亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

主題: Scalable and Robust Multi-Agent Reinforcement Learning

簡介: 本演講將涵蓋我們最近的多智能體強化學習方法,這些方法用于協調溝通有限或沒有交流的智能體團隊。這些方法將包括深入的多主體增強學習方法和學習異步策略的分層方法,這些方法實際上允許針對不同主體在不同時間進行學習和/或執行。這些方法可擴展到較大的空間和視野,并且對于其他代理學習引起的非平穩性具有魯棒性。將顯示來自基準域和多機器人域的結果。

作者簡介: Christopher Amato,美國東北大學教授,研究興趣包括人工智能,機器人技術,多智能體和多機器人系統,不確定性下的推理,博弈論和機器學習。

付費5元查看完整內容

相關內容

強化一詞來源于實驗心理學中對動物學習的研究,它指的是某一事件的發生,與某一反應之間有恰當的關系,而這一事件往往會增加該反應在相同情況下再次發生的可能性。雖然心理學家沒有使用“強化學習”這個術語,但它已經被人工智能和工程領域的理論家廣泛采用,用來指代基于這一強化原理的學習任務和算法。最簡單的強化學習方法使用的是一個常識,即如果一個行為之后出現了一個令人滿意的狀態,或者一個狀態的改善,那么產生該行為的傾向就會得到加強。強化學習的概念在工程領域已經存在了幾十年(如Mendel和McClaren 1970),在人工智能領域也已經存在了幾十年(Minsky 1954, 1961;撒母耳1959;圖靈1950)。然而,直到最近,強化學習方法的發展和應用才在這些領域占據了大量的研究人員。激發這種興趣的是兩個基本的挑戰:1) 設計能夠在復雜動態環境中在不確定性下運行的自主機器人代理,2) 為非常大規模的動態決策問題找到有用的近似解。

付費5元查看完整內容

講座題目

深強化學習及其在交通運輸中的應用:Deep Reinforcement Learning with Applications in Transportation

講座簡介

交通領域,特別是移動共享領域,有許多傳統上具有挑戰性的動態決策問題,這些問題有很長的研究文獻,很容易從人工智能(AI)中受益匪淺。一些核心例子包括在線乘車命令調度,它將可用的駕駛員與在共享平臺上請求乘客的行程實時匹配;路線規劃,它規劃行程的起點和終點之間的最佳路線;交通信號控制,它動態和自適應地調整實現低延遲的區域。所有這些問題都有一個共同的特點,即當我們關注某一特定時間范圍內的一些累積目標時,需要做出一系列的決定。強化學習(RL)是一種機器學習范式,它通過與環境的交互和獲取反饋信號,訓練agent學會在環境中采取最佳行動(以獲得的總累積回報衡量)。因此,它是一類求解序列決策問題的優化方法。

講座嘉賓

Jen-Tzung Chien在臺灣新竹國立清華大學取得電機工程博士學位。現任職于臺灣新竹國立交通大學電子及電腦工程學系及電腦科學系講座教授。2010年,他擔任IBM沃森研究中心的客座教授。他的研究興趣包括機器學習、深度學習、自然語言處理和計算機視覺。在2011年獲得了IEEE自動語音識別和理解研討會的最佳論文獎,并在2018年獲得了AAPM Farrington Daniels獎。2015年,劍橋大學出版社出版《貝葉斯語音與語言處理》;2018年,學術出版社出版《源分離與機器學習》。他目前是IEEE信號處理技術委員會機器學習的當選成員。

付費5元查看完整內容

題目: Reinforcement Learning:Theory and Algorithms

簡介:

強化學習是近幾年研究的熱點,特別是伴隨DeepMind AlphaGo的出現名聲大噪。強化學習(RL)是一種機器學習范式,在這種范式中,agent從經驗中學習完成順序決策任務,RL在機器人、控制、對話系統、醫療等領域有廣泛的應用。《強化學習:理論與算法》這本書講述了強化學習最新進展,包括MDP、樣本復雜度、策略探索、PG、值函數等關鍵議題,是了解強化學習的材料。

章節:

  • 第一章:馬爾科夫決策過程MDP 預介紹
  • 第二章:生成模型的樣本復雜度
  • 第三章:強化學習的策略探索
  • 第四章:策略梯度方法
  • 第五章:值函數近似
  • 第六章:RL的戰略探索和豐富的觀測資料
  • 第七章:行為克隆和學徒學習

作者簡介:

Alekh Agarwal目前是微軟人工智能研究中心的研究員,領導強化學習研究小組。之前,在加州大學伯克利分校獲得計算機科學博士學位后,與彼得·巴特利特(Peter Bartlett)和馬丁·溫賴特(Martin Wainwright)一起在紐約微軟研究院(Microsoft Research)度過了六年美好的時光。

姜楠,UIUC助理教授,機器學習研究員。核心研究領域是強化學習(RL),關注于RL的樣本效率,并利用統計學習理論中的思想來分析和開發RL算法。

沙姆·卡卡德(Sham M. Kakade)是華盛頓研究基金會(Washington Research Foundation)數據科學主席,同時在華盛頓大學(University of Washington)艾倫學院(Allen School)和統計學系任職。他致力于機器學習的理論基礎,專注于設計(和實現)統計和計算效率的算法。

付費5元查看完整內容

作者介紹: Cornelius Weber擁有德國比勒費爾德大學的物理學博士學位。 他于2000年在德國柏林的柏林工業大學獲得計算機科學博士學位。他是德國University of Hamburg知識技術小組的實驗室主任。 他曾是美國紐約州羅徹斯特大學的腦與認知科學博士后研究員。 從2002年到2005年,他在英國桑德蘭大學擔任混合智能系統研究科學家。在2010年之前,他是法蘭克福高級研究所的資深研究員。他目前的研究興趣包括計算神經科學,重點是視覺,無監督學習和強化學習。

簡要介紹: 大腦統治著整個世界,類腦計算越來越多地用于計算機和電子設備中。 類腦計算是關于處理和解釋數據或直接提出并執行動作。 學習是一個非常重要的方面。 這本書是關于強化學習的,涉及為實現目標而采取的行動。 本書的前11章介紹并擴展了強化學習的范圍。 其余11章表明,在許多領域中已經有了廣泛的使用。 增強學習可以解決對于傳統的手工設計的非學習控制器來說過于復雜的控制任務。 由于學習計算機可以處理技術復雜性,因此操作人員的任務仍然是在越來越高的水平上指定目標。 本書表明,強化學習在理論和應用方面是一個非常活躍的領域,它將激發并鼓勵該領域的新研究。

下載鏈接: //pan.baidu.com/s/19M6dsNWn90kutFTynqKZjQ

提取碼:mivq

付費5元查看完整內容

主題: Learning for policy improvement

摘要: 強化學習在經驗易獲得的領域取得了許多成功,如電子游戲或棋盤游戲。這類區域的RL算法通常基于梯度下降:它們以較小的學習率進行許多噪聲更新。相反,我們研究每次更新花費更多計算的算法,試圖減少噪聲并進行更大的更新;當經驗比計算時間更昂貴時,這樣的算法是合適的。特別地,我們看幾種基于近似策略迭代的方法。

作者簡介: Geoff Gordon博士是微軟研究蒙特勒實驗室的研究主任,也是卡內基梅隆大學機器學習系的教授。他還擔任過機械學習系的臨時系主任和教育副系主任。戈登博士的研究集中在能夠進行長期思考的人工智能系統上,比如提前推理以解決問題、計劃一系列行動或從觀察中推斷出看不見的特性。特別是,他著眼于如何將機器學習與這些長期思考任務結合起來。1991年,戈登博士在康奈爾大學獲得計算機科學學士學位,1999年在卡內基梅隆大學獲得計算機科學博士學位。他的研究興趣包括人工智能、統計機器學習、教育數據、博弈論、多機器人系統,以及概率、對抗和一般和領域的規劃。他之前的任命包括斯坦福大學計算機科學系的客座教授和圣地亞哥燃燒玻璃技術的首席科學家。

付費5元查看完整內容

主題: Safe and Fair Machine Learning

簡介:

在這個演講將討論一些我們的未來的工作在一個新的框架設計的機器學習算法,內容包括:1)使得算法的用戶更容易定義他們認為是不受歡迎的行為(例如,他們認為是不公平的,不安全,或者成本);2)提供了一個高信任度保證它不會產生一個解決方案,展示了用戶定義的不受歡迎的行為。

作者簡介:

Philip Thomas是馬薩諸塞大學安姆斯特分校信息與計算機科學學院助理教授,自主學習實驗室聯合主任。之前是卡內基·梅隆大學(CMU)的博士后,2015年,在馬薩諸塞州立大學阿默斯特分校(UMass Amherst)獲得了計算機科學博士學位。主要研究如何確保人工智能(AI)系統的安全性,重點是確保機器學習(ML)算法的安全性和公平性以及創建安全和實用的強化學習(RL)算法。

付費5元查看完整內容

主題: Introduction to Machine Learning

課程簡介: 機器學習是指通過經驗自動提高性能的計算機程序(例如,學習識別人臉、推薦音樂和電影以及驅動自主機器人的程序)。本課程從不同的角度介紹機器學習的理論和實用算法。主題包括貝葉斯網絡、決策樹學習、支持向量機、統計學習方法、無監督學習和強化學習。本課程涵蓋理論概念,例如歸納偏差、PAC學習框架、貝葉斯學習方法、基于邊際的學習和Occam的剃刀。編程作業包括各種學習算法的實際操作實驗。這門課程的目的是讓一個研究生在方法論,技術,數學和算法方面有一個徹底的基礎,目前需要的人誰做的機器學習的研究。

邀請嘉賓: Hal Daumé III,紐約市微軟研究院的研究員,是機器學習小組的一員;他也是馬里蘭大學的副教授。他主要從事自然語言處理和機器學習。

Matt Gormley,卡內基梅隆大學計算機科學學院機器學習部(ML)助教。

Roni Rosenfeld,卡內基梅隆大學計算機學院機器學習系教授兼主任,個人主頁://www.cs.cmu.edu/~roni/。等

付費5元查看完整內容

主題: Deep Reinforcement Learning with Applications in Transportation

簡介: 交通運輸,特別是移動乘車共享領域,存在許多傳統上具有挑戰性的動態決策問題,這些問題涉及研究文獻,而且很容易從人工智能(AI)中受益匪淺。一些核心示例包括在線乘車指令調度,該系統將可用的駕駛員與乘車共享平臺上的出行請求乘客實時匹配;路線規劃,用于規劃行程起點和終點之間的最佳路線;交通信號控制,可動態自適應地調整區域內的交通信號以實現低延遲。所有這些問題都有一個共同的特征,即在我們關注某個范圍內的一些累積目標時,要做出一系列決定。強化學習(RL)是一種機器學習范例,可訓練代理通過與之交互并獲取反饋信號來學習在環境中采取最佳行動(以所獲得的總累積獎勵衡量)。因此,它是用于解決順序決策問題的一類優化方法。得益于深度學習研究和計算能力的飛速發展,深度神經網絡和RL的集成為解決復雜的大規模學習問題在RL中產生了爆炸性的進展,近年來引起了巨大的興趣。深度學習和RL的結合甚至被認為是通往真正AI的道路。它具有巨大的潛力,以前所未有的方式解決運輸中的一些難題。

目錄簡介:

  • Part I: 介紹:機器學習與強化學習
  • Part II: 強化學習基礎
  • Part III:基于policy的強化學習
  • Part IV:強化學習框架
付費5元查看完整內容
北京阿比特科技有限公司