殺傷鏈是一個尋找、固定、跟蹤、瞄準和攻擊目標的過程,然后確定打擊結果。大規模地完成精確打擊的殺傷鏈是在武裝沖突中獲勝的基礎。殺傷鏈是一個系統的系統,由傳感器、打擊平臺、它們提供的武器以及它們用來分享信息的網絡組成。
發展越來越有效的殺傷鏈和擊敗它們的對策可以說是一種長期的競爭。中國已經開發了動能和非動能反制措施,以大規模降低或擊敗美軍殺傷鏈的每一步。
美國空軍必須不斷發展其殺傷鏈,以優化其規模、范圍、速度和生存能力,從而在太平洋重大沖突中贏得與中國的殺傷鏈競爭。
為了在近期內保持其殺傷鏈的優勢,空軍必須增加其F-35和B-21飛機的能力,這些飛機能夠在通信退化或被拒絕的環境中獨立關閉殺傷鏈。
空軍應將由分解的系統家族組成的殺傷鏈納入其長期的部隊設計中,這些系統具有更強的復原力,難以被擊敗。為了超越中國的反制措施,空軍的空戰管理人員必須有工具和權力來定義和構建使用這些分解系統的實時殺傷鏈。
"殺傷鏈 "描述了軍隊用來攻擊戰斗空間中目標的過程。殺傷鏈可以被分解成具體的步驟--發現、固定、追蹤、瞄準、交戰和評估--這些步驟使計劃者能夠為作戰行動建立和分配部隊。長期以來,美軍一直依靠其快速關閉殺傷鏈的卓越能力來對付對手。這種優勢現在正處于危險之中。中國已經開發出反措施來阻礙或破壞美國的殺傷鏈,這可能導致戰斗失敗,對美國及其盟友和合作伙伴的安全產生破壞性的長期后果。
為了克服這些挑戰,空軍必須提高其殺傷鏈的規模、范圍、速度和生存能力。在實踐中,空軍必須為這些屬性中的每一項確定具體的殺傷鏈能力目標:
在近期到中期,第五代和第六代作戰飛機對于確保殺傷鏈的主導地位至關重要,因為它們是綜合的 "傳感器射擊者 "節點,可以獨立完成殺傷鏈,并促進在有爭議的戰區的局部地區完成其他任務。這些飛機將繼續為空戰管理人員提供必要的工具,以便在未來迅速組成有彈性的殺傷鏈,因為美國空軍正在向系統家族的方法遷移。從長遠來看,空軍的先進作戰管理系統(ABMS)系統必須支持高彈性、可互操作的殺傷鏈,并擁有大量的分布式節點,讓同行對手更難打敗。
陸軍一直認為有必要將其決策建立在行之有效的作戰研究方法的基礎上,這些方法旨在為指揮部提供決策過程中的替代方案,從優化戰役到戰略評估和成本經濟學。戰斗傷亡是軍事行動研究的一個主題,它應用數學模型來量化勝利與失敗的概率。特別是,已經提出了不同的方法來模擬戰斗過程。然而,這些方法都不能為高層指揮提供足夠的決策支持。為了克服這種情況,本文提出了一個顛覆性的框架,它克服了傳統模型的大多數局限性,支持最高指揮層的決策:戰略層和戰役層,將確定戰斗力水平的衰減(通常稱為減員(損失))作為評估決策的機制。該框架采用自適應和預測控制工程方法,根據戰斗變化進行動態調整,同時考慮到對手的能力和演習以及產生的效果。此外,它還包括一個學習機制,以改進高不確定性條件下的決策。
蘭徹斯特(Lanchester)在戰斗動力學建模方面的開創性工作[1]啟發了對戰斗抽象發展的重要研究,以支持不確定條件下的軍事決策,追求如何在戰斗中取得優勢。長期以來,蘭徹斯特的原始模型及其不斷演化的擴展模型[2]一直主導著常規陸軍力量平衡的動態評估,被主要機構(如美國陸軍、國防部長辦公室等)用于評估各種問題(如評估戰區平衡[3, 4]、指導武器裝備選擇決策[5]等)。
然而,值得注意的是,蘭徹斯特模型有其重要的局限性,例如,它們只進行了過于簡單的單面處理,而沒有考慮對手的能力,并且不能用于分類交戰[6]。
另一個需要考慮的問題是決策程序所支持的抽象層次。軍事理論通常將指揮層次分為以下三個等級:
1.戰略層次從最抽象的角度研究沖突,從整體上考慮戰爭的最終結果。它涉及軍事力量的整體規劃、資源分配和組織。此外,它還確定并支持國家政策。
2.戰役層面涉及戰役和主要行動的設計、安排和執行。
3.戰術層面在戰場上實施戰役行動。
有趣的是,大多數決策方法,包括非蘭徹斯特的決策方法,都集中在戰術指揮層面[6,7]。換句話說,現有決策系統對作戰和戰略指揮層面的支持不足。
本文提出了一個創新框架,它克服了蘭徹斯特模型的大部分局限性,并支持最高指揮層的決策:戰略層和作戰層。我們的框架應用了自適應和預測控制工程方法,以動態適應戰斗中的變化,同時考慮到對手的能力和演習以及產生的效果。此外,它還包括一個學習機制,以改進高不確定性條件下的決策。
最后,本文報告了我們的框架在克里特島戰役、硫磺島戰役和庫爾斯克戰役中的實證評估。這本身就是一個相關的貢獻,因為大多數關于軍事決策的文獻都缺乏足夠的實驗驗證。特別是,大多數驗證都是按照非現實的假設[8]或依賴于簡單化的編造例子[9]的數學程序進行的。
本文的其余部分按以下順序組織。第2節描述了我們的框架工作,第3節報告了其經驗驗證。最后,第4節提供了一些結論性意見并討論了未來的挑戰。
在經典的蘭徹斯特模型之外,還有兩種主要的戰爭分析機制:(i)隨機模型和(ii)確定性模型,其中一 些是傳統的蘭徹斯特模型[10,11]。目前,智能代理等其他方法正獲得巨大發展[12,13]。這些新模型的目的是擴展能力[6,9]和減少以前方法的缺點[14,15]。然而,它們無法成為高層決策的適當基準。
本框架克服了蘭徹斯特原著的局限性,[16, 6]中對這些局限性進行了深入探討,將戰斗視為一個因果過程,該過程根據蘭徹斯特方程的動態變化和外部行動而演變。為此,我們的方法應用了[17]中介紹的自適應和預測控制理論,并結合了不確定性建模技術。我們的方法架構由一系列模塊組成,這些模塊協同工作,確保按照軍事理論協調一致地進行決策。特別是,一組順序階段觸發了適用戰略的定義、不同可能行動方案(COA)的評估和選擇,以及模型對行動演變的適應。
圖中x(t)和y(t)分別表示每一瞬間x部隊和y部隊的戰斗員數量,x(t+1)e和y(t+1)e表示下一瞬間的估計戰斗員數量。
圖1. 我們框架的架構設計。每個模塊都代表了軍事思維的機制,即:(i)評估戰斗事件,以確定應遵循的戰略并選擇完成任務的COA;(ii)確定執行任務所需的資源;最后(iii)適應結果。
實施需要邏輯過程能力,并應模擬從預測到行動的決策過程。在此背景下,我們制定并測試了新的框架(如果其在實際對抗中的應用在性能和一致性方面符合預期,則該框架將是穩健的)。
圖2 新框架中通過順序模型觸發選擇特定COA的主要因素。
圖2顯示了迭代觸發特定COA選擇的基本要素。預測模塊產生預測演變。自適應模塊根據輸出信號(實際情況)與預測信號之間的差異調整組成模塊的參數,并根據最后執行的COA進行適當更新。專家模塊通過調度模塊試圖改變預測模塊所定義的趨勢,從而根據戰斗需要改變行動路線。值得注意的是,設定點與完成任務有關,行動發展時間是操作時間,在最好的情況下,可用的沖突信息數據庫通常以天為單位表示。
加固網絡物理資產既重要又耗費人力。最近,機器學習(ML)和強化學習(RL)在自動化任務方面顯示出巨大的前景,否則這些任務將需要大量的人類洞察力/智能。在RL的情況下,智能體根據其觀察結果采取行動(進攻/紅方智能體或防御/藍方智能體)。這些行動導致狀態發生變化,智能體獲得獎勵(包括正獎勵和負獎勵)。這種方法需要一個訓練環境,在這個環境中,智能體通過試錯學習有希望的行動方案。在這項工作中,我們將微軟的CyberBattleSim作為我們的訓練環境,并增加了訓練藍方智能體的功能。報告描述了我們對CBS的擴展,并介紹了單獨或與紅方智能體聯合訓練藍方智能體時獲得的結果。我們的結果表明,訓練藍方智能體確實可以增強對攻擊的防御能力。特別是,將藍方智能體與紅方智能體聯合訓練可提高藍方智能體挫敗復雜紅方智能體的能力。
由于網絡威脅不斷演變,任何網絡安全解決方案都無法保證提供全面保護。因此,我們希望通過機器學習來幫助創建可擴展的解決方案。在強化學習的幫助下,我們可以開發出能夠分析和學習攻擊的解決方案,從而在未來防范類似威脅,而不是像商業網絡安全解決方案那樣簡單地識別威脅。
我們的項目名為MARLon,探索將多智能體強化學習(MARL)添加到名為CyberBattleSim的模擬抽象網絡環境中。這種多智能體強化學習將攻擊智能體和可學習防御智能體的擴展版本結合在一起進行訓練。
要在CyberBattleSim中添加MARL,有幾個先決條件。第一個先決條件是了解CyberBattleSim環境是如何運行的,并有能力模擬智能體在做什么。為了實現這一點,該項目的第一個目標是實現一個用戶界面,讓用戶看到環境在一個事件中的樣子。
第二個先決條件是為CyberBattleSim添加MARL算法。目前CyberBattleSim的表Q學習和深Q學習實現在結構上無法處理這個問題。這是因為CyberBattleSim實現的表Q學習和深Q學習不符合適當的OpenAI Gym標準。因此,需要添加新的強化學習算法。
當前的防御者沒有學習能力,這意味著要啟用多智能體學習,防御者需要添加以下功能:添加使用所有可用行動的能力,將這些行動收集到行動空間,實現新的觀察空間,并實現獎勵函數。
最后,為了增加MARL,新創建的攻擊者算法和新的可學習防御者必須在同一環境中組合。這樣,兩個智能體就可以在相互競爭的同時進行訓練。
風險評估是復雜的,而且往往是有爭議的。它來自于危險呈現,它的特點是可能發生的不理想事件及其結果的不確定性。很少有像核戰爭和核恐怖主義這樣不受歡迎的結果。幾十年來,關于可能影響核戰爭和核恐怖主義風險的特定情況、政策和武器,已經寫了很多。這些問題的性質和用于評估的風險分析方法隨著時間的推移有了很大的變化。
認識到核戰爭和核恐怖主義帶來的風險,2020財年國防授權法案指示美國國防部與美國國家科學、工程和醫學研究院簽訂合同,進行一項研究,探討風險分析方法的性質及其在評估核戰爭和核恐怖主義風險中的應用。
本報告是該研究的第一階段,它討論了風險,探索了風險評估文獻,強調了風險評估方法的優點和缺點,并討論了一些公開的、支撐美國安全戰略的假設,這些都是在核戰爭和核恐怖主義的背景下進行的。研究的第二階段將擴大重點,包括分析風險分析中的假設和方法在美國安全戰略中可能發揮的作用。第二階段的研究將產生一份保密報告和一份非保密的摘要。表S-1詳細介紹了委員會的工作。
值得注意的是,該研究在其兩個階段的工作中都不包括進行風險分析。本報告也不會涉及當前的地緣政治事件,如俄羅斯2022年對烏克蘭的入侵,盡管這些事件說明了在國際沖突中了解核風險的重要性。
美國政府和國際社會已投入大量資源和時間,試圖了解和減少核戰爭和核恐怖主義的風險。美國戰略司令部的現任指揮官以及核裁軍運動者都斷言,核戰爭的風險仍然非常真實。對于核和放射性恐怖主義的風險,也有類似的說法。此外,隨著新技術和新對手的出現,這些風險正變得更加復雜。
為了確定與核恐怖主義和核戰爭有關的威脅和后果,分析人員在對核戰爭或核恐怖主義進行風險分析時將面臨許多挑戰。委員會確定了可能導致核戰爭的七類情況:預防性的、先發制人的、升級性的、催化性的、意外的、未經授權的和誤報的。委員會還確定了三類可能導致核恐怖主義的情況:簡易核裝置、放射性散布裝置或放射性暴露裝置,以及對核設施的破壞。這些類別的情景并不是相互排斥的,因為各類別之間也可能發生其他互動,例如意外和誤報情景之間。這些依賴性必須反映在任何風險評估中。委員會確定的情景類別在此作為例子,并不是全部;然而,分析人員必須包括他們能夠設想到的所有情景類別,以便風險結果不會被低估。對使用核武器造成的直接物理后果的估計,依賴于基于核物理學、過去的經驗、核試驗數據和其他可用信息的數學模型。關于核武器的一些物理影響(如對傷害和死亡的直接估計),人們已經知道了很多,盡管有些影響(如火災、現代城市環境的破壞、電磁脈沖影響和氣候影響,如核冬天)還不是很清楚或難以量化(弗蘭克爾等人,2015)。評估使用核武器的社會、心理和長期影響的方法在很大程度上依賴于人類應對其他災難性事件的行為的代用數據。使用這些方法的分析通常包含巨大的不確定性和強烈的相互依賴性。
委員會研究了與核戰爭和核恐怖主義有關的風險評估和分析的歷史,包括探討歷史上為了解核戰爭和核恐怖主義的風險所做的嘗試,以及在評估核戰爭和核恐怖主義的總體風險時所涉及的重要不確定性來源。來自歷史文獻的關鍵見解反映在本報告中,但一個明顯的差距是缺乏對核武器的物理影響不太了解的知識,以及對使用核武器的心理、社會和政治后果的評估和估計。
在做出各種決定時,風險信息可以成為決策者的重要投入,包括確定優先事項、制定新的政策或程序,以及分配資源或時間。在自然和工程系統中,特別是當統計數據可用且可靠時,基于事件樣本頻率的風險分析可以很容易產生對未來風險的估計。然而,正如美國國家科學院以前的研究報告所指出的,將傳統的風險方法用于核戰爭和核恐怖主義--直接證據有限;背景的不確定性很大;以及智能的、適應性強的對手(NASEM 2016;國家研究委員會2008,2011)--是一個重大挑戰。在許多假設中,對這種情況下的風險評估必須考慮到行為者的意圖和利益、他們的能力、他們可用的信息和情報,以及他們的適應性反應--所有這些都可能難以評估。
委員會認為,風險指的是四個關鍵問題:
1.會發生什么?具體而言,什么會出錯?
2.這些事件發生的可能性有多大?
3.如果這些事件發生,有什么潛在的后果?
4.這些事件可能發生的時間范圍是什么?
風險分析可以是一個強大的工具,用于澄清假設;對復雜的、相互關聯的因素進行結構化和系統化的思考;描述不確定性;并確定可能需要哪些進一步的證據或信息來為將要作出的決定提供信息。然而,使用風險分析方法來評估核戰爭和核恐怖主義的總體風險是困難的,原因有幾個。
除了本報告正文中詳述的具體結論(并在第8章中列出)外,委員會還得出了三個總體結論。
1.過去核戰爭和核恐怖主義的例子很少。因此,幾乎沒有什么直接的證據可以用來對兩者的概率進行經驗性的估計。
分析師們試圖通過應用不同的方法和使用多種信息來源來描述由此產生的不確定性,以補充這個有限的證據體系。同樣地,歷史記錄中包含了有限的核或放射性恐怖主義企圖的例子,對核恐怖主義風險的分析也常常借鑒這些例子。有限的直接證據所帶來的不確定性,由于人類的意圖、觀念和動機所發揮的重要作用而變得更加復雜。鑒于所涉及的重大不確定性和決策者可能采取的不同風險態度,整體風險分析的政策相關性并不明確。
雖然人們對核武器和放射性武器的物理后果有很多了解,但對其間接后果的了解并不充分。這包括社會、經濟、政治、基礎設施、氣候和心理方面的影響,這些影響受到這些武器的直接物理影響。
這些因素之間的動態相互作用是復雜的,對它們的分析方法也不太發達。關于這些影響的直接證據很少,這對評估國家或恐怖分子使用核武器的后果是一個挑戰。即使是廣島和長崎的轟炸也只提供了關于涉及現代核武器的沖突的可能性和后果的有限信息。
從專家那里獲得的信息往往是評估與核戰爭和核恐怖主義有關的一些風險的全部資料。分析師和決策者需要意識到這些信息的來源,意識到專家可能在分析中引入的偏見和限制,以及這些信息對風險結果的影響。盡管核戰爭和核恐怖主義的某些方面可能對充分應用這些方法構成挑戰,但可以從其他風險分析學科中借鑒專家征詢的最佳做法。
2.可能導致核戰爭和核恐怖主義的情況很多,涉及許多相互依賴的因素,對其風險的評估往往取決于許多專家和行為者的能力、價值觀、看法和意圖。
核戰爭和核恐怖主義的風險部分取決于威懾的有效性,它反映了所有相關方的能力、信念、動機、意圖、預期戰略和信息。在危機的陣痛中,信息的不可得性和不準確性可能會增加侵略者和防御者所面臨的風險。核戰爭和核恐怖主義情景的風險因有關國家或行為者的理由或發起原因、使用的武器類型和數量以及目標等許多其他高度相互依賴的因素而有所不同。由于存在大量的情景可能性,它們通常被歸類,并作為具有一些關鍵共同因素的情景類別進行分析。
評估核戰爭和核恐怖主義的總體風險涉及不同情景的可能性和后果的巨大不確定性。對這些不確定性的評估和溝通對管理這些風險所必需的政策決定至關重要。然而,風險分析的價值并不僅僅在于評估整體風險。風險分析可以為許多與核戰爭和核恐怖主義有關的較小規模的問題提供寶貴的意見。許多分析旨在確定各類情況的相對或比較風險(例如,核設施被破壞的風險與放射性暴露裝置的風險相比較;或確定與不同投資或設計變化相關的風險降低),或解決決策者面臨的具體問題,如:: 一個特定國家的核儲備的可靠性是什么?汽車邊境口岸的某一型號的探測器檢測到特定水平的輻射的概率是多少?哪些核設施應該被檢查,多久檢查一次?對于涉及重大不確定性和需要做出資源限制的決策的風險管理問題,評估與不同選項相關的風險變化有助于為決策提供信息。
分析師在風險分析中不可避免地要進行假設,包括對風險問題的定義和框架的假設;哪些模型可以有效使用;數據的可靠性;以及對手的能力、意圖和潛在行動。戰略假設可以幫助界定風險問題的界限。一些戰略假設涉及風險的性質或程度,風險驅動因素的影響,政策或行動是否增加或減少風險,美國面臨的威脅的性質和種類,以及最可能發生的情況。戰略假設還包括美國境外的核戰爭風險。
3.不同的風險評估方法或多或少適合于不同的情況和目標。
委員會確定了以下與分析這些風險有關的方法,并審議了這些方法的適用性和局限性:
正如風險分析中的結構、參數和假設可能會給風險分析的結果帶來色彩一樣,風險信息的評估、框架或呈現方式對該信息在決策中的理解和使用有很大影響。當產生風險分析結果的方法和假設是明確的,過程是可復制的,對分析過程的信任是建立的,結果是針對決策者所面臨的真正的問題或決定時,風險分析結果是最寶貴的。
風險信息可能是對決策的一種有價值的輸入,但它不會也不可能支配決策,因為決策還取決于偏好和風險態度。除了風險之外,還需要考慮其他因素,如法律、政治或預算的后果和限制。新興技術,如新的武器系統和人工智能的進步,正在迅速改變風險和威懾的格局。美國的核態勢隨著時間的推移而演變,考慮到了新的威脅、涉及不同美國對手的發展威懾戰略、技術進步、核軍備條約和不斷變化的地緣政治環境。美國對核恐怖主義風險的評估也同樣隨著時間的推移而變化,考慮到了新的威脅和新興技術。
隨著有關核戰爭和核恐怖主義決策的背景繼續演變,風險評估將繼續成為分析家和決策者的一個寶貴工具。
威脅建模可以幫助防御者確定潛在的攻擊者能力和資源,從而更好地保護關鍵網絡和系統免受復雜的網絡攻擊。防御者感興趣的對手資料的一個方面是進行網絡攻擊的手段,包括惡意軟件能力和網絡基礎設施。即使大多數防御者收集了網絡事件的數據,但提取有關對手的知識來建立和改進威脅模型可能是很費時的。本論文將機器學習方法應用于歷史網絡事件數據,以實現對手網絡基礎設施的自動威脅建模。利用基于真實世界網絡事件的攻擊者指揮和控制服務器的網絡數據,可以創建特定的對手數據集,并利用互聯網掃描搜索引擎的能力來豐富數據集。將這些數據集與具有類似端口服務映射的良性或非關聯主機的數據混合,可以建立一個可解釋的攻擊者的機器學習模型。此外,根據機器學習模型的預測創建互聯網掃描搜索引擎查詢,可以實現對手基礎設施的自動化威脅建模。對抗者網絡基礎設施的自動威脅建模允許在互聯網上搜索未知或新出現的威脅行為者網絡基礎設施。
隨著技術的飛速發展和威脅環境變得更加復雜,今天的海軍行動經常面臨著具有挑戰性的決策空間。人工智能(AI)的進步為解決海軍行動中日益復雜的問題提供了潛在的解決方案。未來的人工智能系統提供了潛在的意義深遠的好處--提高對態勢的認識,增加對威脅和對手能力和意圖的了解,識別和評估可能的戰術行動方案,并提供方法來預測行動方案決定的結果和影響。人工智能系統將在支持未來海軍作戰人員和保持作戰和戰術任務優勢方面發揮關鍵作用。
人工智能系統為海戰提供了優勢,但前提是這些系統的設計和實施方式能夠支持有效的作戰人員-機器團隊,改善作戰情況的不確定性,并提出改善作戰和戰術結果的建議。實施人工智能系統,以滿足海軍應用的這些苛刻需求,給工程設計界帶來了挑戰。本文確定了四個挑戰,并描述了它們如何影響戰爭行動、工程界和海軍任務。本文提供了通過研究和工程倡議來解決這些挑戰的解決思路。
人工智能是一個包括許多不同方法的領域,目的是創造具有智能的機器(Mitchell 2019)。自動化系統的運作只需要最小的人類輸入,并經常根據命令和規則執行重復性任務。人工智能系統是自動化機器,執行模仿人類智能的功能。它們將從過去的經驗中學習到的新信息融入其中,以做出決定并得出結論。
如表1所述,人工智能系統有兩種主要類型。第一種類型是明確編程的專家系統。Allen(2020,3)將專家系統描述為手工制作的知識系統,使用傳統的、基于規則的軟件,將人類專家的主題知識編入一長串編程的 "如果給定x輸入,則提供y輸出"的規則。這些系統使用傳統的編程語言。第二種類型是ML系統,從大型數據集中進行訓練。ML系統自動學習并從經驗中改進,而不需要明確地進行編程。一旦ML系統被 "訓練",它們就被用于操作,以產生新的操作數據輸入的結果。
表1. 兩類人工智能系統
人工智能系統--包括專家系統和學習系統--為海軍提供了巨大的潛力,在大多數任務領域有不同的應用。這些智能系統可以擴展海軍的能力,以了解復雜和不確定的情況,制定和權衡選擇,預測行動的成功,并評估后果。它們提供了支持戰略、作戰計劃和戰術領域的潛力。
本文確定了工程設計界必須解決的四個挑戰,以便為未來海戰任務實施人工智能系統。表2強調了這四個挑戰領域。這些挑戰包括:(1)復雜的海戰應用領域;(2)需要收集大量與作戰相關的數據來開發、訓練和驗證人工智能系統;(3)人工智能系統工程的一些新挑戰;(4)存在對手的人工智能進展,不斷變化和發展的威脅,以及不斷變化的人工智能系統的網絡弱點。本文側重于海軍戰爭的四個挑戰領域,但認識到這些挑戰可以很容易地被概括為整個軍隊在未來人工智能系統可能應用的所有戰爭領域中廣泛存在的挑戰。
表2. 為海軍實施人工智能系統的四個挑戰領域
人工智能正被視為一種能力,可應用于廣泛的應用,如批準貸款、廣告、確定醫療、規劃航運路線、實現自動駕駛汽車和支持戰爭決策。每個不同的應用領域都提出了一系列的挑戰,人工智能系統必須與之抗衡,才能成為一種增加價值的可行能力。表3比較了一組領域應用的例子,從潛在的人工智能系統解決方案的角度說明了挑戰的領域。該表在最上面一行列出了一組10個因素,這些因素對一個特定的應用程序產生了復雜性。根據每個因素對作為實施人工智能的領域的整體復雜性的貢獻程度,對六個應用領域的特征進行了定性評估。顏色代表低貢獻(綠色)、中貢獻(黃色)和高貢獻(紅色)。
表3中最上面一行顯示的特征包括: (1)認識上的不確定性水平(情況知識的不確定性程度),(2)情況的動態性,(3)決策時間表(可用于決策的時間量),(4)人類用戶和人工智能系統之間的互動所涉及的錯綜復雜的問題、 (5)資源的復雜性(數量、類型、它們之間的距離以及它們的動態程度),(6)是否涉及多個任務,(7)所需訓練數據集的復雜性(大小、異質性、有效性、脆弱性、可獲得性等 8)對手的存在(競爭者、黑客或徹頭徹尾的敵人),(9)可允許的錯誤幅度(多少決策錯誤是可以接受的),以及(10)決策后果的嚴重程度。該表的定性比較旨在提供一個高層次的相對意義,即基于一組樣本的貢獻因素,不同應用領域的不同復雜程度。
表3. 影響應用復雜性的因素比較
對于所有的應用領域來說,人工智能系統的工程都是具有挑戰性的。人工智能系統在本質上依賴于具有領域代表性的數據。獲得具有領域代表性的數據會帶來基于數據大小、可用性、動態性和不確定性的挑戰。決策時間--由情況的時間動態決定--會給人工智能系統工程帶來重大挑戰--特別是當一個應用領域的事件零星發生和/或意外發生時;以及當決策是時間緊迫的時候。具有更多決策時間、充分訪問大型數據集、直接的用戶互動、完善的目標和非致命后果的應用,如貸款審批、廣告、醫療診斷(在某種程度上)面臨工程挑戰,但其復雜程度較低。確定最佳運輸路線和為自動駕駛汽車設計AI系統是更復雜的工作。這些應用是動態變化的,做決定的時間較短。航運路線將在可能的路線數量上具有復雜性--這可能會導致許多可能的選擇。然而,航運錯誤是有空間的,而且后果通常不會太嚴重。對于自動駕駛汽車來說,決策錯誤的空間非常小。在這種應用中,決策失誤會導致嚴重的事故。
影響開發支持海戰決策的人工智能系統的因素在表3所示的所有類別中都具有高度的復雜性。因此,戰術戰爭領域對工程和實施有效的人工智能系統作為解決方案提出了特別棘手的挑戰。表4強調了導致這種復雜性的海戰領域的特點。作為一個例子,海軍打擊力量的行動可以迅速從和平狀態轉變為巨大的危險狀態--需要對威脅保持警惕并采取適當的反應行動--所有這些都是在高度壓縮的決策時間內進行。戰術威脅可能來自水下、水面、空中、陸地、太空,甚至是網絡空間,導致需要處理多種時間緊迫的任務。由于海軍和國防資產在艦艇、潛艇、飛機、陸地和太空中,戰術決策空間必須解決這些分散和多樣化資源的最佳協作使用。制定有效的戰術行動方案也必須在高度動態的作戰環境中進行,并且只有部分和不確定的情況知識。決策空間還必須考慮到指揮權、交戰規則和戰術理論所帶來的限制。人類作為戰術決策者的角色增加了決策空間的復雜性--信息過載、操作錯誤、人機信任和人工智能的模糊性/可解釋性問題等挑戰。最后,對于戰術決策及其可能的后果來說,風險可能非常大。
表4. 導致戰術決策復雜性的因素
解決高度復雜的決策領域是對海軍的挑戰。人工智能為解決海軍作戰的復雜性提供了一個潛在的解決方案,即處理大量的數據,處理不確定性,理解復雜的情況,開發和評估決策選擇,以及理解風險水平和決策后果。Desclaux和Prestot(2020)提出了一個 "認知三角",其中人工智能和大數據被應用于支持作戰人員,以實現信息優勢、控制論信心和決策優勢。約翰遜(2019年)開發了一個工程框架和理論,用于解決高度復雜的問題空間,這些問題需要使用智能和分布式人工智能系統來獲得情況意識,并做出適應動態情況的協作行動方案決定。約翰遜(2020a)建立了一個復雜的戰術場景模型,以證明人工智能輔助決策對戰術指揮和控制(C2)決策的好處。約翰遜(2020b)開發了一個預測分析能力的概念設計,作為一個自動化的實時戰爭游戲系統來實施,探索不同的可能的戰術行動路線及其預測的效果和紅色部隊的反應。首先,人工智能支持的C2系統需要描述戰術行動期間的復雜程度,然后提供一個自適應的人機組合安排來做出戰術決策。這個概念包括根據對目前戰術情況的復雜程度最有效的方法來調整C2決策的自動化水平(人與機器的決策角色)。約翰遜(2021年)正在研究這些概念性工程方法在各種防御用例中的應用,包括空中和導彈防御、超視距打擊、船舶自衛、無人機操作和激光武器系統。
在海軍作戰中實施人工智能系統的一個額外挑戰是在戰術邊緣施加的限制。分散的海軍艦艇和飛機的作戰行動構成了戰術邊緣--在有限的數據和通信下作戰。"在未來,戰術邊緣遠離指揮中心,通信和計算資源有限,戰場形勢瞬息萬變,這就導致在嚴酷復雜的戰地環境中,網絡拓撲結構連接薄弱,變化迅速"(Yang et. al. 2021)。戰術邊緣網絡也容易斷開連接(Sridharan et. al. 2020)。相比之下,許多商業人工智能系統依賴于基于云的或企業內部的處理和存儲,而這些在海戰中是不存在的。在戰術邊緣實施未來的人工智能系統時,必須進行仔細的設計考慮,以了解哪些數據和處理能力可用。這可能會限制人工智能系統在邊緣所能提供的決策支持能力。
在軍事領域使用人工智能必須克服復雜性的挑戰障礙,在某些情況下,人工智能的加入可能會增加復雜性。辛普森等人(2021)認為,將人工智能用于軍事C2可能會導致脆弱性陷阱,在這種情況下,自動化功能增加了戰斗行動的速度,超出了人類的理解能力,最終導致 "災難性的戰略失敗"。Horowitz等人(2020)討論了通過事故、誤判、增加戰爭速度和升級以及更大的殺傷力來增加國際不穩定和沖突。Jensen等人(2020)指出,人工智能增強的軍事系統增加的復雜性將增加決策建議和產生的信息的范圍、重要性和意義的不確定性;如果人類決策者對產出缺乏信心和理解,他們可能會失去對人工智能系統的信任。
實施人工智能系統的第二個挑戰是它們依賴并需要大量的相關和高質量的數據用于開發、訓練、評估和操作。在海戰領域滿足這些數據需求是一個挑戰。明確編程的專家系統在開發過程中需要數據進行評估和驗證。ML系統在開發過程中對數據的依賴性甚至更大。圖1說明了ML系統如何從代表作戰條件和事件的數據集中 "學習"。
ML系統的學習過程被稱為被訓練,開發階段使用的數據被稱為訓練數據集。有幾種類型的ML學習或訓練--它們是監督的、無監督的和強化的方法。監督學習依賴于地面真相或關于輸出值應該是什么的先驗知識。監督學習算法的訓練是為了學習一個最接近給定輸入和期望輸出之間關系的函數。無監督學習并不從地面真相或已知的輸出開始。無監督學習算法必須在輸入數據中推斷出一個自然結構或模式。強化學習是一種試錯法,允許代理或算法在獎勵所需行為和/或懲罰不需要的行為的基礎上學習。所有三種類型的ML學習都需要訓練數據集。在部署后或運行階段,ML系統繼續需要數據。
圖1顯示,在運行期間,ML系統或 "模型 "接收運行的實時數據,并通過用其 "訓練 "的算法處理運行數據來確定預測或決策結果。因此,在整個系統工程和采購生命周期中,ML系統與數據緊密相連。ML系統是從訓練數據集的學習過程中 "出現 "的。ML系統是數據的質量、充分性和代表性的產物。它們完全依賴于其訓練數據集。
圖1. 使用數據來訓練機器學習系統
美國海軍開始認識到對這些數據集的需求,因為許多領域(戰爭、供應鏈、安全、后勤等)的更多人工智能開發人員正在了解人工智能解決方案的潛在好處,并開始著手開發人工智能系統。在某些情況下,數據已經存在并準備好支持人工智能系統的開發。在其他情況下,數據存在但沒有被保存和儲存。最后,在其他情況下,數據并不存在,海軍需要制定一個計劃來獲得或模擬數據。
收集數據以滿足海軍領域(以及更廣泛的軍事領域)的未來人工智能/ML系統需求是一個挑戰。數據通常是保密的,在不同的項目和系統中被分隔開來,不容易從遺留系統中獲得,并且不能普遍代表現實世界行動的復雜性和多樣性。要從并非為數據收集而設計的遺留系統中獲得足夠的數據,可能非常昂貴和費時。數據收集可能需要從戰爭游戲、艦隊演習、系統測試、以及建模和模擬中收集。此外,和平時期收集的數據并不代表沖突和戰時的操作。海軍(和軍方)還必須教導人工智能系統在預計的戰時行動中發揮作用。這將涉及想象可能的(和可能的)戰時行動,并構建足夠的ML訓練數據。
數據收集的另一個挑戰是潛在的對抗性黑客攻擊。對于人工智能/ML系統來說,數據是一種珍貴的商品,并提出了一種新的網絡脆弱性形式。對手可以故意在開發過程中引入有偏見或腐敗的數據,目的是錯誤地訓練AI/ML算法。這種邪惡的網絡攻擊形式可能很難被發現。
海軍正在解決這一數據挑戰,開發一個數據基礎設施和組織來管理已經收集和正在收集的數據。海軍的Jupiter計劃是一個企業數據和分析平臺,正在管理數據以支持AI/ML的發展和其他類型的海軍應用,這些應用需要與任務相關的數據(Abeyta,2021)。Jupiter努力的核心是確定是否存在正確的數據類型來支持人工智能應用。為了生產出在行動中有用的人工智能/ML系統,海軍需要在游戲中保持領先,擁有能夠代表各種可能情況的數據集,這些情況跨越了競爭、沖突和危機期間的行動范圍。因此,數據集的開發和管理必須是一項持續的、不斷發展的努力。
第三個挑戰是,人工智能系統的工程需要改變傳統的系統工程(SE)。在傳統系統中,行為是設定的(確定性的),因此是可預測的:給定一個輸入和條件,系統將產生一個可預測的輸出。一些人工智能解決方案可能涉及到系統本身的復雜性--適應和學習--因此產生不可預見的輸出和行為。事實上,一些人工智能系統的意圖就是要做到這一點--通過承擔一些認知負荷和產生智能建議,與人類決策者合作。表5強調了傳統系統和人工智能系統之間的區別。需要有新的SE方法來設計智能學習系統,并確保它們對人類操作者來說是可解釋的、可信任的和安全的。
SE作為一個多學科領域,在海軍中被廣泛使用,以將技術整合到連貫而有用的系統中,從而完成任務需求(INCOSE 2015)。SE方法已經被開發出來用于傳統系統的工程設計,這些系統可能是高度復雜的,但也是確定性的(Calvano和John 2004)。如表5所述,傳統系統具有可預測的行為:對于一個給定的輸入和條件,它們會產生可預測的輸出。然而,許多海軍應用的人工智能系統在本質上將是復雜的、適應性的和非決定性的。Raz等人(2021年)解釋說,"SE及其方法的雛形基礎并不是為配備人工智能(即機器學習和深度學習)的最新進展、聯合的多樣化自主系統或多領域操作的工程系統而設想的。" 對于具有高風險后果的軍事系統來說,出錯的余地很小;因此,SE過程對于確保海軍中人工智能系統的安全和理想操作至關重要。
表5. 傳統系統和人工智能系統的比較
在整個系統生命周期中,將需要改變SE方法,以確保人工智能系統安全有效地運行、學習和適應,以滿足任務需求并避免不受歡迎的行為。傳統的SE過程的大部分都需要轉變,以解決人工智能系統的復雜和非確定性的特點。在人工智能系統的需求分析和架構開發階段需要新的方法,這些系統將隨著時間的推移而學習和變化。系統驗證和確認階段將必須解決人工智能系統演化出的突發行為的可能性,這些系統的行為不是完全可預測的,其內部參數和特征正在學習和變化。運營和維護將承擔重要的任務,即隨著人工智能系統的發展,在部署期間不斷確保安全和理想的行為。
SE界意識到,需要新的流程和實踐來設計人工智能系統。國際系統工程師理事會(INCOSE)最近的一項倡議正在探索開發人工智能系統所需的SE方法的變化。表6強調了作為該倡議一部分的五個SE重點領域。除了非決定性的和不斷變化的行為,人工智能系統可能會出現新類型的故障模式,這些故障模式是無法預料的,可能會突然發生,而且其根本原因可能難以辨別。穩健設計--或確保人工智能系統能夠處理和適應未來的情景--是另一個需要新方法的SE領域。最后,對于有更多的人機互動的人工智能系統,必須仔細注意設計系統,使它們值得信賴,可以解釋,并最終對人類決策者有用。
表6.人工智能系統工程中的挑戰(改編自:Robinson,2021)。
SE研究人員正在研究人工智能系統工程所涉及的挑戰,并開發新的SE方法和對現有SE方法的必要修改。Johnson(2019)開發了一個SE框架和方法,用于工程復雜的適應性系統(CASoS)解決方案,涉及分布式人工智能系統的智能協作。這種方法支持開發智能系統的系統,通過使用人工智能,可以協作產生所需的突發行為。Johnson(2021)研究了人工智能系統產生的潛在新故障模式,并提出了一套跨越SE生命周期的緩解和故障預防策略。她提出了元認知,作為人工智能系統自我識別內部錯誤和失敗的設計方案。Cruz等人(2021年)研究了人工智能在空中和導彈防御應用中使用人工智能輔助決策的安全性。他們為計劃使用人工智能系統的軍事項目編制了一份在SE開發和運行階段需要實施的策略和任務清單。Hui(2021年)研究了人類作戰人員與人工智能系統合作進行海軍戰術決策時的信任動態。他制定了工程人工智能系統的SE策略,促進人類和機器之間的 "校準 "信任,這是作為適當利用的最佳信任水平,避免過度信任和不信任,并在信任失敗后涉及信任修復行動。Johnson等人(2014)開發了一種SE方法,即協同設計,用于正式分析人機功能和行為的相互依賴性。研究人員正在使用協同設計方法來設計涉及復雜人機交互的穩健人工智能系統(Blickey等人,2021年,Sanchez 2021年,Tai 2021年)。
數據的作用對于人工智能系統的開發和運行來說是不可或缺的,因此需要在人工智能系統的SE生命周期中加入一個持續不斷的收集和準備數據的過程。Raz等人(2021)提出,SE需要成為人工智能系統的 "數據策劃者"。他們強調需要將數據策劃或轉化為可用的結構,用于開發、訓練和評估AI算法。French等人(2021)描述了需要適當的數據策劃來支持人工智能系統的發展,他們強調需要確保數據能夠代表人工智能系統將在其中運行的預期操作。他們強調需要安全訪問和保護數據,以及需要識別和消除數據中的固有偏見。
SE界正處于發展突破和進步的早期階段,這些突破和進步是在更復雜的應用中設計人工智能系統所需要的。這些進展需要與人工智能的進展同步進行。在復雜的海軍應用以及其他非海軍和非軍事應用中實施人工智能系統取決于是否有必要的工程實踐。SE實踐必須趕上AI的進步,以確保海軍持續的技術優勢。
海軍在有效實施人工智能系統方面面臨的第四個挑戰是應對對手。海軍的工作必須始終考慮對手的作用及其影響。表7確定了在海軍實施人工智能系統時必須考慮的與對手有關的三個挑戰:(1)人工智能技術在許多領域迅速發展,海軍必須注意同行競爭國的軍事應用進展,以防止被超越,(2)在海軍應用中實施人工智能系統和自動化會增加網絡脆弱性,以及(3)海軍應用的人工智能系統需要發展和適應,以應對不斷變化的威脅環境。
表7. AI系統的對抗性挑戰
同行競爭國家之間發展人工智能能力的競賽,最終是為了進入對手的決策周期,以便比對手更快地做出決定和采取行動(Schmidt等人,2021年)。人工智能系統提供了提高決策質量和速度的潛力,因此對獲得決策優勢至關重要。隨著海軍對人工智能解決方案的探索,同行的競爭國家也在做同樣的事情。最終實現將人工智能應用于海軍的目標,不僅僅取決于人工智能研究。它需要適當的數據收集和管理,有效的SE方法,以及仔細考慮人類與AI系統的互動。海軍必須承認,并采取行動解決實施人工智能系統所涉及的挑戰,以贏得比賽。
網絡戰是海軍必須成功參與的另一場競賽,以保持在不斷沖擊的黑客企圖中的領先地位。網絡戰的特點是利用計算機和網絡來攻擊敵人的信息系統(Libicki, 2009)。海軍對人工智能系統的實施導致了更多的網絡攻擊漏洞。人工智能系統的使用在本質上依賴于訓練和操作數據,導致黑客有機會在開發階段和操作階段用腐敗的數據欺騙或毒害系統。如果一個對手獲得了對一個運行中的人工智能系統的控制,他們可能造成的傷害將取決于應用領域。對于支持武器控制決策的自動化,其后果可能是致命的。海軍必須注意人工智能系統開發過程中出現的特殊網絡漏洞。必須為每個新的人工智能系統實施仔細的網絡風險分析和網絡防御戰略。海軍必須小心翼翼地確保用于開發、訓練和操作人工智能系統的數據集在整個人工智能系統的生命周期中受到保護,免受網絡攻擊(French等人,2021)。
威脅環境的演變是海軍在開發AI系統時面臨的第三個對抗性挑戰。對手的威脅空間隨著時間的推移不斷變化,武器速度更快、殺傷力更大、監視資產更多、反制措施更先進、隱身性更強,這對海軍能夠預測和識別新威脅、應對戰斗空間的未知因素構成了挑戰。尤其是人工智能系統,必須能夠加強海軍感知、探測和識別新威脅的能力,以幫助它們從未知領域轉向已知領域的過程。他們必須適應新的威脅環境,并在行動中學習,以了解戰斗空間中的未知因素,并通過創新的行動方案快速應對新的威脅(Grooms 2019, Wood 2019, Jones et al 2020)。海軍可以利用人工智能系統,通過研究特定區域或領域的長期數據,識別生活模式的異常(Zhao等人,2016)。最后,海軍可以探索使用人工智能來確定新的和有效的行動方案,使用最佳的戰爭資源來解決棘手的威脅情況。
人工智能系統為海軍戰術決策的優勢提供了相當大的進步潛力。然而,人工智能系統在海戰應用中的實施帶來了重大挑戰。人工智能系統與傳統系統不同--它們是非決定性的,可以學習和適應--特別是在用于更復雜的行動時,如高度動態的、時間關鍵的、不確定的戰術行動環境中,允許的誤差范圍極小。本文確定了為海戰行動實施人工智能系統的四個挑戰領域:(1)開發能夠解決戰爭復雜性的人工智能系統,(2)滿足人工智能系統開發和運行的數據需求,(3)設計這些新穎的非確定性系統,以及(4)面對對手帶來的挑戰。
海軍必須努力解決如何設計和部署這些新穎而復雜的人工智能系統,以滿足戰爭行動的需求。作者在這一工作中向海軍提出了三項建議。
1.第一個建議是了解人工智能系統與傳統系統之間的差異,以及伴隨著人工智能系統的開發和實施的新挑戰。
人工智能系統,尤其是那些旨在用于像海戰這樣的復雜行動的系統,其本身就很復雜。它們在應對動態戰爭環境時將會學習、適應和進化。它們將變得不那么容易理解,更加不可預測,并將出現新型的故障模式。海軍將需要了解傳統的SE方法何時以及如何在這些復雜系統及其復雜的人機交互工程中失效。海軍將需要了解數據對于開發人工智能系統的關鍵作用。
2.第二個建議是投資于人工智能系統的研究和開發,包括其數據需求、人機互動、SE方法、網絡保護和復雜行為。
研究和開發是為海戰行動開發AI系統解決方案的關鍵。除了開發復雜的戰術人工智能系統及其相關的人機協作方面,海軍必須投資研究新的SE方法來設計和評估這些適應性非決定性系統。海軍必須仔細研究哪些新類型的對抗性網絡攻擊是可能的,并且必須開發出解決這些問題的解決方案。海軍必須投資于收集、獲取和維護代表現實世界戰術行動的數據,用于人工智能系統開發,并確保數據的相關性、有效性和安全性。
3.第三個建議是承認挑戰,并在預測人工智能系統何時準備好用于戰爭行動方面采取現實態度。
盡管人工智能系統正在許多領域實施,但海軍要為復雜的戰術戰爭行動實施人工智能系統還需要克服一些挑戰。人工智能系統在較簡單應用中的成功并不能保證人工智能系統為更復雜的應用做好準備。海軍應該保持一種現實的認識,即在人工智能系統準備用于戰爭決策輔助工具之前,需要取得重大進展以克服本文所討論的挑戰。實現人工智能系統的途徑可以依靠建模和模擬、原型實驗、艦隊演習以及測試和評估。可以制定一個路線圖,彌合較簡單應用的人工智能和復雜應用的人工智能之間的差距--基于一個積木式的方法,在為逐漸復雜的任務開發和實施人工智能系統時吸取經驗教訓。
海軍將從未來用于戰術戰爭的人工智能系統中獲益。通過安全和有效地實施人工智能系統,戰術決策優勢的重大進步是可能的。此外,海軍必須跟上(或試圖超越)對手在人工智能方面的進展。本文描述了為在海戰中實施人工智能系統而必須解決的四個挑戰。通過對這些新穎而復雜的人工智能系統的深入了解,對研究和開發計劃的投資,以及對人工智能技術進步時限的現實預期,海軍可以在應對這些挑戰方面取得進展。
人工智能為我們提供了自動化任務的能力,從海量數據中提取信息,并合成幾乎與真實事物無異的媒體。然而,積極的工具也可以被用于消極的目的。特別是,網絡對手可以利用人工智能來加強他們的攻擊和擴大他們的活動。雖然攻擊性人工智能在過去已經被討論過,但有必要在組織的背景下分析和理解這種威脅。例如,一個具有人工智能能力的對手是如何影響網絡殺傷鏈的?人工智能是否比防御者更有利于攻擊者?今天組織面臨的最重要的人工智能威脅是什么,它們對未來的影響是什么?在這項研究中,我們探討了攻擊性人工智能對組織的威脅。首先,我們介紹了背景,并討論了人工智能如何改變對手的方法、策略、目標和整體攻擊模式。然后,通過文獻回顧,我們確定了32種攻擊性人工智能能力,對手可以利用這些能力來加強他們的攻擊。最后,通過橫跨工業界、政府和學術界的小組調查,我們對人工智能威脅進行了排名,并提供了對攻擊者的洞察力。
幾十年來,包括政府機構、醫院和金融機構在內的組織一直是網絡攻擊的目標[1, 2, 3]。這些網絡攻擊都是由有經驗的黑客使用人工方法進行的。近年來,人工智能(AI)的發展蓬勃發展,這使得軟件工具的創造有助于實現預測、信息檢索和媒體合成等任務的自動化。在整個這一時期,學術界和工業界的成員在改善網絡防御[4, 5, 6]和威脅分析[7, 8, 9]的情況下利用了人工智能。然而,人工智能是一把雙刃劍,攻擊者可以利用它來改善他們的惡意活動。
因此,我們將攻擊性人工智能定義為:“使用或濫用人工智能來完成惡意的任務”。
對人工智能的攻擊性使用。敵人可以改進他們的戰術,發動以前不可能的攻擊。例如,通過深度學習,人們可以通過冒充其雇主的臉和聲音來進行高效的魚叉式網絡釣魚攻擊[10, 11]。還可以通過使攻擊在沒有人類監督和幫助的情況下進行(使其自動進行)來提高攻擊的隱蔽能力。例如,如果惡意軟件可以自行對網絡中的主機進行漸進式感染(又稱橫向移動),那么這將減少指揮和控制(C&C)通信[12, 13]。其他能力包括使用人工智能尋找軟件中的零日漏洞,自動進行逆向工程,有效地利用側面渠道,建立逼真的假人物,并進行更多的惡意活動,提高功效(更多的例子將在后面第3節中介紹)。
對人工智能的攻擊性濫用。對抗性機器學習是對人工智能的安全漏洞的研究。已經證明,對手可以通過制作訓練樣本來改變模型的功能,例如插入后門[14],通過操縱測試樣本(例如逃避檢測)來獲得所需的分類[15],甚至推斷出模型[16]或其訓練數據的機密信息[17]。由于組織使用人工智能來自動管理、維護、操作和防御他們的系統和服務,因此敵方可以通過在這些系統上使用機器學習來完成他們的惡意目標。 我們注意到,有些攻擊是可以不使用或濫用人工智能而實現的。然而,如果攻擊者使用人工智能使其自動或半自動運行,他們可以大大減少執行攻擊所需的工作。通過減少他們在創建有效策略方面的工作,攻擊者可以通過擴大攻擊的強度和數量來最大化他們的回報。此外,通過在攻擊鏈的幾個階段同時行動,攻擊者可以在攻擊的速度和力量上實現協同效應,變得更加危險。另一方面,一些攻擊已經被人工智能實現,例如在復雜的社會工程攻擊中克隆個人的聲音[18]。
在這項工作中,我們對企業安全背景下的攻擊性人工智能知識進行了研究。本文的目標是幫助行業界(1)更好地了解攻擊性人工智能對組織的當前影響,(2)優先研究和開發防御性解決方案,以及(3)確定在不久的將來可能出現的趨勢。這項工作并不是第一次提高對攻擊性人工智能的認識。在[19]中,作者警告行業界,人工智能可以被用于不道德的和犯罪的目的,并列舉了來自不同領域的例子。在[20]中,舉行了一個研討會,試圖確定人工智能在犯罪學中的潛在首要威脅。然而,這兩項工作都涉及到了人工智能對社會整體的威脅,而不是專門針對組織及其網絡。此外,盡管他們做出了大量工作并取得了初步成果,但這些先前的分析只提供了人工智能如何被用于攻擊的例子以及對其風險的可能排序,而我們的研究通過用于識別針對組織的潛在攻擊策略的標準方法,給出了攻擊性人工智能的結構化觀點,得出了與防御這些威脅有關的戰略見解。
為了實現這些目標,我們進行了一次文獻回顧,以確定具有人工智能能力的對手能力。然后我們進行了一項小組調查,以確定這些能力中哪些代表了實踐中最相關的威脅。有35名調查參與者:16名來自學術界,19名來自工業界。來自工業界的參與者來自廣泛的組織,如MITRE、IBM、微軟、谷歌、空中客車、博世、富士通、日立和華為。
從我們的文獻回顧中,我們發現了32種針對組織的攻擊性人工智能能力。我們的小組調查顯示,最重要的威脅是改善社會工程攻擊的能力(例如,使用深層假象來克隆員工的聲音)。我們還發現,行業成員最關心的是使攻擊者能夠竊取知識產權和檢測其軟件中的漏洞的攻擊。最后,我們還發現,現代攻擊性人工智能主要影響網絡殺傷鏈的初始步驟(偵查、資源開發和初始訪問)。這是因為人工智能技術還不夠成熟,無法創造出能夠在沒有人類監督和幫助下進行攻擊的智能體。我們的研究結果的完整清單可以在第5.1節找到。
在這項研究中,我們做出了以下貢獻:
本文的結構如下:
圖 1:文獻綜述中確定的 32 種進攻性 AI 能力 (OAC)。
當代軍事組織必須以更快的速度和更高的精度采取行動,在反叛亂(COIN)環境中戰勝對手并避免不準確的情況。此外,這是一個有問題的任務,因為COIN的復雜性和絕大多數叛亂分子擁有在熟悉環境中行動的優勢。
在叛亂和COIN戰爭中,選擇暴力的方式來實現叛亂派別的政治抱負。敵方利用各種威脅,如使用常規武器、非正規戰術、恐怖主義和犯罪行為,以同時和適應性地實現其政治目標。
反叛分子要想獲得成功,就必須把重點放在叛亂分子網絡上,但如果可能的話,必須在不對非戰斗人員造成傷害的情況下做到這一點。促進迅速和準確地瞄準叛亂分子網絡并可能減少附帶損害的一個解決方案是研究在COIN中使用人工智能(AI)增強系統來增強高價值目標(HVT)定位的潛力。
為了評估上述理論,本論文將依次研究查找、修復、完成、利用、分析和傳播(F3EAD)目標定位過程的六個不同步驟,以確定哪一部分或哪幾部分可能受益于人工智能作為一種力量倍增器對結果的貢獻。此外,在研究F3EAD過程的過程中,本論文將評估周期中的哪個階段有可能造成最嚴重的附帶損害。
美國仍然是世界上最突出的軍事和技術力量。在過去十年中,美國認識到人工智能作為力量倍增器的潛力,越來越多地將人工智能(AI)的熟練程度視為美國重要利益和保證美國軍事和經濟實力的機制。特別是,在過去十年中,人工智能已成為美國國防的一項關鍵能力,特別是考慮到2022年美國國防戰略對印度-太平洋地區的關注。
因此,美國國防部(DoD)(以及美國政府和國防機構總體上)對人工智能和相關新興技術表現出越來越大的熱情。然而,雖然美國目前在學術界和私營部門的人工智能研究和開發方面取得了巨大進展,但國防部尚未在廣泛范圍內成功地將商業人工智能的發展轉化為真正的軍事能力。
美國政府在利用國防人工智能和人工智能支持的系統方面通常處于有利地位。然而,在過去的幾年里,各種官僚主義、組織和程序上的障礙減緩了國防部在國防人工智能采用和基于技術的創新方面的進展。最關鍵的是,國防部遭受了復雜的收購過程和廣泛的數據、STEM和AI人才和培訓的短缺。從事人工智能和人工智能相關技術和項目的組織往往是孤立的,而且還存在必要的數據和其他資源相互分離。在美國防部內部存在一種傾向于可靠方法和系統的文化,有時趨向于勒德主義。所有這些因素都導致了人工智能采用的速度出奇的緩慢。美國家安全委員會2021年提交給國會的最終報告總結說,"盡管有令人興奮的實驗和一些小型的人工智能項目,但美國政府離人工智能就緒還有很長的路要走"。
因此,盡管人工智能有可能增強美國的國家安全并成為一個優勢領域,而且鑒于美國在軍事、創新和技術領導方面的長期傳統,人工智能有可能成為一個薄弱點,擴大 "美國已經進入的脆弱窗口"。 如果美國不加快創新步伐,達到負責任的速度,并奠定必要的制度基礎,以支持一支精通人工智能的軍隊,人工智能將繼續成為一個不安全點。
去年,美國防部在這些挑戰中的一些方面取得了進展,調整了國防人工智能的方法。2022年6月,美國防部發布了《負責任人工智能戰略和實施途徑》,將更有數據依據的、負責任的、可操作的人工智能工作列為優先事項,此后開始執行。最重要的是,美國防部已經啟動了對其人工智能組織結構的重大改革,創建了一個新的首席數字和人工智能辦公室(CDAO),以整合其不同的人工智能項目和利益相關者,并使其與該部門的數據流更好地協調。值得注意的是,美國國防部目前正在對其國防人工智能的整體方法進行重大變革和振興。然而,這些新的人工智能努力是否足以讓美國彌補失去的時間,還有待觀察。
內聚力是團隊的一個重要屬性,它可以影響個人隊友和團隊成果。然而,在包括自主系統作為隊友的團隊中,內聚力是一個未被充分探索的話題。我們研究了關于人類團隊內聚力的現有文獻,然后在此基礎上推進對人類-自主系統團隊的內聚力的理解,包括相似性和差異性。我們描述了團隊的內聚力,各種定義、因素、維度以及相關的好處和壞處。我們討論了當團隊包括一個自主性的隊友時,該元素可能會受到怎樣的影響,并進行了逐一描述。最后,我們確定了可能與內聚力有關的人類-自主性互動的具體因素,然后闡述了對推進有效的人類-自主性團隊的科學至關重要的未來研究問題。
隨著美國為大國競爭而重組其軍隊,戰場的有效性將取決于美軍是否有能力超越其近似競爭對手的決策周期。速度是關鍵--軍隊如何快速從其傳感器中收集數據,分析數據,辨別重要信息,將其發送給相關作戰人員并作出最佳反應。一支日益一體化和互操作性的部隊,對共同作戰環境有共同理解,對于軍隊完成能力融合至關重要。
美國防部聯合作戰概念(JWC)描述了全域作戰,并設想了一個聯合殺傷網,它可以通過全域聯合指揮和控制(JADC2)的支持概念,快速有效地將任何傳感器與任何投射能力聯系起來,這就是融合的原則。實現融合要求各軍種之間專注聚焦,確定優先次序并進行協同。美國陸軍將在JADC2中發揮核心作用,因為它為作戰和戰術網絡的發展提供信息;為JWC提供后勤骨干;并在一系列與各部門、機構和國際合作伙伴的合作實驗中測試融合。
議題:隨著美國軍隊為大國競爭而進行的轉型,戰場效率將在很大程度上取決于其超越同行競爭對手決策周期的能力。
聚焦范圍:描述了陸軍和聯合實施JADC2的情況。
觀點:
在2020年以后,美國軍隊必須具有戰略上的敏捷性、反應性和致命性。中國和俄羅斯正在大力投資,以減輕美國在陸地、空中、海上、太空和網絡空間各個領域的能力。
在有可能限制聯合部隊戰略部署和使用其部隊能力的情況下,需要一個現代化的指揮和控制(C2)機構,能夠迅速匯集美國及其盟國的所有能力,以威懾,并在必要時擊敗近鄰和其他競爭對手。
目前的C2項目使用的是幾十年前的平臺,"沒有針對未來沖突的速度、復雜性和殺傷力進行優化"。目前的平臺各軍種不能有效地利用或發送數據、命令給其他軍種,而且它們的結構不能支持實現未來的C2。2018年國防戰略(NDS)強調了C2系統現代化的重要性,指出在退化的環境中未來的戰斗將以速度、更多的自主權和分布式的單位獲勝。
美國防部領導層設想了一個在戰場上沒有界限的未來,圍繞著一個統一的C2系統,其中一個多領域的方法--參與和整合地面、空中、海上、網絡和空間作戰--對于挑戰一個近似的對手是必要的。JWC是一個關鍵的概念,并且正在推動未來的研發和采購,同時也在整合作戰指揮部的審查和服務計劃。因此,該概念的發展是國防部的一個優先事項。
圖:全域聯合指揮與控制(JADC2)通過實時終端用戶報告和協作規劃,協同多個數據源,在國防支持民事當局行動期間,準確地在聯合特遣部隊民事支持(JTF-CS,美軍機構) 可能需要的地方提供支持能力。
注1:聯合作戰概念的四個支持性概念
美國防部JADC2戰略于2021年5月由國防部長勞埃德-奧斯汀批準,闡明了國防部實施JADC2的方法;它將JADC2描述為感知、探測和行動的作戰能力,從而提高從沖突到競爭以及所有領域的互操作性和決策速度。JADC2是一個以數據為中心的持續C2能力框架,它支持JWC,并使聯合部隊能夠迅速匯集有助于威懾的效果,并通過決策優勢使任務取得成功。
JADC2指的是所有聯合C2的實施,包括:
由于速度和規模在未來的戰斗中至關重要,JADC2將建立一個網狀網絡,實時將各部門的數據帶入一個 "可共享的數據湖",將來自所有領域--陸地、空中、海上、太空和網絡空間的傳感器連接起來。利用人工智能軟件、數據庫、處理器和算法,它將把偵察信息轉化為可識別的和優先的目標,比人類分析員更快。目標數據將被發送到處于最佳位置的單位/能力,無論是動能、網絡、電子戰(EW)還是信息作戰(IO)。
JADC2及其網狀網絡可以被看作是一個安全的戰斗互聯網,軍事應用程序在上面進行連接,從所有可用的來源搜尋數據,以迅速將最佳的 "投射 "或 "效應器 "與目標聯系起來。JADC2可以提供無處不在的數據,不同的人類和機械數據可以根據需要使用。歸根結底,JADC2不是一個特定的平臺;它是獲取數據并有效連接。
圖:聯合參謀部的JADC2作戰規劃實驗,允許陸軍、海軍、空軍和海軍陸戰隊的節點共享實時的信息,以實現傳感器與投射的聯系,并將其顯示在一個共同的作戰畫面上(美軍聯合現代化司令部)。
所有軍種都同意需要將JADC2作為一項組織戰略。2020年,陸軍和空軍簽署了一項協議,在2022財政年度(FY22)之前分享數據并制定共同的數據和接口標準;在多次實驗中,他們在這方面取得了成功。此外,陸軍、海軍和空軍在2021年初簽署了一項合作協議,以測試、整合和分享數據開發,以實現JADC2。
陸軍現代化戰略描述了陸軍將如何作戰,用什么作戰以及如何組織起來支持聯合部隊。陸軍致力于發展作戰網絡、技術和概念,通過一系列名為 "項目融合"(PC)的演示和實驗來實現超額匹配并為聯合部隊提供信息。這是一場持續的學習運動,旨在迅速 "融合"所有領域(陸地、空中、海上、太空和網絡空間)的效果,并塑造陸軍的新興理論、組織、訓練、能力、研究和發展以及后勤。
通過實驗和學習,"項目融合"有助于確保軍隊在適當的地方擁有適當的人員、適當的系統、適當的能力,以支持聯合戰斗。——陸軍參謀長詹姆斯-麥康威爾將軍
PC由五個核心要素組成:
每項實驗都通過新的架構、編隊和來自陸軍八個CFT的授權來融合現代化舉措,并深化陸軍現代化舉措的整合。這些努力正在加速2018年國防戰略中概述的現代化戰略,該戰略設想未來的戰斗將在退化的環境中以擁有速度、自主性和分布式能力的單位獲勝。
表:陸軍未來司令部項目融合戰略20-22財年
在亞利桑那州尤馬的 "項目融合2020"(PC20)持續了幾個月,展示了人工智能和機器人技術,包括兩次實彈演示。該實驗由士兵、平民、科學家和工程師設計,在最低作戰水平上測試了融合,以挑戰戰術邊緣的決策過程。其中一項測試使用衛星和無人駕駛航空系統:同時感知空中和地面目標;迅速將數據傳遞給平臺,以打擊目標;并在十幾秒內決定性地摧毀該目標。
圖:2021年10月19日,在亞利桑那州尤馬試驗場,被分配到第82空降師的美國陸軍一等兵丹尼爾-坎達爾斯使用戰術機器人控制器來控制遠征模塊化自主車輛,為 "項目融合"做準備。在2021年項目融合期間,士兵們試驗使用該車輛進行半自主偵察和再補給(美國陸軍中士馬里塔-施瓦布攝)。
對實現JADC2能力的另一個貢獻是陸軍繼續倡導將其從聯合(joint)擴展到 "結合(combined)"--CJADC2--因為任何網絡都需要包括盟友和合作伙伴。陸軍在亞洲和歐洲有著深厚的軍隊間關系,應該站在這種重要努力的最前沿。認識到這一點,陸軍21/22財政年度的PC戰略將參與范圍擴大到了結合伙伴和盟友,增加了指揮層級并使之多樣化,并推動了現代化概念和技術的極限。
注2:項目融合(Project Convergence):項目融合是聯合部隊對速度、射程和決策主導權的實驗,以實現超額完成任務,并為聯合作戰概念和全域聯合指揮與控制提供信息。作為一場學習運動,它利用一系列聯合的、多領域的交戰來整合人工智能、機器人技術和自主性,以提高戰場態勢感知,將傳感器與投射連接起來,并加快決策的時間線。因為誰能最先看到、了解并采取行動,誰就能獲勝。
注3:項目融合的五個核心要素
JADC2要求國防部和陸軍進行轉型,特別是在數據管理和共享、網絡支持能力、人工智能在決策周期中的作用以及為實現這些變化而對部隊結構進行調整。陸軍現代化戰略及其現代化優先事項是持續轉型的框架,以使陸軍能夠在多個領域進行部署與聚合效應。
注4:軍隊現代化的優先事項六大任務
一個用于C2的綜合戰斗管理系統需要在數據共享和標準化數據共享接口方面進行通信;然而,許多遺留系統包含數據共享障礙。2021年初,各軍種之間開始認真工作,制定數據標準以連接他們的JADC2項目,并通過 "發現、理解和與所有領域、梯隊和安全級別的合作伙伴交換數據 "來克服這些障礙。
陸軍的網絡CFT正在試驗網絡的現代化,以實現聯合接口、彈性和能力。它的重點是加強地面領域的數據和網絡傳輸能力,連接人工智能和機器學習(AI/ML),開發戰術云和邊緣計算。
國防部正在制定和實施一套初步的實驗和原型設計的核心原則,以統一國家安全事業。聯合部隊已經確定了幾個原型能力,通過將真實世界的威脅數據納入響應計算,在即將舉行的演習中進行測試。陸軍聯合現代化司令部建立了聯合系統集成實驗室(JSIL)--一個使用持久性環境場景的實驗網絡,允許各軍種、工業界和盟友通過幾個網絡測試數據共享能力。這將有助于對JADC2戰略進行可靠的評估。
由美國太空發展局管理的低地球軌道(LEO)衛星將整合各軍種的戰術網絡,以創建一個網狀網絡的傳輸層。計劃于2022年部署的近30顆衛星將提供一種 "作戰人員沉浸 "能力,其中傳感器、投射和戰術網絡可以與戰術通信連接。PC22將利用這些衛星,開發低地軌道能力。
人工智能國家安全委員會報告稱,國防部有必要在2025年前采用、實施人工智能并為其提供資源。人工智能/ML--陸軍的一個優先研究領域--對于在聯合、全域作戰中實現聯合戰場管理系統至關重要。人工智能的進步提高了對新出現的威脅的反應速度和敏捷性,使指揮官和工作人員能夠將精力集中在加速、優化決策上。
建設網絡安全基礎設施是陸軍網絡計劃的一個關鍵方面,它將為統一的網絡帶來速度、訪問和安全。在平衡這些要求的同時,美國網絡司令部正在與行業伙伴密切合作,擴大用于在國防部、情報界和商業網絡之間傳遞數據的安全共享工具,而不存在被破壞的風險。
圖:作為 "項目融合2020"的一部分,飛馬系列戰術自主系統的一部分在尤馬試驗場進行測試。飛馬系統有能力為無人駕駛航空系統(UAS)、地面行駛履帶式車輛,提供監視能力或創建一個地區的豐富詳細的三維地圖。
決策主導權--在技術和融合的作用下更快地做出更好的決策的能力--將使美國軍隊從其對手中脫穎而出。JADC2有助于實現信息主導權,并促進快速融合,實現速度關鍵優勢,這是未來AI/ML競爭的基礎。
目前,每個軍種都在其各自領域內管理C2的復雜性。隨著戰爭的特點變得越來越復雜,聯合部隊必須同時有效地整合五個領域。這需要新的C2方法。JADC2是建立一支能夠完成國防戰略目標的聯合部隊的基礎。國會的支持、持續的資助和軍種間的合作對于成功實施JWC和JADC2至關重要。
陸軍在實現這一聯合網絡的技術、創新和實驗方面處于領先地位。它的PC學習運動已經證明了它有能力使用新興技術和創新概念來實現軍種間和跨域的融合。陸軍的未來司令部、CFTs、作戰能力發展司令部和軟件工廠正在結合士兵的經驗、工業界的資源和科學家的專業知識來發展和提供未來的戰斗力量。通過實驗和聯合協作,陸軍正在使JADC2成為現實,從而增強戰略競爭中的威懾力和沖突中的超強戰斗力。
美國陸軍協會是一個非營利性的教育和專業發展協會,為美國的全部軍隊、士兵、陸軍文職人員和他們的家屬、行業伙伴以及強大國防的支持者服務。美國陸軍協會為陸軍提供聲音,支持士兵。