型 的行為進行近似,可以為模型提供全局的可解釋;(2)能夠解釋模型在特定輸入樣例上進行預測的原因;(3)可以對模型進行內部檢查,了解模型的某些特定屬性,譬如模型敏感性或深度學習中神經元在某一特 定決策中起到的作用[41] 。值得注意的是,可以將事后解釋方法應用于事前可解釋的模型上,例如,可以 從敏感性分析的角度對事前模型進行剖析。此外,根據可解釋的范圍大小----是否解釋單個實例預測或整個 模型行為,可以將模型劃分為局部可解釋和全局可解釋兩大類[97,96];根據解釋方法是否特定于模型,可以 將模型劃分為特定于模型和模型無關兩種類別[96] 。在接下來的內容里,本文按照解釋產生的方式,對知 識推理模型進行總結和歸類。