Walter Savitch的《用c++解決問題》是c++入門課程中使用最廣泛的教科書之一。
現在,在介紹程序設計和c++語言課程時,《用c++解決問題》第七版仍然是學生和教師使用最廣泛的教科書。通過每個版本,成百上千的學生都很重視Walt Savitch的編程方法,它強調通過使用恰當的例子和自我測試的例子來積極閱讀。這本書是為初學者編寫的,重點在于培養強大的解決問題和編程技術,同時向學生介紹c++編程語言。
沃爾特·薩維奇(Walter Savitch)是加州大學圣地亞哥分校計算機科學榮譽退休教授。1969年,他在加州大學伯克利分校獲得數學博士學位。從那時起,他一直在加州大學圣地亞哥分校(UCSD)任教。他曾擔任加州大學圣地亞哥分校認知科學跨學科博士項目主任達十年之久。他曾在西雅圖的華盛頓大學計算機科學系和博爾德的科羅拉多大學擔任訪問研究員,并在阿姆斯特丹的voor Wiskunde en Informatica中心擔任訪問學者。
作為布爾邏輯的替代
雖然邏輯是理性推理的數學基礎和計算的基本原理,但它僅限于信息既完整又確定的問題。然而,許多現實世界的問題,從金融投資到電子郵件過濾,本質上是不完整或不確定的。概率論和貝葉斯計算共同提供了一個處理不完整和不確定數據的框架。
不完全和不確定數據的決策工具和方法
貝葉斯編程強調概率是布爾邏輯的替代選擇,它涵蓋了為真實世界的應用程序構建概率程序的新方法。本書由設計并實現了一個高效概率推理引擎來解釋貝葉斯程序的團隊編寫,書中提供了許多Python示例,這些示例也可以在一個補充網站上找到,該網站還提供了一個解釋器,允許讀者試驗這種新的編程方法。
原則和建模
只需要一個基本的數學基礎,本書的前兩部分提出了一種新的方法來建立主觀概率模型。作者介紹了貝葉斯編程的原理,并討論了概率建模的良好實踐。大量簡單的例子突出了貝葉斯建模在不同領域的應用。
形式主義和算法
第三部分綜合了已有的貝葉斯推理算法的工作,因為需要一個高效的貝葉斯推理引擎來自動化貝葉斯程序中的概率演算。對于想要了解貝葉斯編程的形式主義、主要的概率模型、貝葉斯推理的通用算法和學習問題的讀者,本文提供了許多參考書目。
常見問題
第四部分連同詞匯表包含了常見問題的答案。作者比較了貝葉斯規劃和可能性理論,討論了貝葉斯推理的計算復雜性,討論了不完全性的不可約性,討論了概率的主觀主義和客觀主義認識論。
貝葉斯計算機的第一步
創建一個完整的貝葉斯計算框架需要新的建模方法、新的推理算法、新的編程語言和新的硬件。本書著重于方法論和算法,描述了實現這一目標的第一步。它鼓勵讀者探索新興領域,例如仿生計算,并開發新的編程語言和硬件架構。
Python算法,第二版解釋了Python方法的算法分析和設計。本書由《初級Python》的作者Magnus Lie Hetland撰寫,主要關注經典算法,但也對基本的算法解決問題技術有了深入的理解。
這本書涉及一些最重要和最具挑戰性的領域的編程和計算機科學在一個高度可讀的方式。它涵蓋了算法理論和編程實踐,演示了理論是如何反映在真實的Python程序中的。介紹了Python語言中內置的著名算法和數據結構,并向用戶展示了如何實現和評估其他算法和數據結構
如今是人工智能高歌猛進的時代,機器學習的發展也如火如荼。然而,復雜的數學公式和難解的專業術語容易令剛接觸這一領域的學習者望而生畏。有沒有這樣一本機器學習的書,能摒棄復雜的公式推導,帶領讀者通過實踐來掌握機器學習的方法?
《機器學習與優化》正是這樣一本書!它的寫作脫胎于意大利特倫托大學機器學習與智能優化實驗室(LION lab)的研究項目,語言輕松幽默,內容圖文并茂,涵蓋了機器學習中可能遇到的各方面知識。更重要的是,書中特別介紹了兩個機器學習的應用,即信息檢索和協同推薦,讓讀者在了解信息結構的同時,還能利用信息來預測相關的推薦項。
本書作者以及讀者群發布的數據、指導說明和教學短片都可以在本書網站上找到://intelligent-optimization.org/LIONbook/。
本書內容要點: ● 監督學習——線性模型、決策森林、神經網絡、深度和卷積網絡、支持向量機等 ● 無監督模型和聚類——K均值、自底而上聚類、自組織映射、譜圖繪制、半監督學習等 ● 優化是力量之源——自動改進的局部方法、局部搜索和反饋搜索優化、合作反饋搜索優化、多目標反饋搜索優化等 ● 應用精選——文本和網頁挖掘,電影的協同推薦系統
【導讀】《C++ Primer 中文版(第5版)》是學習C++的圣經之書。《C++ Primer 中文版(第5版)》所有示例均全部采用 C++11 標準改寫,這在經典升級版中極其罕見——充分體現了 C++ 語言的重大進展及其全面實踐。書中豐富的教學輔助內容、醒目的知識點提示,以及精心組織的編程示范,讓這本書在 C++ 領域的權威地位更加不可動搖。無論是初學者入門,或是中、高級程序員提升,本書均為不容置疑的首選。專知整理關于該書的中英文版本電子書和習題解答歡迎查看!
中文版下載: 鏈接: //pan.baidu.com/s/1LsNa77LNgtaamn-j7lPNrg 提取碼: i88d
地址:
Windows: Visual Studio 2015+
Linux: g++ 5.0+
g++ -std=c++14 some_ex.cpp -o some_ex
clang++ -std=c++1y some_ex.cpp -o some_ex
地址:
C++ Primer 中文版第5版學習倉庫,包括筆記和課后練習答案。
題目: Handbook of Mathematical Methods in Imaging
摘要: 該書全面介紹了成像科學中使用的數學技術。材料分為兩個中心主題,即反問題(算法重建)和信號與圖像處理。主題中的每個部分都涵蓋了應用(建模)、數學、數值方法(使用一個實例)和開放性問題。由該領域的專家撰寫的報告,在數學上是嚴謹的。條目是交叉引用的,以便在連接的主題中輕松導航。這本手冊有印刷版和電子版兩種形式,增加了150多幅插圖和擴展書目。
摘要:
本文將優化描述為一個過程。在許多實際應用中,環境是如此復雜,以致于無法制定一個全面的理論模型,并使用經典算法理論和數學優化。采取一種穩健的方法是必要的,也是有益的,方法是應用一種不斷學習的優化方法,在觀察到問題的更多方面時從經驗中學習。這種將優化視為一個過程的觀點在各個領域都很突出,并在建模和系統方面取得了一些驚人的成功,現在它們已經成為我們日常生活的一部分。
作者介紹:
Elad Hazan是普林斯頓大學計算機科學教授。他于2015年從Technion畢業,當時他是該校運籌學副教授。他的研究重點是機器學習和優化的基本問題的算法設計和分析。他的貢獻包括合作開發用于訓練學習機器的AdaGrad算法,以及第一個用于凸優化的次線性時間算法。他曾(兩次)獲得2012年IBM Goldberg最佳論文獎,以表彰他對機器學習的次線性時間算法的貢獻。2008年,他還獲得了歐洲研究理事會(European Research Council)的一筆撥款、瑪麗?居里(Marie Curie)獎學金和谷歌研究獎(兩次)。他是計算學習協會的指導委員會成員,并擔任COLT 2015的項目主席。
簡介: Python作為目前受歡迎的語言之一,越來越多的人成為Pythoner,這本書不僅僅是一本Python說明書,該書基于Python3.7。 Python中的經典計算機科學問題可以使用經過時間驗證的方案,練習和算法來提高您的CS解決問題的能力。看起來很新或獨特的計算機科學問題通常源于經典算法,編碼技術和工程原理。并且經典方法仍然是解決它們的最佳方法!通過對本書的學習,將解決許多編碼難題,從簡單的任務(如二進制搜索算法)到使用k-means進行數據聚類。該書主要包括:
目錄:
作者介紹: David Kopec是位于佛蒙特州伯靈頓的尚普蘭學院的計算機科學與創新助理教授。他是一個有經驗的軟件開發者.
題目主題: Solving Games With Complex Strategy Spaces
簡介: 計算博弈論的一個中心問題是對給定游戲描述的博弈理論解概念進行計算。 在許多實際的多代理域中,包括基礎結構安全性,環境保護,電子商務和網絡路由,每個代理都需要做出由多個組件組成的復雜決策,例如選擇網絡中的路徑,選擇子集。 保護/攻擊目標,為每個巡邏單位執行巡邏路線,多次競標或在連續區域采取行動。 最終的策略空間可能由指數數量甚至是無限數量的純策略組成,因此標標準形式表示及其相關算法存在不足。 本教程將總結具有復雜策略空間的游戲開發高效算法的最新進展,包括使用邊際概率,用于表示和求解具有結構化策略空間的游戲的通用框架,以及使用可區分學習和(多主體)深度強化學習。 我們將涵蓋從基礎架構安全到環境和野生動植物保護的應用領域。
作者介紹: Hau Chan,林肯大學計算機科學與工程系助理教授,電子郵件:。 Chan博士曾在多代理系統和經濟的交叉領域工作。他早期的工作重點是應用圖形游戲來建模和研究相互依賴的安全域(例如,安全投資決策)。他最近正在進行的工作是關于一款具有復雜策略空間的游戲。 他在AAMAS 2019上提供了有關計算游戲理論主題的教程。
Fei Fang,卡內基梅隆大學計算機科學學院助理教授,電子郵件:。 方博士在多智能體系統上工作了七年多,專注于將博弈論和機器學習與應用程序集成到安全性,可持續性和移動性領域。她在綠色安全游戲和PAWS(野生生物安全保護助手)方面的工作在國際人工智能聯合會議(IJCAI'15)上獲得了計算可持續性軌道方面的杰出論文獎,并在人工智能創新應用中獲得了創新應用獎。 她提供了有關計算游戲理論主題的教程,包括AAMAS 2019計算游戲理論教程,IJCAI 2018游戲理論和安全性機器學習教程,AAMAS 2018 AI促進社會公益教程以及ACM-EC 2017關于進步的教程安全與隱私的博弈論。
Although neural network approaches achieve remarkable success on a variety of NLP tasks, many of them struggle to answer questions that require commonsense knowledge. We believe the main reason is the lack of commonsense connections between concepts. To remedy this, we provide a simple and effective method that leverages external commonsense knowledge base such as ConceptNet. We pre-train direct and indirect relational functions between concepts, and show that these pre-trained functions could be easily added to existing neural network models. Results show that incorporating commonsense-based function improves the state-of-the-art on two question answering tasks that require commonsense reasoning. Further analysis shows that our system discovers and leverages useful evidences from an external commonsense knowledge base, which is missing in existing neural network models and help derive the correct answer.