生成建模的最新進展正在改變視覺內容的創作,并在計算機視覺和圖形學的多個應用中顯示出巨大的前景。然而,生成模型在日常任務中的應用受到生成過程可控性、數據需求和計算要求等挑戰的制約。本論文重點解決二維和三維生成模型在真實世界約束下所面臨的這些問題。
首先,我們致力于通過遷移學習提高類別條件生成對抗網絡(GAN)的數據效率。我們引入了一種新的類別特定遷移學習方法,稱為cGANTransfer,基于類別之間的相關性,明確傳播舊類別的知識到新類別。通過廣泛的評估,我們證明了該方法在條件GAN遷移學習中的優越性,優于之前的方法。
其次,我們研究了使用小數據集訓練類別條件GANs的問題。我們特別指出了在小數據集上訓練條件GAN時出現的條件崩潰——即模式崩潰。為了解決這一問題,我們提出了一種基于過渡條件的訓練策略,該策略通過額外利用無條件學習,有效地防止了觀察到的模式崩潰。這種方法不僅實現了穩定的訓練,還通過在訓練的早期階段利用類別間共享信息,生成了高質量的圖像。
第三,我們解決了NeRF-GANs的計算效率問題。NeRF-GANs是一類基于神經輻射場(NeRFs)和GANs集成的3D感知生成模型,訓練于單視圖圖像數據集上。具體而言,我們重新審視了姿態條件的二維GANs,以在推理階段實現高效的3D感知生成。通過從預訓練的NeRF-GANs中提取3D知識,我們提出了一種簡單而有效的方法,用于高效推理3D感知GANs。該方法基于在姿態條件卷積網絡中重用預訓練的NeRF-GAN的良好解耦的潛在空間,以直接生成與底層3D表示一致的3D圖像。
最后,我們解決了在3D場景中進行物體生成的新任務,而無需任何3D監督或用戶提供的3D放置指導。我們引入了InseRF,這是一種在NeRF重建的3D場景中進行生成物體插入的新方法。基于用戶提供的文本描述和參考視圖中的二維邊界框,InseRF能夠在無需明確的3D信息作為輸入的情況下,實現對3D場景中物體的可控且3D一致的插入。
近期生成模型的進展已經改變了視覺內容的創作,并在計算機視覺和圖形學的多個應用中展現出巨大的潛力。然而,生成模型在日常任務中的應用受到生成過程可控性、數據需求和計算要求等挑戰的限制。本論文的重點是解決二維和三維生成模型中的這些現實世界的約束。首先,我們專注于通過遷移學習提高類條件生成對抗網絡(GAN)的數據效率。我們引入了一種新的類特定遷移學習方法,稱為cGANTransfer,旨在根據舊類與新類的相關性明確傳播知識。通過廣泛的評估,我們證明了所提出方法在條件GAN遷移中的優越性,超越了之前的方法。其次,我們研究了使用小數據集訓練類條件GAN的情況。特別地,我們發現了GAN中的條件崩潰——由小數據上的條件GAN訓練引起的模式崩潰。我們提出了一種基于過渡條件的訓練策略,有效防止了觀察到的模式崩潰,并同時利用無條件學習。所提出的方法不僅實現了穩定的訓練,還生成了高質量的圖像,這得益于在訓練早期階段利用了類之間共享的信息。第三,我們解決了NeRF-GAN的計算效率問題,這是一類基于神經輻射場(NeRF)和GAN集成的三維生成模型,訓練于單視圖圖像數據集。具體而言,我們重新審視了姿態條件的二維GAN,以便在推理時高效地生成三維感知的內容,通過從預訓練的NeRF-GAN中提取三維知識。我們提出了一種簡單有效的方法,利用預訓練NeRF-GAN的良好解耦潛在空間,在姿態條件的卷積網絡中進行高效推理,直接生成與基礎三維表示相對應的三維一致性圖像。最后,我們解決了在三維場景中進行物體生成的新任務,無需任何三維監督或用戶的三維放置指導。我們介紹了InseRF,一種用于在三維場景的NeRF重建中生成對象插入的新方法。基于用戶提供的文本描述和僅在參考視點中的二維邊界框,InseRF能夠在三維場景中進行可控且三維一致的物體插入,而無需顯式的三維信息作為輸入
物理啟發的生成模型(如擴散模型)構成了一類強大的生成模型家族。該模型家族的優勢在于相對穩定的訓練過程和強大的容量。然而,仍有許多可能的改進空間。在本論文中,我們首先將深入探討擴散模型在訓練和采樣方面的改進技術。擴散模型的訓練目標在數據分布為多模態時呈現出較高的方差。為了解決這一問題,我們提出了一種訓練目標,它推廣了傳統的去噪得分匹配方法,顯著減少了訓練目標的方差。除此之外,我們還引入了一種將可學習的離散潛變量整合到連續擴散模型中的訓練框架。這些潛變量簡化了擴散模型復雜的噪聲到數據映射的學習過程。
另一方面,擴散模型的采樣過程通常涉及求解微分方程。為加速采樣過程,我們提出了一種新穎的采樣算法,結合了之前常見的ODE和SDE采樣器的優點,大幅提升了預訓練擴散模型的性能。此外,我們的研究探索了在有限樣本中引入互斥力以促進生成過程中的多樣性。 在物理啟發的生成模型領域,許多物理過程都可以用于開發生成模型。我們將介紹一類基于靜電理論的新生成模型家族,稱為泊松流生成模型(PFGM)。PFGM在采樣穩健性上表現出色,并與領先的擴散模型相媲美。其擴展版本PFGM++將擴散模型和PFGM置于同一框架下,并引入了新的、更優的模型。我們還將提出一種系統化的方法,將物理過程轉化為生成模型。
生成模型在近年來顯著改變了人們工作的、創作的和學習的方式。其突出應用包括ChatGPT [1]、文本到圖像模型 [2]-[4]、文本到3D模型 [5]、[6] 和文本到視頻模型 [7]、[8]。這些能力可以極大地激發創造力,并提高眾多領域的工作效率,包括教育、游戲產業、社交媒體和專業編輯軟件。生成模型的訓練基于這樣一個假設,即訓練數據是從未知的數據分布中采樣的 [9]。現代生成模型通常使用深度神經網絡來基于有限的訓練數據逼近復雜的數據分布,并通過從這些建模的分布中采樣來生成新的數據點。
在生成建模中使用的各種數據類型中,高維數據由于維度詛咒而面臨著顯著的挑戰。隨著維度的增加,數據空間的體積呈指數級擴展。這一現象使得在高維空間中用有限的訓練數據有效捕獲和建模數據分布變得困難。此外,感興趣的數據分布通常高度復雜且呈多模態,進一步增加了生成建模的難度。近年來,擴散模型 [10]–[12] 以及更廣泛的物理啟發生成模型 [13],在處理高維數據的生成任務中,展現了強大的框架并取得了令人印象深刻的結果。在擴散模型之前,主要的方法包括:(i)利用對抗訓練目標的生成對抗網絡(GANs [14]);(ii)使用最大似然目標訓練的模型,如PixelCNN [15] 和正規化流模型 [16]、[17];(iii)變分自編碼器(VAEs)[18]、[19] 以及(iv)基于能量的模型 [20]、[21]。然而,每種方法都有其自身的缺點:(i)可能導致訓練不穩定和生成樣本的多樣性低;(ii)需要特定的架構設計,可能限制模型的容量;(iii)需要多個神經網絡的仔細協調;(iv)訓練和采樣速度較慢。利用自然的物理過程作為編碼器將數據轉化為噪聲,擴散模型通過逆轉這些物理過程來執行生成任務。這種方法使它們繞過了早期生成模型的許多限制。
1.1 通過逆轉物理過程進行生成建模
基于熱力學的原理 [10],擴散模型涉及兩個對立的過程:一個前向過程將數據分布逐漸轉化為一個更簡單的先驗分布,另一個反向過程通過逐步去噪從該噪聲先驗分布中生成樣本。擴散模型中的前向過程是一個簡單的布朗運動,通過逐步增加高斯噪聲來降解數據。為了逆轉這一過程,只需學習一個時間依賴的向量場,即得分函數,并迭代求解一個微分方程 [22]。與GANs和VAEs不同,擴散模型的訓練不需要多個神經網絡之間的同步,從而使訓練過程更加穩定。此外,它們在架構設計上不受限,采用類似于神經網絡串聯的迭代過程,從而增強了整體容量。這種穩定性和增強的容量使擴散模型能夠有效擴展到大規模數據集。
盡管擴散模型具有諸多優勢,但它們仍面臨一些挑戰,包括在處理多模態數據時高方差的訓練過程,以及緩慢的迭代采樣過程。此外,獨立同分布(i.i.d.)的采樣過程往往會導致重復的樣本。這些問題強調了在復雜數據集上穩定和改進擴散模型訓練方法的必要性,并且需要新技術來加速采樣過程并提高小批量樣本的多樣性。此外,擴散模型只是眾多物理啟發生成模型之一。除布朗運動外,仍有許多物理過程尚未開發,可以用來構建生成模型。這引出了一個重要問題:我們能否發現其他物理啟發的生成模型,它們展示出更好的性能?在接下來的部分中,我們將簡要總結擴散模型的改進訓練和采樣技術,并討論我們開發其他物理啟發生成模型的研究,這些將在后續章節中詳細闡述。
1.1.1 擴散模型的改進訓練技術
擴散模型的訓練利用了一種擾動-去噪方法來估計向量場。其過程是先通過高斯噪聲擾動干凈的數據,然后網絡從這些擾動樣本中重構原始數據 [12]。然而,對于復雜的多模態數據,許多干凈的數據點可能被擾動為相似的噪聲樣本,導致訓練目標不明確并引發不穩定性。
在文獻 [23] 中,我們通過多個干凈數據點的加權求和來估計真實目標,精確地指示從擾動樣本到真實向量場的方向。該新穎的訓練目標推廣了傳統的單點估計方法,顯著減少了訓練目標中的方差。因此,在各種擴散模型變體中,樣本質量得到了提高,訓練過程更加穩定,訓練速度也得到了加快。
擴散模型面臨的另一個挑戰是,需要學習一個從單峰高斯分布到多峰數據分布的非線性且高度復雜的映射。這種復雜性增加了訓練的難度,并導致生成常微分方程(ODE)[24] 軌跡呈現強烈的曲率。為解決這一問題,我們在擴散模型中引入了離散潛變量。這些離散潛變量有助于捕獲數據分布中的不同模式,而擴散模型的任務則轉變為基于給定的離散潛變量捕獲每個模式內的連續變化。離散與連續變化的分離建模顯著簡化了模型復雜的噪聲到數據映射的學習過程。這一方法有效降低了擴散模型生成ODE的曲率,尤其是在較大的擴散時間下,整體訓練損失得到了減少。
1.1.2 擴散模型的改進采樣技術
在擴散模型的采樣過程中,求解微分方程通常涉及速度和質量之間的權衡。確定性采樣器(基于ODE的)[25]–[27] 速度快,但性能達到平臺期,而隨機采樣器(基于SDE的)[27]、[28] 樣本質量更好,但速度較慢。我們的分析將這種差異歸因于采樣誤差:ODE采樣器的離散化誤差較小,而SDE中的隨機性會收縮采樣過程中的累積誤差 [29]。
基于這些見解,在文獻 [29] 中,我們提出了一種名為Restart的新采樣算法,該算法結合了ODE和SDE的優點。該方法在附加的前向步驟中加入大量噪聲,并嚴格遵循逆ODE過程。前向噪聲的引入增強了隨機性的收縮效應,而逆ODE過程的遵循則加快了采樣速度。這種將隨機性和確定性采樣過程分離的方法極為有效,Restart在標準基準(CIFAR-10和ImageNet-64)上超過了SDE和ODE采樣器的速度和質量,并在大規模文本到圖像的Stable Diffusion模型中展示了文本-圖像對齊、視覺質量和多樣性的卓越平衡。
傳統上,擴散模型從模型分布中生成獨立同分布的樣本。然而,在實際操作中,模型通常需要多次采樣以獲得一組多樣化的小批量樣本,這會帶來與采樣時間無關的成本。我們提出超越獨立樣本假設,以提高樣本的多樣性和效率。我們的方法引入了一種擴展的基于擴散的生成采樣方法,稱為粒子引導。在這種方法中,聯合粒子的時間演化勢通過在樣本(粒子)之間加入互斥力來強制多樣性。根據實驗結果,我們的框架在文本到圖像生成和分子構象生成等應用中提高了樣本的多樣性并減輕了記憶效應。
1.1.3 基于其他物理過程的生成模型
以擴散模型為顯著例子,物理啟發的生成模型包含一個前向過程,該過程將復雜的數據分布簡化為逐步的先驗分布,隨后通過一個反向過程(即采樣過程)逐步將這些先驗分布還原為原始數據分布。因此,為了定義新的物理啟發生成模型,必須確定一個合適的前向過程。該過程應自然地隨著時間簡化數據分布,并且是可逆的,同時其相關的向量場應該易于被神經網絡學習。 借助靜電學原理,我們為物理啟發的生成模型開辟了一條新路徑,并介紹了泊松流生成模型(Poisson Flow Generative Models, PFGM)[30] 及其擴展版本PFGM++ [31]。PFGM將數據解釋為增廣空間中的電荷。如圖1.1所示,當我們從數據支撐遠離足夠遠時,電荷分布坍縮為一個點電荷,電場在各個方向上呈現輻射狀。因此,可以證明這些電荷發出的電場線定義了數據分布和大半球上均勻分布之間的雙射。實驗結果表明,這一新模型家族在樣本質量、采樣速度和穩健性方面超越了擴散模型。此外,我們還探索了物理過程和生成模型之間的對偶性,旨在概念化和設計更多新的物理啟發生成模型 [13]。
本論文分為三個主題部分。下面簡要概述每個部分的內容。 第一部分 重點開發新技術,旨在穩定擴散模型的訓練,并在處理復雜的多模態數據集時,優化生成軌跡。
第三章 我們通過引入參考批次來解決擴散模型目標中的高方差問題,并使用參考批次計算加權條件得分,作為更穩定的訓練目標。我們展示了這一過程在具有挑戰性的中間階段中,通過減少訓練目標協方差(的跡)確實起到了幫助作用。本章基于文獻 [23]。
第四章 我們通過一個編碼器推斷可學習的離散潛變量,并對擴散模型和編碼器進行端到端訓練。離散潛變量通過降低擴散模型生成ODE的曲率,顯著簡化了其復雜的噪聲到數據映射的學習過程,并通過ODE采樣器提高了在各種數據集上的樣本質量。本章基于文獻 [32]。
第二部分 討論了加速擴散模型采樣過程的技術,以及通過施加樣本之間的互斥力來促進多樣性。所有討論的技術都不需要重新訓練,且可以直接應用于任何預訓練的擴散模型。
第五章 我們提出了一種名為Restart的新采樣算法,結合了先前ODE和SDE采樣器的優勢。Restart算法在附加的前向步驟中加入大量噪聲,并嚴格遵循逆ODE過程。實驗結果表明,Restart采樣器在速度和精度上均超過了先前的SDE和ODE采樣器。本章基于文獻 [29]。
第六章 我們提出了粒子引導,一種擴展的基于擴散的生成采樣方法,其中通過一個聯合粒子的時間演化勢來強制樣本多樣性。在條件圖像生成中,我們測試了該框架,并證明其在不影響質量的情況下增加了多樣性;在分子構象生成中,我們改進了相較于先前方法的中位誤差。本章基于文獻 [33]。
第三部分 探討了一類新型的生成模型,這些模型基于靜電理論,并與擴散模型在擴展視角下進行了統一。本部分還展望了通過物理過程構建生成模型的方法論。
第七章 我們介紹了一種新型生成模型——泊松流生成模型(PFGM),基于靜電理論。我們將數據點解釋為增廣空間中 z=0 超平面上的電荷,生成一個高維電場(泊松方程解的梯度)。我們證明了,如果這些電荷沿電場線向上流動,它們在 z=0 平面的初始分布會轉化為半徑為 r 的半球上的分布,并且在 r → ∞ 時變得均勻。我們展示了PFGM在圖像生成速度上提供了比先前最先進擴散模型更好的性能。本章基于文獻 [30]。
第八章 我們擴展了PFGM中使用的靜電理論,將擴散模型與PFGM統一起來。更有趣的是,在兩者之間的插值揭示了一個性能最優的新平衡點,達到了圖像生成的新標桿性能。我們為為什么PFGM和擴散模型都是次優解提供了理論解釋。本章基于文獻 [31]。
第九章 我們提出了一個統一的框架和算法,將物理過程轉化為平滑的密度流生成模型。此外,我們基于底層物理偏微分方程(PDE)的色散關系,提出了一種分類標準。這種理論方法可應用于各種物理PDE,從而發現新的生成模型家族。本章基于文獻 [13]。
第十章 我們總結了論文內容并討論了當前的局限性。
在本論文中,我們發現隨機平滑的可證魯棒性是以類別不公平性為代價的。我們進一步分析了改進基礎模型訓練過程的方法及其局限性。對于通用的非平滑表征模型,我們發現自監督對比學習與監督的鄰域成分分析之間存在聯系,這自然地使我們提出了一個可以實現更高準確性和魯棒性的通用框架。此外,我們意識到當前基礎表征模型的評估實踐涉及在各種現實任務上進行大量實驗,這既耗費計算資源又容易導致測試集泄漏。為此,我們提出了一種更輕量級、保護隱私且健全的評估框架,通過利用合成數據來評估視覺和語言模型。
深度神經網絡對人眼難以察覺的對抗性擾動的脆弱性,自從開創性工作[170, 7]發表以來,已經引起了機器學習領域廣泛的關注。這一問題在多個機器學習領域中都是一個重要的關注點,從計算機視覺[170]到語音識別[17],無不如此。特別是在安全關鍵的應用中,如自動駕駛汽車和監控系統,幾乎無法容忍任何錯誤決策。因此,深度神經網絡中對抗樣本的存在,促使了對魯棒性量化的研究,以及旨在增強這種魯棒性的訓練算法的設計[42, 47, 95]。在本論文中,我們旨在理解和改進現代機器學習模型的表征魯棒性。
表征魯棒性指的是神經網絡模型中隱含空間的可靠性。這一概念在機器學習中尤為重要,因為網絡的隱藏層應該從輸入數據中捕捉到復雜的模式。在本論文中,我們將表征魯棒性定義為這些隱藏表示在面對不同輸入或擾動時,能夠維持理想的可信屬性的能力。理想的可信屬性可能包括準確性、公平性、對抗性魯棒性等。對于一個通用的表征網絡 Φ(?)\Phi(\cdot)Φ(?),隱含空間的自然選擇是表征網絡的輸出空間。這些構建的空間通過表征學習被專門訓練用于編碼關于輸入數據的關鍵信息,使網絡能夠通過一個簡單的任務特定下游網絡執行分類、回歸或生成等各種任務。另一方面,在平滑模型的背景下,平滑濾波器應用于整個基礎網絡
。因此,我們將直接將網絡的
視為評估表征魯棒性的目標空間。在這種情況下,我們特別感興趣的是基礎網絡和平滑網絡之間的不同表現。 研究表征魯棒性對于推動機器學習領域的發展至關重要,原因有以下幾點。首先,正如將在論文的后續章節中討論的那樣,對每個組件(如表征網絡、平滑操作符等)的深入理解有助于我們更加謹慎和意識到這些操作可能產生的副作用。這種理解也將為改進這些網絡設計奠定基礎。其次,隨著機器學習社區逐漸將重點轉向任務無關的預訓練和任務特定的微調,魯棒的表征變得越來越重要。在安全關鍵的應用中,由于脆弱表征導致的錯誤預測可能會產生嚴重后果。從這個角度來看,表征魯棒性是許多可信賴AI領域的基礎,因為預訓練的表征網絡將對任何基于它的機器學習系統的整體可信賴性產生貢獻。通過研究和增強表征魯棒性,可以構建更具彈性的AI系統,并防止錯誤的傳播。
生成建模已經成為人工智能的一個熱門應用。然而,當生成模型被錯誤指定,或當生成模型估計器被修改以遵守差分隱私等隱私概念時,模型性能可能會受到負面影響。在本論文中,我們通過展示四項不同的研究,探討了模型錯誤指定和差分隱私下的生成建模。
我們首先介紹了生成建模的相關工作。隨后,我們深入探討了在模型錯誤指定和差分隱私挑戰下研究生成建模的必要性。
作為初步貢獻,我們考慮了用于密度估計的生成建模。處理模型錯誤指定的一種方法是放寬模型假設。我們展示了這一方法在非參數模型中也具有幫助作用。具體而言,我們研究了一種最近提出的非參數準貝葉斯密度估計器,并發現其強模型假設是有限數據集下表現不佳的原因。我們提出了一種自回歸擴展,放寬模型假設,以允許先驗特征依賴關系。
接下來,我們考慮了用于缺失值填補的生成建模。在將當前深度生成填補方法分類為Rubin [1976]引入的不可忽略缺失模型類之后,我們擴展了變分自編碼器的公式,使其根據深度生成建模文獻中尚未研究過的不可忽略缺失模型類進行分解。這些模型顯式地對缺失機制進行建模,以防止在缺失值非隨機情況下的模型錯誤指定。
然后,本論文集中于提高差分隱私下的合成數據生成。為此,我們提出了對差分隱私合成數據樣本進行差分隱私重要性采樣的方法。我們觀察到,生成模型越好,重要性采樣的幫助越大。接著,我們通過考慮差分隱私擴散模型,進一步提高數據生成質量。我們識別了顯著提高DP圖像生成器性能的訓練策略。 我們在論文的最后進行了討論,包括對所展示工作的貢獻和局限性,并提出了未來工作的潛在方向。
在過去的十年里,經典機器學習與現代機器學習之間的差距不斷擴大。現代學習的預測性能不可比擬地更好,但更容易對經典學習進行分析,并保證其安全性、效率、公平性等特性。在本論文中,我探討了通過審慎和戰略性地結合經典技術,是否有可能將這些期望的特性恢復到現代機器學習中。我將經典與現代學習的結合歸納為兩種高級策略:(1)封裝,即通過經典分析技術從現代的、不透明的模型中提取可靠的性能保證,或(2)替換,即從經典的基礎構建現代模型的某些組件,以提高整體的效率、可處理性和/或表達能力。這些努力在機器學習的多個領域帶來了新的進展。本論文的最重要貢獻涉及元分析,這是一種結構化的問答形式,作為循證醫學的基礎。經典元分析技術基于隨機對照試驗,其因果效度受到信任;相比之下,現代回歸模型是在大型觀察性數據庫上訓練的,其因果效度不被信任。我展示了如何在不犧牲效度的情況下將不可信的數據納入元分析中。這涉及對完全共形預測的基本改進,這些改進具有普遍的意義。在一個更聚焦的醫療保健應用中,我推廣了經典的、手工設計的心率變異性統計,使其能夠通過監督學習進行微調,成為深度神經網絡的一部分,從而生成更準確的、生理學知情的模型。我還提出了一些可以在未來機器學習模型和算法中使用的基礎計算原語。第一個是一種算法,可以在O(log T)的并行時間內(近似)運行T步非線性RNN。該算法的關鍵創新在于通過一種證明一致的局部、可并行修正方案,用深度上的非線性替代時間上的非線性。通過這種方式,經典線性動態系統(也稱為狀態空間模型)可以堆疊起來形成快速的非線性序列模型。另一個新的計算原語是在所有正交多項式序列集合上進行基于梯度的優化。這種優化形式與信號處理和優化中的許多不同問題都有聯系。最后,我提出了基于學習理論和優化中廣泛使用的幾何邊界概念的公平性標準,以規避計算的不可處理性。
隨著機器學習算法在高風險應用中不斷開發和部署,確保其可靠性已變得至關重要。本論文介紹了在機器學習中提高可靠性的算法進展,重點強調兩個關鍵維度:魯棒性和可解釋性。 本論文的第一部分側重于魯棒性,即保證算法在各種數據不確定性下仍能提供穩定和可預測的性能。我們研究了在不同數據不確定性來源下的學習魯棒性,包括基本的統計誤差以及數據噪聲和損壞。我們的研究揭示了這些不同來源如何相互作用并對數據驅動決策產生影響。我們引入了針對特定不確定性來源量身定制的新穎的分布魯棒優化方法。我們的研究結果表明,對一種來源的保護可能會增加對另一種來源的脆弱性。為了解決這個問題,我們開發了分布模糊集,能夠同時提供對所有來源的整體魯棒性。在每種情況下,我們證明了我們的新方法實現了“高效”的魯棒性,在平均性能與樣本外保證之間實現了最佳平衡。我們的新算法被應用于各種場景,包括訓練魯棒神經網絡,在這些場景中顯著優于現有基準。 本論文的第二部分探討了可解釋性,這是高風險環境下決策支持工具的一個關鍵屬性,要求算法能夠為其決策提供可理解的解釋。我們的工作在這一部分的動機來自于數據驅動的個性化患者治療——一種越來越受歡迎的機器學習應用。在這個強化學習問題中,可解釋性至關重要:醫生不能依賴于一個黑箱算法來開具治療方案。我們在理論上引入了學習連續狀態空間動態系統最簡潔離散表示的問題。在患者治療的背景下,這相當于基于患者治療過程中不斷變化的特征來確定治療組。令人驚訝的是,我們在理論上證明,僅從觀察到的歷史樣本路徑數據中就有可能學習到動態系統的最簡潔表示。隨后,我們開發了一種算法,MRL,能夠學習這種簡潔的表示,從而增強可解釋性和可操作性。
結構化文檔,如科學文獻和醫療記錄,是知識的豐富資源。然而,大多數自然語言處理技術將這些文檔視為純文本,忽略了布局結構和視覺信號的重要性。為了全面理解這些文檔,對這種結構的建模是至關重要的。本論文提出了從結構化文檔中提取結構化知識的新算法。首先,我們提出GraphIE,一個信息提取框架,專門設計用來建模結構化文檔中的非局部和非順序依賴關系。GraphIE 通過圖神經網絡利用結構信息來增強單詞級的標簽預測。在三個提取任務的評估中,GraphIE始終超過僅基于純文本運行的順序模型。接下來,我們深入研究化學領域的信息提取。科學文獻經常以信息圖形的形式描述分子和反應。為了提取這些分子,我們開發了MolScribe,一個將分子圖像轉化為其圖形結構的工具。MolScribe在圖像到圖形生成模型中整合了符號化學約束,顯示出對處理各種繪圖風格和習慣的穩健性能。為了提取反應方案,我們提出了RxnScribe,它通過序列生成公式解析反應圖。盡管RxnScribe是在一個適度的數據集上進行訓練的,但它在不同類型的圖表上都表現出強勁的性能。最后,我們介紹TextReact,一種直接增強預測化學與文本檢索的新方法,繞過了中間的信息提取步驟。我們在反應條件推薦和逆合成預測的實驗中展示了TextReact在從文獻中檢索相關信息并泛化到新輸入的有效性。
盡管在深度學習方面已經取得了巨大的實踐進展,但我們對是什么使深度學習工作得很好以及為什么這樣做缺乏清晰的理論理解。在本文中,我們采用“自然科學”的方法來構建深度學習的理論。我們首先確定在跨越各種不同背景的實際深度網絡中出現的各種經驗屬性。然后,我們討論了這些實證發現可以如何用來通知理論。具體而言,我們證明:(1)與監督學習相比,經過自監督學習訓練的先進深度網絡盡管過度參數化,但在特定條件下仍能實現有限的泛化差距。(2)具有相似性能和架構的模型通常會收斂到相似的內部表示,即使它們的訓練方法有很大的不同(例如:監督學習和自監督學習)(3)插值分類器服從一種分布泛化形式——它們從訓練分布中收斂到一種條件采樣器類型。(4)深度網絡的數據擴展特性對訓練數據集的結構和噪聲水平的變化具有魯棒性。
//dash.harvard.edu/handle/1/37372168
我們的發現強調,盡管缺乏最壞情況的保證,深度網絡隱含地以可預測的、結構化的方式運行,從而為未來的理論分析奠定了基礎。
近年來,我們已經看到了預訓練神經網絡來學習可遷移到視覺和NLP中看不見的下游任務的表征的巨大好處。然而,這種學習范式在諸如設計優化或控制等決策方面的研究還不多。在這篇論文中,我們概述了兩個問題設置,可以受益于在決策制定的背景下的預訓練。首先,我們描述了一個用于自動化設計優化的設置,特別是電路設計優化,在該設置中,特定領域的先驗數據可以有效地提高基于模型的優化方法的樣本效率。本文對如何提高基于模型的進化算法和貝葉斯優化方法的樣本效率提出了新的思路,并進行了實證和理論分析。在第二個問題設置中,我們將討論如何從大型任務無關數據集中利用無監督的預訓練來提取行為表征,并進行少量的模仿學習。我們發現,當新任務的例子演示稀缺時,預訓練agent提取技能是使他們準備進行少樣本模仿的一個實用方向。
//www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-35.html
本博士論文包含了對統計因果模型領域的幾個貢獻。統計因果模型是嵌入因果假設的統計模型,允許對受外部操縱(干預)影響的隨機系統的行為進行推斷和推理。本文在因果效應估計、因果結構學習和分布魯棒(非分布廣義)預測方法等方面進行了深入的研究。我們提出了新的和一致的線性和非線性因果效應估計工具變量設置,采用數據依賴的均方預測誤差正則化。我們提出的估計量顯示,在某些情況下,均方誤差比標準和最先進的估計量都有所改善。我們表明,最近對分布穩健預測方法的研究與計量經濟學中經過充分研究的估計量有關。由此證明了一般k類估計具有分布魯棒性。此外,我們提出了一個關于干預誘發分布的分布穩健性的一般框架。在這個框架中,我們推導了分布魯棒預測方法可識別的充分條件,并給出了一些不可能的結果,證明了這些條件的必要性。提出了一種新的結構學習方法,適用于以有向樹為因果圖的加性噪聲模型。我們證明了消失可辨識性設置中的一致性,并提供了一種方法來檢驗具有漸近家族誤差控制的子結構假設,該方法在選擇后仍然有效。最后,我們提出了學習非線性時間序列模型總結圖的啟發式思想。