近期生成模型的進展已經改變了視覺內容的創作,并在計算機視覺和圖形學的多個應用中展現出巨大的潛力。然而,生成模型在日常任務中的應用受到生成過程可控性、數據需求和計算要求等挑戰的限制。本論文的重點是解決二維和三維生成模型中的這些現實世界的約束。首先,我們專注于通過遷移學習提高類條件生成對抗網絡(GAN)的數據效率。我們引入了一種新的類特定遷移學習方法,稱為cGANTransfer,旨在根據舊類與新類的相關性明確傳播知識。通過廣泛的評估,我們證明了所提出方法在條件GAN遷移中的優越性,超越了之前的方法。其次,我們研究了使用小數據集訓練類條件GAN的情況。特別地,我們發現了GAN中的條件崩潰——由小數據上的條件GAN訓練引起的模式崩潰。我們提出了一種基于過渡條件的訓練策略,有效防止了觀察到的模式崩潰,并同時利用無條件學習。所提出的方法不僅實現了穩定的訓練,還生成了高質量的圖像,這得益于在訓練早期階段利用了類之間共享的信息。第三,我們解決了NeRF-GAN的計算效率問題,這是一類基于神經輻射場(NeRF)和GAN集成的三維生成模型,訓練于單視圖圖像數據集。具體而言,我們重新審視了姿態條件的二維GAN,以便在推理時高效地生成三維感知的內容,通過從預訓練的NeRF-GAN中提取三維知識。我們提出了一種簡單有效的方法,利用預訓練NeRF-GAN的良好解耦潛在空間,在姿態條件的卷積網絡中進行高效推理,直接生成與基礎三維表示相對應的三維一致性圖像。最后,我們解決了在三維場景中進行物體生成的新任務,無需任何三維監督或用戶的三維放置指導。我們介紹了InseRF,一種用于在三維場景的NeRF重建中生成對象插入的新方法。基于用戶提供的文本描述和僅在參考視點中的二維邊界框,InseRF能夠在三維場景中進行可控且三維一致的物體插入,而無需顯式的三維信息作為輸入
大型生成模型帶來了驚人的成果,并徹底改變了人工智能。在本論文中,我將討論我在推進這些模型基礎上的研究,重點解決從現有數據中學習的瓶頸以及超越現有知識發現的挑戰。首先,我將描述我們為消除Transformer架構的上下文大小限制所做的努力。我們的建模和訓練方法,包括BlockwiseTransformer和RingAttention,允許在保持可擴展性的同時實現近乎無限的上下文大小。接下來,我將討論大上下文在世界模型學習和決策中的應用。這包括Large World Model,這是世界上首個人工智能,能夠在百萬個標記的上下文中同時對文本、圖像和小時級視頻進行建模。然后,我將介紹我的研究,旨在讓AI能夠發現數據并自主學習。我將討論我們在無需人為指定領域知識的情況下學習游戲技能的工作,為超越模仿現有數據的學習鋪平道路。最后,我將展望我們應構建的下一代大型生成模型,重點關注高效擴展、推理以及在一般領域中的發現能力的進展。
物理啟發的生成模型(如擴散模型)構成了一類強大的生成模型家族。該模型家族的優勢在于相對穩定的訓練過程和強大的容量。然而,仍有許多可能的改進空間。在本論文中,我們首先將深入探討擴散模型在訓練和采樣方面的改進技術。擴散模型的訓練目標在數據分布為多模態時呈現出較高的方差。為了解決這一問題,我們提出了一種訓練目標,它推廣了傳統的去噪得分匹配方法,顯著減少了訓練目標的方差。除此之外,我們還引入了一種將可學習的離散潛變量整合到連續擴散模型中的訓練框架。這些潛變量簡化了擴散模型復雜的噪聲到數據映射的學習過程。
另一方面,擴散模型的采樣過程通常涉及求解微分方程。為加速采樣過程,我們提出了一種新穎的采樣算法,結合了之前常見的ODE和SDE采樣器的優點,大幅提升了預訓練擴散模型的性能。此外,我們的研究探索了在有限樣本中引入互斥力以促進生成過程中的多樣性。 在物理啟發的生成模型領域,許多物理過程都可以用于開發生成模型。我們將介紹一類基于靜電理論的新生成模型家族,稱為泊松流生成模型(PFGM)。PFGM在采樣穩健性上表現出色,并與領先的擴散模型相媲美。其擴展版本PFGM++將擴散模型和PFGM置于同一框架下,并引入了新的、更優的模型。我們還將提出一種系統化的方法,將物理過程轉化為生成模型。
生成模型在近年來顯著改變了人們工作的、創作的和學習的方式。其突出應用包括ChatGPT [1]、文本到圖像模型 [2]-[4]、文本到3D模型 [5]、[6] 和文本到視頻模型 [7]、[8]。這些能力可以極大地激發創造力,并提高眾多領域的工作效率,包括教育、游戲產業、社交媒體和專業編輯軟件。生成模型的訓練基于這樣一個假設,即訓練數據是從未知的數據分布中采樣的 [9]。現代生成模型通常使用深度神經網絡來基于有限的訓練數據逼近復雜的數據分布,并通過從這些建模的分布中采樣來生成新的數據點。
在生成建模中使用的各種數據類型中,高維數據由于維度詛咒而面臨著顯著的挑戰。隨著維度的增加,數據空間的體積呈指數級擴展。這一現象使得在高維空間中用有限的訓練數據有效捕獲和建模數據分布變得困難。此外,感興趣的數據分布通常高度復雜且呈多模態,進一步增加了生成建模的難度。近年來,擴散模型 [10]–[12] 以及更廣泛的物理啟發生成模型 [13],在處理高維數據的生成任務中,展現了強大的框架并取得了令人印象深刻的結果。在擴散模型之前,主要的方法包括:(i)利用對抗訓練目標的生成對抗網絡(GANs [14]);(ii)使用最大似然目標訓練的模型,如PixelCNN [15] 和正規化流模型 [16]、[17];(iii)變分自編碼器(VAEs)[18]、[19] 以及(iv)基于能量的模型 [20]、[21]。然而,每種方法都有其自身的缺點:(i)可能導致訓練不穩定和生成樣本的多樣性低;(ii)需要特定的架構設計,可能限制模型的容量;(iii)需要多個神經網絡的仔細協調;(iv)訓練和采樣速度較慢。利用自然的物理過程作為編碼器將數據轉化為噪聲,擴散模型通過逆轉這些物理過程來執行生成任務。這種方法使它們繞過了早期生成模型的許多限制。
1.1 通過逆轉物理過程進行生成建模
基于熱力學的原理 [10],擴散模型涉及兩個對立的過程:一個前向過程將數據分布逐漸轉化為一個更簡單的先驗分布,另一個反向過程通過逐步去噪從該噪聲先驗分布中生成樣本。擴散模型中的前向過程是一個簡單的布朗運動,通過逐步增加高斯噪聲來降解數據。為了逆轉這一過程,只需學習一個時間依賴的向量場,即得分函數,并迭代求解一個微分方程 [22]。與GANs和VAEs不同,擴散模型的訓練不需要多個神經網絡之間的同步,從而使訓練過程更加穩定。此外,它們在架構設計上不受限,采用類似于神經網絡串聯的迭代過程,從而增強了整體容量。這種穩定性和增強的容量使擴散模型能夠有效擴展到大規模數據集。
盡管擴散模型具有諸多優勢,但它們仍面臨一些挑戰,包括在處理多模態數據時高方差的訓練過程,以及緩慢的迭代采樣過程。此外,獨立同分布(i.i.d.)的采樣過程往往會導致重復的樣本。這些問題強調了在復雜數據集上穩定和改進擴散模型訓練方法的必要性,并且需要新技術來加速采樣過程并提高小批量樣本的多樣性。此外,擴散模型只是眾多物理啟發生成模型之一。除布朗運動外,仍有許多物理過程尚未開發,可以用來構建生成模型。這引出了一個重要問題:我們能否發現其他物理啟發的生成模型,它們展示出更好的性能?在接下來的部分中,我們將簡要總結擴散模型的改進訓練和采樣技術,并討論我們開發其他物理啟發生成模型的研究,這些將在后續章節中詳細闡述。
1.1.1 擴散模型的改進訓練技術
擴散模型的訓練利用了一種擾動-去噪方法來估計向量場。其過程是先通過高斯噪聲擾動干凈的數據,然后網絡從這些擾動樣本中重構原始數據 [12]。然而,對于復雜的多模態數據,許多干凈的數據點可能被擾動為相似的噪聲樣本,導致訓練目標不明確并引發不穩定性。
在文獻 [23] 中,我們通過多個干凈數據點的加權求和來估計真實目標,精確地指示從擾動樣本到真實向量場的方向。該新穎的訓練目標推廣了傳統的單點估計方法,顯著減少了訓練目標中的方差。因此,在各種擴散模型變體中,樣本質量得到了提高,訓練過程更加穩定,訓練速度也得到了加快。
擴散模型面臨的另一個挑戰是,需要學習一個從單峰高斯分布到多峰數據分布的非線性且高度復雜的映射。這種復雜性增加了訓練的難度,并導致生成常微分方程(ODE)[24] 軌跡呈現強烈的曲率。為解決這一問題,我們在擴散模型中引入了離散潛變量。這些離散潛變量有助于捕獲數據分布中的不同模式,而擴散模型的任務則轉變為基于給定的離散潛變量捕獲每個模式內的連續變化。離散與連續變化的分離建模顯著簡化了模型復雜的噪聲到數據映射的學習過程。這一方法有效降低了擴散模型生成ODE的曲率,尤其是在較大的擴散時間下,整體訓練損失得到了減少。
1.1.2 擴散模型的改進采樣技術
在擴散模型的采樣過程中,求解微分方程通常涉及速度和質量之間的權衡。確定性采樣器(基于ODE的)[25]–[27] 速度快,但性能達到平臺期,而隨機采樣器(基于SDE的)[27]、[28] 樣本質量更好,但速度較慢。我們的分析將這種差異歸因于采樣誤差:ODE采樣器的離散化誤差較小,而SDE中的隨機性會收縮采樣過程中的累積誤差 [29]。
基于這些見解,在文獻 [29] 中,我們提出了一種名為Restart的新采樣算法,該算法結合了ODE和SDE的優點。該方法在附加的前向步驟中加入大量噪聲,并嚴格遵循逆ODE過程。前向噪聲的引入增強了隨機性的收縮效應,而逆ODE過程的遵循則加快了采樣速度。這種將隨機性和確定性采樣過程分離的方法極為有效,Restart在標準基準(CIFAR-10和ImageNet-64)上超過了SDE和ODE采樣器的速度和質量,并在大規模文本到圖像的Stable Diffusion模型中展示了文本-圖像對齊、視覺質量和多樣性的卓越平衡。
傳統上,擴散模型從模型分布中生成獨立同分布的樣本。然而,在實際操作中,模型通常需要多次采樣以獲得一組多樣化的小批量樣本,這會帶來與采樣時間無關的成本。我們提出超越獨立樣本假設,以提高樣本的多樣性和效率。我們的方法引入了一種擴展的基于擴散的生成采樣方法,稱為粒子引導。在這種方法中,聯合粒子的時間演化勢通過在樣本(粒子)之間加入互斥力來強制多樣性。根據實驗結果,我們的框架在文本到圖像生成和分子構象生成等應用中提高了樣本的多樣性并減輕了記憶效應。
1.1.3 基于其他物理過程的生成模型
以擴散模型為顯著例子,物理啟發的生成模型包含一個前向過程,該過程將復雜的數據分布簡化為逐步的先驗分布,隨后通過一個反向過程(即采樣過程)逐步將這些先驗分布還原為原始數據分布。因此,為了定義新的物理啟發生成模型,必須確定一個合適的前向過程。該過程應自然地隨著時間簡化數據分布,并且是可逆的,同時其相關的向量場應該易于被神經網絡學習。 借助靜電學原理,我們為物理啟發的生成模型開辟了一條新路徑,并介紹了泊松流生成模型(Poisson Flow Generative Models, PFGM)[30] 及其擴展版本PFGM++ [31]。PFGM將數據解釋為增廣空間中的電荷。如圖1.1所示,當我們從數據支撐遠離足夠遠時,電荷分布坍縮為一個點電荷,電場在各個方向上呈現輻射狀。因此,可以證明這些電荷發出的電場線定義了數據分布和大半球上均勻分布之間的雙射。實驗結果表明,這一新模型家族在樣本質量、采樣速度和穩健性方面超越了擴散模型。此外,我們還探索了物理過程和生成模型之間的對偶性,旨在概念化和設計更多新的物理啟發生成模型 [13]。
本論文分為三個主題部分。下面簡要概述每個部分的內容。 第一部分 重點開發新技術,旨在穩定擴散模型的訓練,并在處理復雜的多模態數據集時,優化生成軌跡。
第三章 我們通過引入參考批次來解決擴散模型目標中的高方差問題,并使用參考批次計算加權條件得分,作為更穩定的訓練目標。我們展示了這一過程在具有挑戰性的中間階段中,通過減少訓練目標協方差(的跡)確實起到了幫助作用。本章基于文獻 [23]。
第四章 我們通過一個編碼器推斷可學習的離散潛變量,并對擴散模型和編碼器進行端到端訓練。離散潛變量通過降低擴散模型生成ODE的曲率,顯著簡化了其復雜的噪聲到數據映射的學習過程,并通過ODE采樣器提高了在各種數據集上的樣本質量。本章基于文獻 [32]。
第二部分 討論了加速擴散模型采樣過程的技術,以及通過施加樣本之間的互斥力來促進多樣性。所有討論的技術都不需要重新訓練,且可以直接應用于任何預訓練的擴散模型。
第五章 我們提出了一種名為Restart的新采樣算法,結合了先前ODE和SDE采樣器的優勢。Restart算法在附加的前向步驟中加入大量噪聲,并嚴格遵循逆ODE過程。實驗結果表明,Restart采樣器在速度和精度上均超過了先前的SDE和ODE采樣器。本章基于文獻 [29]。
第六章 我們提出了粒子引導,一種擴展的基于擴散的生成采樣方法,其中通過一個聯合粒子的時間演化勢來強制樣本多樣性。在條件圖像生成中,我們測試了該框架,并證明其在不影響質量的情況下增加了多樣性;在分子構象生成中,我們改進了相較于先前方法的中位誤差。本章基于文獻 [33]。
第三部分 探討了一類新型的生成模型,這些模型基于靜電理論,并與擴散模型在擴展視角下進行了統一。本部分還展望了通過物理過程構建生成模型的方法論。
第七章 我們介紹了一種新型生成模型——泊松流生成模型(PFGM),基于靜電理論。我們將數據點解釋為增廣空間中 z=0 超平面上的電荷,生成一個高維電場(泊松方程解的梯度)。我們證明了,如果這些電荷沿電場線向上流動,它們在 z=0 平面的初始分布會轉化為半徑為 r 的半球上的分布,并且在 r → ∞ 時變得均勻。我們展示了PFGM在圖像生成速度上提供了比先前最先進擴散模型更好的性能。本章基于文獻 [30]。
第八章 我們擴展了PFGM中使用的靜電理論,將擴散模型與PFGM統一起來。更有趣的是,在兩者之間的插值揭示了一個性能最優的新平衡點,達到了圖像生成的新標桿性能。我們為為什么PFGM和擴散模型都是次優解提供了理論解釋。本章基于文獻 [31]。
第九章 我們提出了一個統一的框架和算法,將物理過程轉化為平滑的密度流生成模型。此外,我們基于底層物理偏微分方程(PDE)的色散關系,提出了一種分類標準。這種理論方法可應用于各種物理PDE,從而發現新的生成模型家族。本章基于文獻 [13]。
第十章 我們總結了論文內容并討論了當前的局限性。
生成建模的最新進展正在改變視覺內容的創作,并在計算機視覺和圖形學的多個應用中顯示出巨大的前景。然而,生成模型在日常任務中的應用受到生成過程可控性、數據需求和計算要求等挑戰的制約。本論文重點解決二維和三維生成模型在真實世界約束下所面臨的這些問題。
首先,我們致力于通過遷移學習提高類別條件生成對抗網絡(GAN)的數據效率。我們引入了一種新的類別特定遷移學習方法,稱為cGANTransfer,基于類別之間的相關性,明確傳播舊類別的知識到新類別。通過廣泛的評估,我們證明了該方法在條件GAN遷移學習中的優越性,優于之前的方法。
其次,我們研究了使用小數據集訓練類別條件GANs的問題。我們特別指出了在小數據集上訓練條件GAN時出現的條件崩潰——即模式崩潰。為了解決這一問題,我們提出了一種基于過渡條件的訓練策略,該策略通過額外利用無條件學習,有效地防止了觀察到的模式崩潰。這種方法不僅實現了穩定的訓練,還通過在訓練的早期階段利用類別間共享信息,生成了高質量的圖像。
第三,我們解決了NeRF-GANs的計算效率問題。NeRF-GANs是一類基于神經輻射場(NeRFs)和GANs集成的3D感知生成模型,訓練于單視圖圖像數據集上。具體而言,我們重新審視了姿態條件的二維GANs,以在推理階段實現高效的3D感知生成。通過從預訓練的NeRF-GANs中提取3D知識,我們提出了一種簡單而有效的方法,用于高效推理3D感知GANs。該方法基于在姿態條件卷積網絡中重用預訓練的NeRF-GAN的良好解耦的潛在空間,以直接生成與底層3D表示一致的3D圖像。
最后,我們解決了在3D場景中進行物體生成的新任務,而無需任何3D監督或用戶提供的3D放置指導。我們引入了InseRF,這是一種在NeRF重建的3D場景中進行生成物體插入的新方法。基于用戶提供的文本描述和參考視圖中的二維邊界框,InseRF能夠在無需明確的3D信息作為輸入的情況下,實現對3D場景中物體的可控且3D一致的插入。
生成建模已經成為人工智能的一個熱門應用。然而,當生成模型被錯誤指定,或當生成模型估計器被修改以遵守差分隱私等隱私概念時,模型性能可能會受到負面影響。在本論文中,我們通過展示四項不同的研究,探討了模型錯誤指定和差分隱私下的生成建模。
我們首先介紹了生成建模的相關工作。隨后,我們深入探討了在模型錯誤指定和差分隱私挑戰下研究生成建模的必要性。
作為初步貢獻,我們考慮了用于密度估計的生成建模。處理模型錯誤指定的一種方法是放寬模型假設。我們展示了這一方法在非參數模型中也具有幫助作用。具體而言,我們研究了一種最近提出的非參數準貝葉斯密度估計器,并發現其強模型假設是有限數據集下表現不佳的原因。我們提出了一種自回歸擴展,放寬模型假設,以允許先驗特征依賴關系。
接下來,我們考慮了用于缺失值填補的生成建模。在將當前深度生成填補方法分類為Rubin [1976]引入的不可忽略缺失模型類之后,我們擴展了變分自編碼器的公式,使其根據深度生成建模文獻中尚未研究過的不可忽略缺失模型類進行分解。這些模型顯式地對缺失機制進行建模,以防止在缺失值非隨機情況下的模型錯誤指定。
然后,本論文集中于提高差分隱私下的合成數據生成。為此,我們提出了對差分隱私合成數據樣本進行差分隱私重要性采樣的方法。我們觀察到,生成模型越好,重要性采樣的幫助越大。接著,我們通過考慮差分隱私擴散模型,進一步提高數據生成質量。我們識別了顯著提高DP圖像生成器性能的訓練策略。 我們在論文的最后進行了討論,包括對所展示工作的貢獻和局限性,并提出了未來工作的潛在方向。
分布變遷仍然是成功和可靠部署機器學習(ML)系統的重大障礙。解決這些脆弱性的長期方案只能通過理解基準測試根本無法捕捉所有可能發生的變化而實現;同樣重要的是,通過仔細實驗AI系統,理解它們在實際分布變遷下的失敗。本論文描述了我在構建可信賴和可靠的機器學習基礎方面的工作。調查的工作大致分為三個主要類別:(i)設計正式的、實用的真實世界分布變遷結構表征;(ii)利用這種結構開發證明正確且高效的學習算法,能夠穩健處理這種變遷;以及(iii)實驗現代ML系統,理解現實世界重尾和分布變遷的實際影響,包括平均情況和最壞情況。
第一部分描述了可擴展地認證深度神經網絡對對抗攻擊的穩健性的工作。所提出的方法可用于認證對測試樣本、訓練數據或更一般地對任何影響模型最終預測的輸入的攻擊的穩健性。在第二部分中,我們關注變遷的潛變量模型,借鑒因果關系和其他結構化編碼的概念。我們展示了這些模型如何通過環境/干預復雜性這一新視角,進行使用多種分布進行穩健深度學習的方法的正式分析。環境/干預復雜性是領域泛化和因果表示學習的核心統計測量,通過訓練分布數量和多樣性來量化誤差和/或結構化可識別性條件。最后,在第三部分中,我們廣泛探索了更好地理解和利用自然數據中的變化的方法,并展示了所得見解如何促進設計在現實世界中更加穩健和可靠的新方法。
預測算法通過其在未見測試數據上的表現來評估和重視。在經典的機器學習(ML)中,通常假設這些數據是相互獨立地從與訓練算法所用數據集相同的分布中抽取的(這被稱為IID假設)。然而,在現實世界中,這種情況幾乎從未滿足。IID假設作為一種有價值的抽象,用于研究如何高效且可靠地從數據中學習。然而,統計學家早已明白這一假設是一種過度簡化,現實世界的數據底層分布不斷發生變遷:例如,時間上的變遷、異質子群體間的變遷、因過去行為而引發的變遷等。由于現實與理想化的IID數據假設之間的這種差異,在分布內提供強泛化保證的算法(如經驗風險最小化[Vapnik, 1999])在現實世界中會出乎意料地失敗,通常伴隨著高置信度且無事先警告。特別是,盡管現代深度神經網絡在許多任務上實現了超人表現,但越來越多的證據表明,其令人難以置信的泛化能力主要限于測試數據與訓練數據非常相似的情況下。這些模型似乎依賴于數據的統計信息表示——出于尚未完全理解的原因——遠遠超越了對訓練數據的簡單記憶,但這些表示通常不能使其泛化到新領域或新任務。即使是對于看似微不足道的人類變化,這種情況也依然存在(Beery et al., 2018; Geirhos et al., 2018)。因此,現代最先進的生成和判別深度網絡在部署中是脆弱的,并且在出人意料的輕微分布變遷下容易出錯(Su et al., 2019; Recht et al., 2019)。
在考慮如何解決這一弱點時,人們可能會想象使得上述深度學習取得實際成功的方法最終也能解決這個問題。過去十年ML研究驚人速度的主要推動力是“基準測試方法”:通過對代表性基準數據集的一系列任務進行一致的、逐步的改進來推進。盡管這一策略的成功是不可否認的,但顯然它不足以實現真正穩健和可靠的ML未來。人工智能(AI)正在迅速部署到無數新的領域——并且只會變得更加普遍——但它尚不能被廣泛依賴,而意外失敗的潛在成本仍在增加。同時,在現實世界中引發這種失敗的變遷例子比比皆是:例如,自動駕駛汽車遇到的簡單景觀和/或天氣變化,或者用戶調整其行為以增加他們首選結果的可能性(Hardt et al., 2016)。更糟糕的是,AI越來越多地被用于安全關鍵環境,這在面對有意的對手時呈現出嚴重的安全漏洞(Sharif et al., 2016)。這種脆弱性仍然是進一步可信賴部署ML系統的重大障礙。
解決這些脆弱性的長期方案只能通過理解基準測試根本無法捕捉所有可能發生的變化而實現。但是,顯然對所有分布變遷的穩健性是不可行的。相反,我們必須首先設計精確、現實的真實世界分布變遷的數學定義:通過正式指定我們希望穩健應對的變遷的“威脅模型”,我們將能夠朝著正式的穩健性保證可靠地前進。同時,ML理論和實踐(特別是在深度學習中)之間經常存在不匹配,因此單單數學定義變遷是不夠的。我們還需要仔細實驗AI系統,以理解它們在實際中的失敗模式——只有通過這樣的實驗,我們才能理解和調和現實世界數據與我們的數學理解之間的差異。反過來,這將推動新型、更可靠且可解釋的ML方法的發展,對性能產生實際的下游益處。
本論文描述了通過結合這兩種核心方法,為可信賴和可靠的機器學習奠定基礎的進展。更具體地說,所調查的工作大致分為三大類:(i)設計正式的、實用的真實世界分布變遷結構表征,包括良性和對抗性的;(ii)利用這種結構開發證明正確且高效的學習算法,能夠穩健處理這些變遷;以及(iii)實驗現代ML系統,以理解分布變遷的實際影響,包括平均情況和最壞情況,以便未來的分析能夠更好地捕捉我們期望AI在未來遇到的困難類型。
本論文的第一部分描述了大規模認證深度神經網絡對抗攻擊穩健性的工作。第2章展示了如何將任何在高斯噪聲下分類良好的分類器轉變為對?2范數下的對抗擾動具有認證穩健性的新分類器。我們證明了使用高斯噪聲平滑在?2范數下的緊密穩健性保證,獲得了一個在ImageNet上在?2范數小于0.5 (=127/255) 的對抗擾動下具有49%認證top-1準確率的分類器。在第3章中,我們展示了如何使用所提出的方法來認證對更一般的攻擊的穩健性,例如對訓練數據的對抗性修改,或更一般地說,任何影響模型最終預測的輸入。
第二部分側重于變遷的潛變量模型,靈感來自因果關系和其他提出的真實世界變化的結構化編碼。我們展示了這些模型的重要性及其如何使使用多種分布進行穩健深度學習的方法的形式化分析成為可能。特別是,我們通過環境/干預復雜性這一新視角研究這些算法的行為——這是領域泛化和因果表示學習的核心統計測量,通過觀察的環境數量來量化誤差和/或潛在特征的可識別性。第4章在一個相當自然和一般的模型下,首次分析了為這些任務提出的各種目標下的分類。我們還在非線性領域中展示了這些方法的首個結果:除非測試數據與訓練分布足夠相似,否則這些方法可能會災難性地失敗。隨后在第5章中,我們提供了改進的分析以及更強的下界。第6章考慮了在線領域泛化的設置,首次正式量化了領域“插值”和“外推”之間的計算復雜性差距。
論文的最后一部分廣泛探索了更好地理解和利用自然數據中的變化的方法。首先,在第7章中,我們展示了預訓練特征足以生成比以前認為的更穩健的預測器。第8章描述了這一發現如何使得使用未標記的測試數據以證明神經網絡適時適應變遷,或給出(幾乎)有證明的非空的測試誤差界成為可能。接下來,第9章開發了一種穩健優化方法用于策略分類,使得雙重穩健預測能夠優雅地處理策略響應和用戶成本函數中的不可避免的不確定性。最后,第10章展示了離群值對神經網絡優化的顯著影響——這一結果為理解自然數據的重尾如何影響網絡行為提供了新的見解,并提出了神經網絡優化中各種現象起源的更一致的圖景。
動物和人類在構建世界的內部表征并利用它們來模擬、評估和選擇不同可能的行動方面表現出非凡的能力。這種能力主要通過觀察且沒有任何監督地學習。賦予自主代理類似的能力是機器學習中的一個基本挑戰。在本論文中,我將探索新的算法,這些算法能夠通過預測從視頻中進行可擴展的表征學習、視覺數據的生成模型及其在機器人領域的應用。
首先,我將討論使用預測學習目標來學習視覺表征所面臨的挑戰。我將介紹一個簡單的預測學習架構和目標,它能夠學習視覺表征,以零樣本的方式解決各種視覺對應任務。隨后,我將提出一種基于變壓器的通過擴散建模進行照片級視頻生成的方法。我們的方法在統一的潛在空間內聯合壓縮圖像和視頻,從而實現跨模態的訓練和生成。最后,我將說明生成模型在機器人學習中的實際應用。我們非自回歸的、動作條件的視頻生成模型可以作為世界模型,使具身代理能夠使用視覺模型預測控制進行規劃。此外,我將展示一個通過下一個標記預測訓練的通用代理,該代理可以從各種機器人和任務中學習多樣的機器人經驗。
在過去五年里,機器學習領域取得了顯著進展。特別是,基于自監督任務的下一個標記預測訓練的大規模生成模型在自然語言處理方面展示了非凡的能力。這些大型語言模型(LLMs)已經改變了我們與數字世界的互動。從撰寫電子郵件等簡單任務到編寫代碼等復雜任務,LLMs 正日益融入我們的日常生活。
盡管大型語言模型取得了顯著進步并被廣泛應用,但這些系統仍存在顯著的局限性。具體而言,盡管它們在大量數據上進行了訓練,但缺乏快速獲取新技能和知識的能力。此外,當前的語言模型對物理世界僅有表面的理解,缺乏推理、常識和長期規劃的能力。這些能力對于開發自主視覺代理,如增強現實助手、自動駕駛汽車和通用機器人,都是至關重要的。
我們如何構建對物理世界有直觀理解的自主代理?我們可以從人類和動物的學習方式中汲取靈感。盡管缺乏語言,動物表現出高度的智能。它們能夠熟練處理高維視覺輸入,具備常識,并能在多個時間跨度上進行規劃和行動。動物通過無監督的方式發展這種對物理世界的直觀理解,主要通過觀察和相對較少的環境交互進行學習。1943 年 Kenneth Craik 提出的一種解釋已經激勵了長期以來的 AI 研究人員:“如果有機體在其頭腦中攜帶一個‘小規模模型’的外部現實及其自身可能的行動,它就能夠嘗試各種選擇,得出哪個是最好的,在未來情況發生之前做出反應,利用過去事件的知識處理現在和未來,并在每一種情況下以更充分、更安全和更能干的方式應對面臨的緊急情況。”
為實現這一目標,在本論文中,我將展示一些學習算法和神經網絡架構,使自主機器能夠以無監督的方式學習物理世界的小規模模型,并使用該模型在現實世界中進行規劃和行動。首先,我將介紹一個簡單的預測學習架構和目標,它能夠學習視覺表征,并以零樣本的方式解決各種視覺對應任務。接下來,我將提出一個可擴展的基于注意力的架構,用于學習圖像和視頻的生成模型。最后,我將描述一些用于構建機器人學習生成模型的算法。我將展示一種新穎的非自回歸、動作條件的視頻生成模型,該模型可以作為世界模型,使機器人能夠使用視覺模型預測控制進行規劃。此外,我還將介紹一個通過下一個標記預測訓練的通用代理,該代理能夠從各種機器人和任務中學習多樣的機器人經驗。
機器學習(ML)通過其近期前所未有的進步正在改變社會。自回歸模型的普及正在重塑社會的各個層面,從專業領域到學術追求,甚至休閑活動。智能AI系統的一個核心方面是它們處理和理解長時間的時間信息流,如文本、音頻或視頻數據的能力。在這篇論文中,我們深入探討了學習數據中長期依賴性的問題,從兩個主要角度來解決它:模型架構和學習算法。與其致力于在當代基準分數上獲得邊際改進,這些分數通常更依賴于工程優化,本論文的重點是深入理解潛在的時間機制,探索替代學習算法,并為未來在計算效率方面的改進提供基礎。
在第一章中,我們提出了一種新方法,將眾所周知的ML模型之一,循環神經網絡(RNN)的多個實例互聯。我們提出的實證證據表明,模型架構的修改在系統組件內引發不同的時間行為。這一發現可以被利用來區分長期依賴性和短期依賴性,為使用專門為每個設計的架構鋪平了道路。
第二章聚焦于在線學習算法,這種方法顯著偏離了用于訓練時間ML模型的傳統方法。這些算法在觀察到每個輸入后立即更新其參數,與更常用的方法形成對比,后者必須觀察整個輸入序列才能更新模型參數。我們研究了實時循環學習(RTRL)在眾所周知的RNN模型中的表現,并提出了一種數學上合理的近似方法。這種新方法提供了更好的近似,盡管它只與某些架構兼容。
在最后一章中,我們同時從這兩個方面應對學習長期依賴性的挑戰。我們提出了一種分層架構,能夠通過將其分解為更小的自包含子序列來處理擴展序列。與這種架構一起,我們提出了一種學習算法,使得在抽象空間中的學習成為可能,從而繞過了專注于短期序列細節的需求。這種架構和算法的結合導致了計算效率的顯著提高。重要的是,我們的方法不僅增強了當前模型的能力,而且還為未來模型架構和學習算法的共同設計開辟了令人興奮的途徑。
盡管在深度學習方面已經取得了巨大的實踐進展,但我們對是什么使深度學習工作得很好以及為什么這樣做缺乏清晰的理論理解。在本文中,我們采用“自然科學”的方法來構建深度學習的理論。我們首先確定在跨越各種不同背景的實際深度網絡中出現的各種經驗屬性。然后,我們討論了這些實證發現可以如何用來通知理論。具體而言,我們證明:(1)與監督學習相比,經過自監督學習訓練的先進深度網絡盡管過度參數化,但在特定條件下仍能實現有限的泛化差距。(2)具有相似性能和架構的模型通常會收斂到相似的內部表示,即使它們的訓練方法有很大的不同(例如:監督學習和自監督學習)(3)插值分類器服從一種分布泛化形式——它們從訓練分布中收斂到一種條件采樣器類型。(4)深度網絡的數據擴展特性對訓練數據集的結構和噪聲水平的變化具有魯棒性。
//dash.harvard.edu/handle/1/37372168
我們的發現強調,盡管缺乏最壞情況的保證,深度網絡隱含地以可預測的、結構化的方式運行,從而為未來的理論分析奠定了基礎。
近年來,我們已經看到了預訓練神經網絡來學習可遷移到視覺和NLP中看不見的下游任務的表征的巨大好處。然而,這種學習范式在諸如設計優化或控制等決策方面的研究還不多。在這篇論文中,我們概述了兩個問題設置,可以受益于在決策制定的背景下的預訓練。首先,我們描述了一個用于自動化設計優化的設置,特別是電路設計優化,在該設置中,特定領域的先驗數據可以有效地提高基于模型的優化方法的樣本效率。本文對如何提高基于模型的進化算法和貝葉斯優化方法的樣本效率提出了新的思路,并進行了實證和理論分析。在第二個問題設置中,我們將討論如何從大型任務無關數據集中利用無監督的預訓練來提取行為表征,并進行少量的模仿學習。我們發現,當新任務的例子演示稀缺時,預訓練agent提取技能是使他們準備進行少樣本模仿的一個實用方向。
//www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-35.html
隨著互聯網的興起,每天都有不同形式的大量的文本數據產生:新聞、研究文獻、 博客、論壇文字以及社交媒體評論等。很多重要有用的信息隱藏在其中,如何從這些自 由文本中自動抽取所需要的信息是一個關鍵并且重要的一步。信息抽取任務就是為此目 標而誕生。本文主要研究信息抽取子任務之一的實體關系抽取任務。該任務旨在識別文 本中出現的實體,并判斷出實體之間存在的關系。
傳統的有監督實體關系抽取通常采用基于流水線的方法,即實體模型和關系模型 分開訓練。在測試階段,先用實體模型識別出實體,然后關系模型找出這些實體之間的 關系。這種流水線的方法存在著錯誤傳播的缺點,前一個任務的錯誤會累積到后一個任 務。為了緩解這一問題,研究人員提出了聯合模型。聯合模型將兩個子模型統一建模, 可以進一步利用兩個任務之間的潛在信息,以緩解錯誤傳播的缺點。聯合模型的難點是 如何加強實體模型和關系模型之間的交互,比如實體模型和關系模型的輸出之間存在著 一定的約束,在建模的時候考慮到此類約束將有助于聯合模型的性能。
另一方面,為了解決實體關系抽取數據集難以獲得的問題,遠程監督的方法也被提 出來。其主要思想是利用知識庫和大規模文本數據對齊,自動構建大規模的訓練集。然 而,遠程監督方法的缺點是自動構建的訓練集中存在著很多的噪音數據,這些噪音數據 的存在對遠程監督實體關系抽取有著很大的負面影響。此外,在有些應用場景中可能沒 有現成的知識庫可以用來進行遠程監督,如何解決類似的數據噪音和數據缺失問題也是 一大挑戰。
根據實體關系抽取方法的研究現狀,本文從數據和聯合模型兩個角度探索了幾種實 體關系抽取聯合模型,并且探究了所提出模型的優勢和不足。具體來說,本文的主要貢 獻有