亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

主題: Safe and Fair Machine Learning

簡介:

在這個演講將討論一些我們的未來的工作在一個新的框架設計的機器學習算法,內容包括:1)使得算法的用戶更容易定義他們認為是不受歡迎的行為(例如,他們認為是不公平的,不安全,或者成本);2)提供了一個高信任度保證它不會產生一個解決方案,展示了用戶定義的不受歡迎的行為。

作者簡介:

Philip Thomas是馬薩諸塞大學安姆斯特分校信息與計算機科學學院助理教授,自主學習實驗室聯合主任。之前是卡內基·梅隆大學(CMU)的博士后,2015年,在馬薩諸塞州立大學阿默斯特分校(UMass Amherst)獲得了計算機科學博士學位。主要研究如何確保人工智能(AI)系統的安全性,重點是確保機器學習(ML)算法的安全性和公平性以及創建安全和實用的強化學習(RL)算法。

付費5元查看完整內容

相關內容

監督學習是指:利用一組已知類別的樣本調整分類器的參數,使其達到所要求性能的過程,也稱為監督訓練或有教師學習。 監督學習是從標記的訓練數據來推斷一個功能的機器學習任務。訓練數據包括一套訓練示例。在監督學習中,每個實例都是由一個輸入對象(通常為矢量)和一個期望的輸出值(也稱為監督信號)組成。監督學習算法是分析該訓練數據,并產生一個推斷的功能,其可以用于映射出新的實例。一個最佳的方案將允許該算法來正確地決定那些看不見的實例的類標簽。這就要求學習算法是在一種“合理”的方式從一種從訓練數據到看不見的情況下形成。

題目: Review of Mathematical frameworks for Fairness in Machine Learning

摘要:

從數學的角度回顧了過去幾年文獻中提出的主要公平定義和公平學習方法。根據基于獨立的方法,考慮如何構建公平的算法,以及與可能不公平的情況相比,算法性能下降的后果。這相當于公平的價格由標準統計均等或機會均等給出。給出了最優公平分類器和最優公平預測器(在線性回歸高斯模型下)在機會均等意義下的新結果。

付費5元查看完整內容

講座題目

公平意識機器學習:現實挑戰與經驗教訓:Fairness-Aware Machine Learning: Practical Challenges and Lessons Learned

講座簡介

來自不同學科的研究人員和從業人員強調了使用機器學習模型和數據驅動系統所帶來的倫理和法律挑戰,以及由于算法決策系統的偏見,這些系統可能歧視某些群體。本教程概述了過去幾年觀察到的算法偏差/歧視問題,以及在機器學習系統中為實現公平性而吸取的經驗教訓、關鍵法規和法律,以及技術的發展。在為不同的消費者和企業應用開發基于機器學習的模型和系統時,我們將鼓勵采用“按設計公平”的方法(而不是將算法偏差/公平考慮視為事后考慮)。然后,我們將通過展示來自不同技術公司的非專利案例研究,重點關注公平感知機器學習技術在實踐中的應用。最后,根據我們在Facebook、Google、LinkedIn和Microsoft等公司致力于機器學習公平性的經驗,我們將為數據挖掘/機器學習社區提出開放的問題和研究方向。

講座嘉賓

莎拉?伯德(Sarah Bird)領導著人工智能研究與Facebook產品交叉點的戰略項目。她目前的工作集中在人工智能倫理和發展規模負責任人工智能。她還一直致力于開放人工智能系統,是ONNX的共同創造者之一,ONNX是一個用于深度學習模型的開放標準,也是Pythorc1.0項目的領導者。在加入Facebook之前,她曾是微軟紐約研究中心的人工智能系統研究員和微軟數據集團的技術顧問。她是微軟決策服務(Decision Service)背后的研究人員之一,該服務是第一個公開發布的通用強化學習型云系統。她還與人共同創立了微軟人工智能倫理命運研究小組。她擁有加州大學伯克利分校(UC Berkeley)計算機科學博士學位,由戴夫·帕特森(Dave Patterson)、克里斯特·阿薩諾維奇(Krste Asanovic)和伯頓·史密斯(Burton Smith)擔任顧問。Sarah共同組織了多個相關主題的研討會(人工智能、NIPS 2018中的道德、社會和治理問題研討會;NIPS 2018中的機器學習系統研討會;NIPS 2017中的機器學習系統研討會;SOSP 2017中的人工智能系統研討會;NIPS 2016中的機器學習系統研討會),并在2018年伯克利隱私法論壇(Berkeley Privacy Law Forum)上發表了受邀的主題演講(“人工智能與機器學習:Facebook視角”)。

付費5元查看完整內容

教程題目:Adversarial Machine Learning

教程簡介

近年來,機器學習在廣泛的行業和應用領域得到了顯著的普及。機器學習技術的許多應用本質上是對抗性的,因為其目標是將“壞的”實例與“好的”實例區分開來。事實上,對抗性的使用遠遠超出了這個簡單的分類示例:對惡意軟件的法醫分析,包括集群、異常檢測,甚至自動駕駛汽車上的視覺系統,都可能受到攻擊。針對這些問題,出現了一個關于對抗性機器學習的新興文獻,它涵蓋了對機器學習算法漏洞的分析,以及產生更健壯學習的算法技術。

本教程將從網絡安全和機器學習研究領域中廣泛調查這些問題和技術。特別考慮了對抗性分類器規避(攻擊者改變行為以避免被檢測到)和訓練數據本身已損壞的問題。還討論了逃避攻擊和中毒攻擊,首先討論了分類器,然后討論了其他學習范例和相關的防御技術。然后,我們考慮用于攻擊和防御神經網絡的專門技術,特別是專注于深度學習技術及其對逆向構建實例的脆弱性。

組織者:

Bo Li是伊利諾伊大學香檳分校計算機科學系的助理教授。她的研究興趣在于對抗性的深度學習、安全性、隱私和博弈論。她開發并分析了可伸縮的健壯學習框架,用于在對抗規避攻擊的環境中學習算法。她還分析了物理世界中對抗學習算法的行為。她是賽門鐵克研究實驗室研究生獎學金的獲得者。她于2016年獲得范德比爾特大學博士學位。

Dawn Song是加州大學伯克利分校電氣工程和計算機科學系的教授。她的研究興趣在于深度學習和安全性。她研究了計算機系統和網絡中的各種安全和隱私問題,包括從軟件安全、網絡安全、數據庫安全、分布式系統安全、應用密碼學到機器學習和安全的交叉領域。她是獲得各種獎項,包括麥克阿瑟獎學金,古根海姆獎學金,NSF事業獎,斯隆研究獎學金,麻省理工學院技術評論TR-35獎,喬治Tallman Ladd研究獎,小川基金會研究獎,李嘉誠基金會女性在科學卓越系列講座獎,教師從IBM研究獎,谷歌和其他主要科技公司,從上會議最佳論文獎。她在加州大學伯克利分校獲得了博士學位。在加入加州大學伯克利分校之前,她曾于2002年至2007年在卡內基梅隆大學(Carnegie Mellon University)擔任助理教授。

Yevgeniy Vorobeychik是圣路易斯華盛頓大學計算機科學與工程學院的副教授。此前,他是桑迪亞國家實驗室的首席研究科學家。2008年至2010年,他是賓夕法尼亞大學計算機與信息科學系的博士后研究員。他獲得了密歇根大學的計算機科學與工程博士學位(2008)和碩士學位(2004),以及西北大學的計算機工程學士學位。他的工作重點是安全與隱私的博弈論建模,對抗機器學習,算法和行為博弈論和激勵設計,優化,基于代理的建模,復雜系統,網絡科學,流行病控制。Vorobeychik博士在2017年獲得了美國國家科學基金會職業成就獎,并受邀發表了ijcai16早期職業聚焦演講。他被提名為2008年ACM博士學位論文獎,并獲得了2008年IFAAMAS杰出論文獎的榮譽獎。

教程ppt下載鏈接: 鏈接://pan.baidu.com/s/1YDWJ2lFhiLRtNDpH4YyZLg 提取碼:ccra

付費5元查看完整內容

近幾年來,隨著機器學習的普及,機器學習系統的公平性問題引起了實際的道德、社會等問題。圖書《公平性與機器學習—局限與機遇》以公平性為核心問題來看待機器學習,提供了對當前機器學習實踐以及為實現公平而提出的技術修復方案的批判性思考。

社會、道德和機器學習自身等角度,介紹了目前機器學習中的公平性問題,如由于數據導致的偏置(bias)等問題。

圖書《Fairness and Machine Learning - Limitations and Opportunities》(《公平性與機器學習—局限與機遇》)以公平性為核心問題來看待機器學習,強調機器學習在道德方面的挑戰。作者希望該書盡可能地被廣泛閱讀,但在寫作時依然堅持著技術的嚴謹性。該書并沒有提供包羅萬象的對公平性完整的正式定義,也沒有提出一個快速解決社會對自動決策擔憂的修復方案。

解決機器學習公平性問題需要認真理解機器學習工具的局限性。該書提供了對當前機器學習實踐以及為實現公平而提出的技術修復方案的批判性思考。雖然這些問題都沒有簡單的答案,作者希望這本書能夠幫助讀者更深層次地理解如何構建負責任的機器學習系統。

付費5元查看完整內容

主題: Scalable and Robust Multi-Agent Reinforcement Learning

簡介: 本演講將涵蓋我們最近的多智能體強化學習方法,這些方法用于協調溝通有限或沒有交流的智能體團隊。這些方法將包括深入的多主體增強學習方法和學習異步策略的分層方法,這些方法實際上允許針對不同主體在不同時間進行學習和/或執行。這些方法可擴展到較大的空間和視野,并且對于其他代理學習引起的非平穩性具有魯棒性。將顯示來自基準域和多機器人域的結果。

作者簡介: Christopher Amato,美國東北大學教授,研究興趣包括人工智能,機器人技術,多智能體和多機器人系統,不確定性下的推理,博弈論和機器學習。

付費5元查看完整內容

主題: Learning for policy improvement

摘要: 強化學習在經驗易獲得的領域取得了許多成功,如電子游戲或棋盤游戲。這類區域的RL算法通常基于梯度下降:它們以較小的學習率進行許多噪聲更新。相反,我們研究每次更新花費更多計算的算法,試圖減少噪聲并進行更大的更新;當經驗比計算時間更昂貴時,這樣的算法是合適的。特別地,我們看幾種基于近似策略迭代的方法。

作者簡介: Geoff Gordon博士是微軟研究蒙特勒實驗室的研究主任,也是卡內基梅隆大學機器學習系的教授。他還擔任過機械學習系的臨時系主任和教育副系主任。戈登博士的研究集中在能夠進行長期思考的人工智能系統上,比如提前推理以解決問題、計劃一系列行動或從觀察中推斷出看不見的特性。特別是,他著眼于如何將機器學習與這些長期思考任務結合起來。1991年,戈登博士在康奈爾大學獲得計算機科學學士學位,1999年在卡內基梅隆大學獲得計算機科學博士學位。他的研究興趣包括人工智能、統計機器學習、教育數據、博弈論、多機器人系統,以及概率、對抗和一般和領域的規劃。他之前的任命包括斯坦福大學計算機科學系的客座教授和圣地亞哥燃燒玻璃技術的首席科學家。

付費5元查看完整內容

題目: Machine Learning Meets Big Spatial Data

簡介: 生成數據量的激增推動了可伸縮的機器學習解決方案的興起,從而可以有效地分析此類數據并從中提取有用的見解。同時,近年來,空間數據已經變得無處不在,例如GPS數據。大空間數據的應用涉及廣泛的領域,包括跟蹤傳染病,模擬氣候變化,吸毒成癮等等。因此,通過提供對現有機器學習解決方案的空間擴展或從頭開始構建新的解決方案,人們付出了巨大的努力來支持這些應用程序內部的有效分析和智能。在這個90分鐘的教程中,我們全面回顧了機器學習和大空間數據交匯處的最新技術。我們涵蓋了機器學習三個主要領域中的現有研究工作和挑戰,即數據分析,深度學習和統計推斷,以及兩個高級空間機器學習任務,即空間特征提取和空間采樣。我們還強調了該領域未來研究中存在的開放性問題和挑戰。

嘉賓介紹: Ibrahim Sabek是明尼蘇達大學計算機科學與工程系的博士候選人。 他獲得了理學碩士學位。 他于2017年在同一部門獲得博士學位。他的研究興趣在于大空間數據管理,空間計算和可伸縮機器學習系統之間的交叉領域。 易卜拉欣已獲得ACM SIGSPATIAL 2018最佳論文獎的提名,并獲得了ACM SIGMOD學生研究競賽(SRC)2017決賽階段的資格。在博士期間,他與NEC Labs America和Microsoft Research(MSR)合作 )。 易卜拉欣在ACM TSAS,IEEE ICDE,ACM SIGSPATIAL,IEEE TMC等頂級研究機構發表了許多論文,并在VLDB和ACM SIGMOD上展示了他的工作。

Mohamed F.Mokbel是卡塔爾計算研究所的首席科學家,也是明尼蘇達大學的教授。 他目前的研究興趣集中于大空間數據和應用程序的系統和機器學習技術。 他的研究工作已獲得VLDB十年最佳論文獎,四個會議最佳論文獎和NSF職業獎。 除了在其他社區的一線場所(包括IEEE ICDM和ACM CCS)的教程之外,穆罕默德還在VLDB / SIGMOD / ICDE / EDBT會議上提供了六篇教程。 這些教程都不會與本教程建議重疊。 穆罕默德(Mohamed)是ACM SIGPATIAL的當選主席,目前是分布式和并行數據庫期刊的主編,并且是ACM Books,ACM TODS,VLDB Journal,ACM TSAS和GoeInformatica期刊的編輯委員會成員。

付費5元查看完整內容

主題: Introduction to Machine Learning

課程簡介: 機器學習是指通過經驗自動提高性能的計算機程序(例如,學習識別人臉、推薦音樂和電影以及驅動自主機器人的程序)。本課程從不同的角度介紹機器學習的理論和實用算法。主題包括貝葉斯網絡、決策樹學習、支持向量機、統計學習方法、無監督學習和強化學習。本課程涵蓋理論概念,例如歸納偏差、PAC學習框架、貝葉斯學習方法、基于邊際的學習和Occam的剃刀。編程作業包括各種學習算法的實際操作實驗。這門課程的目的是讓一個研究生在方法論,技術,數學和算法方面有一個徹底的基礎,目前需要的人誰做的機器學習的研究。

邀請嘉賓: Hal Daumé III,紐約市微軟研究院的研究員,是機器學習小組的一員;他也是馬里蘭大學的副教授。他主要從事自然語言處理和機器學習。

Matt Gormley,卡內基梅隆大學計算機科學學院機器學習部(ML)助教。

Roni Rosenfeld,卡內基梅隆大學計算機學院機器學習系教授兼主任,個人主頁://www.cs.cmu.edu/~roni/。等

付費5元查看完整內容

題目: Safe Machine Learning

簡介:

隨著我們將ML應用到越來越多的現實任務中,我們正在走向一個ML將在未來社會中扮演越來越重要角色。因此,解決安全問題正成為一個日益緊迫的問題。一般來說,我們可以將當前的安全研究分為三個領域:規范、健壯性和保證。規范關注于調查和開發技術,以減輕由于目標僅僅是期望的替代者而可能出現的系統不期望的行為。這種情況可能會發生,例如,當對包含歷史偏差的數據集進行訓練時,或者在真實環境中嘗試度量增強學習智能體的進度時魯棒性處理在推斷新數據和響應敵對輸入時處理系統故障。

Assurance涉及到開發方法,使我們能夠理解本質上不透明和黑箱的系統,并在操作期間控制它們。本教程將概述這三個領域,特別關注規范,更具體地說,關注增強學習智能體的公平性和一致性。其目的是激發從事不同安全領域的研究人員之間的討論。

邀請嘉賓:

Silvia Chiappa是DeepMind機器學習方面的研究科學家。她擁有數學文憑和機器學習博士學位。在加入DeepMind之前,Silvia Chiappa曾在馬克斯-普朗克智能系統研究所的經驗推理部門、微軟劍橋研究院的機器智能與感知小組以及劍橋大學的統計實驗室工作。她的研究興趣是基于貝葉斯和因果推理,圖形模型,變分推理,時間序列模型,ML公平性和偏差。

Jan Leike是DeepMind的高級研究科學家,他在那里研究智能體對齊問題。他擁有澳大利亞國立大學的計算機科學博士學位,在那里他致力于理論強化學習。在加入DeepMind之前,他是牛津大學的博士后研究員。Jan的研究興趣是人工智能安全、強化學習和技術人工智能治理。

付費5元查看完整內容

主題: Exploration-Exploitation in Reinforcement Learning

摘要: 強化學習(RL)研究的是當環境(即動力和反饋)最初未知,但可以通過直接交互學習時的順序決策問題。學習問題的一個關鍵步驟是恰當地平衡對環境的探索,以便收集有用的信息,并利用所學的政策來收集盡可能多的回報。最近的理論結果證明,基于樂觀主義或后驗抽樣的方法(如UCRL、PSRL等)成功地解決了勘探開發難題,并且可能需要比簡單(但非常流行)的技術(如epsilon貪心)小指數的樣本來收斂到接近最優的策略。樂觀主義和后驗抽樣原則直接受到多臂bandit文獻的啟發,RL提出了具體的挑戰(例如,“局部”不確定性如何通過Markov動力學傳播),這需要更復雜的理論分析。本教程的重點是提供勘探開發困境的正式定義,討論其挑戰,并回顧不同優化標準(特別是有限時間和平均回報問題)的主要算法原則及其理論保證。在整個教程中,我們將討論開放的問題和未來可能的研究方向。

邀請嘉賓: Ronan Fruit,Inria SequeL團隊的博士生。他目前是蒙特利爾Facebook人工智能研究(FAIR)的研究實習生。他的研究集中在理論上理解強化學習中的探索性開發困境,以及設計具有可證明的良好后悔保證的算法。

Alessandro Lazaric,自2017年以來一直是Facebook AI Research(FAIR)實驗室的研究科學家,他之前是SequeL團隊Inria的研究員。他的主要研究主題是強化學習,在RL的理論和算法方面都做出了巨大貢獻。在過去的十年中,他研究了多臂土匪和強化學習框架中的勘探與開發困境,特別是在遺憾最小化,最佳武器識別,純粹探索和分層RL等問題上。

Matteo Pirotta,巴黎Facebook人工智能研究(FAIR)實驗室的研究科學家。之前,他是SequeL團隊的Inria博士后。2016年,他在米蘭理工大學(意大利)獲得計算機科學博士學位。他在強化學習方面的博士論文獲得了Dimitris N.Chorafas基金會獎和EurAI杰出論文獎。他的主要研究興趣是強化學習。近幾年來,他主要關注的是RL的勘探開發困境。

付費5元查看完整內容
北京阿比特科技有限公司