亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

在現代戰斗中引入機器人與自主系統(RAS)似乎是不可避免的,其優勢顯而易見,如降低風險和擴展人員。本研究選擇了異構無人飛行器(UAVs)的持久偵察作為研究范圍,這也是比較突出的應用之一。盡管在開發先進硬件和算法方面做出了不懈努力,但在現實世界中仍缺乏實際應用。根本原因似乎是最先進的算法不足以應對軍事環境中的高動態性和不確定性。

目前,軍方使用基于意圖的指揮與控制(C2)來應對這些挑戰,因為它們與作戰有著內在的聯系。因此,將 C2 的通信原理轉換為適用于 RAS 的數學方法似乎大有可為,而基于意圖的協調就是這種轉換的結果。為了能夠應對高動態性和不確定性,提出了三項要求。首先,需要有靈活性,以便就地修改解決方案。其次,需要對不可靠的通信具有魯棒性;第三,需要可擴展性,以確保在更大的感興趣區(AOI)和更大的無人機團隊中也能保持性能。

單智能體偵察問題(SARP)和多智能體偵察問題(MARP)是訪問頻率和覆蓋水平方法的緊湊組合,用于持久偵察。根據多機器人系統(MRS)團隊合作和組織方面取得的進展,提出了一種協調方法。這種協調方法將 MARP 的 AOI 劃分為更小的不相交子集,這樣每個無人機就可以獨立解決不同的 SARP。這項研究的主要貢獻在于,這種協調方法基于意圖發揮作用,實現了所需的靈活性、魯棒性和可擴展性。為此,它構建了一個監督員層次結構,在重疊子集上執行分布式合作。該分布式問題使用新穎的復雜并發約束(CCB)來解決,CCB 是并發前向約束(ConcFB)的調整版本,適用于具有復雜局部問題的分布式約束優化問題(DCOP)。此外,在分支與價格的定價步驟基礎上,通過將列生成應用于重新制定的 MARP 版本,生成了一個下限來對所獲得的解決方案進行基準測試。

基于意圖的協調在面對 AOI 的擾動時表現出了靈活性。特別是當變化比較分散時,無需立即修改整個解決方案。此外,如果由于通信失敗而先發制人地終止合作,則可觀察到針對由此產生的次優子集的魯棒性。特別是對于層次結構中的較高層次,次優解決方案可以由較低層次的解決方案進行部分修正。最后,對于越來越大的問題實例,該方法的計算時間呈亞線性增長。因此,基于意圖的協調提供了一種令人興奮的方法,即使在更具挑戰性的環境中也能保持 RAS 的性能。

圖 1.1: 將多智能體偵察問題(MARP)的 “感興趣區域”(AOI)分割成更小的、互不關聯的單智能體偵察問題(SARP)的示例

從根本上說,假定持久偵察可以通過求解多智能體偵察問題(MARP)來實現最優化,但考慮到軍事環境的挑戰,這并非易事。盡管如此,為了獲得良好的解決方案,本論文嘗試將基于意圖的 C2 原則轉換為一種數學方法,命名為基于意圖的協調。這種協調方法旨在將 MARP 分割成更小的單智能體偵察問題(SARP),并分別求解。圖 1.1 顯示了無人機在不相交的 AOI 子集中聯合優化路徑和單獨優化路徑之間的差異。

圖 1.2:求解方法的總體描述。不是求解 MARP 達到最優,而是將 AOI 劃分為更小的子集,以便單獨求解更小的 SARP。使用基準方法對結果進行比較。

圖 1.2 顯示了總體結構。在給出 AOI 的情況下,基于意圖的協調為多個 SARP 創建子集。合并后的結果應類似于 MARP 的最優解,這可以使用特定的基準方法進行評估。因此,本論文的主要貢獻可以列舉如下:

  • 強調在現實作戰環境中使用傳統求解方法執行各類偵察任務的基本問題(第 2 章)。

  • 將 SARP 和 MARP 表述為緊湊模型,結合頻率和覆蓋水平方法用于持續偵察(第 3 章)。

  • 為了生成嚴格的下限,使用列生成法對 MARP 進行了松弛的重構求解,其中包括頻繁求解初等最短路徑問題(ESPP)。由于 MARP 的結構,必須包括循環距離,以及其他一些針對具體問題的調整,以改進前向標注[3](第 4 章)。

  • 通過描述基于意圖協調的分布式分層框架,解釋基于意圖的 C2 的轉換(第 5-2 節)。

  • 實施模糊 C-Means(FCM)[4],并增加后處理插值方法,對相關扇區特征進行權衡聚類,以降低問題的復雜性并適應傳感器的異質性(第 5-3 節)。

  • 制定一個任務分配問題,在智能體之間細分聚類,作為自上而下的啟發式來創建子集。任務分配包括任務效用度量和新穎的二次任務依賴性約束,以適應有限的能力(第 5-4 節)。該方案被擴展為適用于分布式分層框架的合作方案(第 5-5-2 節)。

  • 為了解決分布式合作公式,對并發前向邊界(ConcFB)[5] 算法進行了調整,以適應復雜的局部問題,從而形成復雜并發邊界(CCB)(第 5-5-5 節)。

  • 全面分析,包括參數和組件性能,以及針對軍事環境的具體定量評估。(第 6 章)。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

在建立國家間軍事聯盟模型時,學者們會做出簡化假設。然而,大多數人都認識到這些經常被引用的假設過于簡單。本論文利用監督和非監督機器學習的發展來評估這些假設的有效性,并研究它們如何影響對聯盟政治的理解。本文發現的一系列發現有助于更好地理解聯盟的原因和后果。

研究的第一個假設認為,當國家面臨共同的外部安全威脅時,它們會結成聯盟,匯聚軍事實力,以增強自身安全,確保自身生存。外交史和安全研究領域的許多人批評了這一廣為接受的 “能力聚合模型”,指出各國結盟的動機多種多樣。在三篇文章中的第一篇中,介紹了一種無監督機器學習算法,旨在檢測縱向網絡中行為體如何形成關系的變化。這樣,就能在第二篇文章中評估各國結盟的不同動機。研究發現,國家結成聯盟是為了實現能力聚合之外的外交政策目標,包括鞏固非安全關系和追求國內改革。

學者們在建立聯盟與沖突之間關系的模型時會引用第二個假設,即常規假設聯盟的形成與盟國之一受到攻擊的概率無關。這與能力聚合模型(Capability Aggregation Model)的預期形成了鮮明對比,后者表明外部威脅和盟國對侵略者攻擊的預期會影響結盟的決定。在最后一篇文章中,我研究了這一假設以及聯盟與沖突之間的因果關系。具體來說,使用監督機器學習和廣義聯合回歸模型(GJRMs)將沖突因果路徑上的聯盟內生化。結果質疑了對聯盟與沖突關系的傳統理解,即聯盟既不會阻止沖突,也不會引發沖突。

自我-時間指數隨機圖模型(ego-TERGM)是一種有限混合模型,它試圖檢測更廣泛的縱向網絡中每個自我網絡組成的異質性。其方法是根據一組 TERGM 參數的相似性將每個 egonetwork 分配到一個群組中。這是通過使用基于混合模型的 TERGM 參數有限聚類的無監督潛類模型來實現的。換句話說,ego-TERGM 試圖根據每個縱向自我網絡(TERGM 模型參數)的相似性,將縱向網絡(自我)中的一組節點聚類到預先確定的時間不變類(簇)中。

付費5元查看完整內容

快速準確地識別附近的飛機對美國海軍艦艇的安全有效運行至關重要。現代技術和計算機輔助決策工具為過時的戰斗識別方法提供了替代方案。通過將 Soar 認知架構的強化學習功能與戰斗識別技術相結合,本論文探索了兩者合作的潛力。在開發出 Soar 與戰斗識別方法之間的基本接口后,本論文分析了所開發的 Soar 代理對既定真理的整體正確性,以確定系統的學習水平。雖然這項初步研究的范圍有限,但其結果有利于戰斗識別的大幅現代化。除了建立概念驗證外,這些發現還有助于未來的研究,以開發出一個強大的系統,能夠模仿和/或輔助人類操作員的決策能力。雖然這項研究的重點是基于海上的海軍應用,但研究結果也可擴展到整個國防部門的實施。

戰術決策者可獲得的海量信息會讓戰術行動官(TAO)或任務指揮官(MC)等單個操作人員應接不暇。在作戰環境中,戰術行動官或任務指揮官必須快速正確地識別和分類未知飛機(海軍作戰部長 [CNO],2012 年)。隨著未知飛機數量的增加,傳感器數據和決策信息的數量也相應增加。通過嘗試確定一種有助于 TAO/MC 決策過程的程序,有可能提高操作員的效率,從而通過減少飛機在戰斗識別(CID)方面未分類的時間來提高作戰環境的內在安全性。通過強化學習(RL)解決方案,Soar: 認知架構可促進 CID,并最終模擬 TAO/MC 的認知過程。

本論文是解決 TAO/MC 決策者可能遇到的 CID 操作員任務超負荷問題的關鍵一步,它通過有效(準確)的 RL 確定了模擬 CID 過程的計算機輔助決策工具。通過評估 RL 對簡化的 CID 規則集的影響,可以評估 Soar 認知架構,將其作為一個合理的框架納入 TAO/MC 職責。最終,評估 RL 功能是否足以成為在特定行動領域內準確模擬 CID TAO/MC 認知功能的工具集,對于在擴展研究之前證明這一概念的可行性至關重要。研究 RL 的潛在益處可以重塑 CID 的標準操作程序和 TAO/MC 的主要職責。

結合 CID 評估 RL 算法是研究確定合作系統可行性的關鍵一步。本論文將利用 SOAR 認知架構和基本的 CID 矩陣,嘗試回答以下研究問題: “在 SOAR 認知架構下,CID 的強化學習是否有效?

對上述研究問題的評估將通過開發和分析兩個以結果為導向的假設來實現。

  • 假設 Ia. 將強化學習/獎勵價值納入戰斗識別功能將降低或不改變所提供的建議行動/識別的有效性。

  • 假設 Ib. 將強化學習/獎勵價值納入戰斗識別功能將提高所建議行動/識別的有效性。

付費5元查看完整內容

由于實彈演習可用性有限、成本高、風險大,空中和地面火力與機動的協調為模擬訓練提供了理想的目標。目前的模擬系統為操作員提供任務導向型訓練,但沒有機會練習與其他機構的溝通和協調。本文采用分布式仿真工程和執行程序來指導仿真環境的創建,通過在一個逼真的聯合武器場景中演示地面觀察員、近距離空中支援、建設性水面火力和通信工具仿真的互操作性,來彌補這一訓練能力上的差距。使用分布式交互仿真(DIS)標準和 ASTi Voisus 通信軟件開發了一個仿真環境,其中包括波希米亞交互仿真公司的 VBS4、洛克希德-馬丁公司的 PREPAR3D 和 Battlespace Simulations 公司的 MACE。雖然有一個研究虛擬專用網絡(VPN),但 VPN 客戶端之間無法支持 DIS 廣播通信。模擬環境在本地網絡上運行,遠距離用戶使用遠程桌面連接。雖然 VBS4 存在性能問題,PREPAR3D 也不是近距離空中支援的理想選擇,但 MACE 和 ASTi Voisus 表現良好,模擬環境取得了成功。對于物理分布式訓練,建議采用高級架構 (HLA) 或多架構聯盟。

本文采用七步分布式仿真工程與執行流程(DSEEP)來指導仿真環境的規劃、開發和執行(IEEE 計算機協會,2010a)。本論文分為以下幾章。第二章--背景。本章討論了火力支援協調訓練所涉及的當前作戰和訓練組織、系統和角色。本章概述了海軍陸戰隊當前的記錄訓練系統計劃以及為實現互操作性所做的努力。最后,本章在概述 DSEEP 之前討論了分布式模擬互操作性標準框架。第三章-方法。本章旨在記錄 DSEEP 第 1-3 步的仿真環境規劃。第 1 步--確定仿真環境目標,包括論文的初步規劃、資源和期望。第 2 步-進行概念分析,涉及情景設計和所需模擬環境的更細化。第 3 步-設計仿真環境涉及仿真系統和集成仿真環境的詳細規劃。第四章--實施。本章包括 DSEEP 第 4-5 步中仿真環境的開發、集成和測試。第 4 步--開發仿真環境包括在每個仿真系統中實施場景,并確認網絡和基礎設施支持仿真環境要求。步驟 5-集成和測試仿真環境包括對每個仿真系統進行系統集成和測試,以確認所需的功能。隨著問題的發現以及解決方案的開發和實施,本章涉及對模擬環境的多次更改。第五章--結果。本章記錄了在 DSEEP 第 6-7 步指導下對模擬環境的執行和分析。步驟 6-執行模擬包括在模擬環境中全面演示培訓場景的執行。第 7 步--分析數據和評估結果包括研究小組對成員應用的適用性、模擬環境的互操作性以及模擬環境在實現既定培訓目標方面的整體有效性進行評估。第六章-結論。本章總結了研究結果,并提出了將該模擬環境應用于培訓的建議和未來研究工作的建議。

付費5元查看完整內容

在建立國家間軍事聯盟模型時,學者們會做出簡化假設。然而,大多數人都認識到這些經常被引用的假設過于簡單。本文利用監督和非監督機器學習的發展來評估這些假設的有效性,并研究它們如何影響對聯盟政治的理解。報了文發現了一系列有助于更好地理解聯盟的原因和后果的結論。

研究的第一個假設認為,當國家面臨共同的外部安全威脅時,它們會結成聯盟,匯聚軍事實力,以增強自身安全,確保自身生存。外交史和安全研究領域的許多人批評了這一廣為接受的 “能力聚合模型”,指出各國結盟的動機多種多樣。在三篇文章中的第一篇中,介紹了一種無監督機器學習算法,旨在檢測縱向網絡中行為體如何形成關系的變化。這樣,在第二篇文章中評估各國結成聯盟的不同動機。研究發現,國家結成聯盟是為了實現能力聚合之外的外交政策目標,包括鞏固非安全關系和追求國內改革。

學者們在建立聯盟與沖突之間關系的模型時會引用第二個假設,即常規假設聯盟的形成與盟國之一受到攻擊的概率無關。這與能力聚合模型(Capability Aggregation Model)的預期形成了鮮明對比,后者表明外部威脅和盟國對侵略者攻擊的預期會影響結盟的決定。在最后一篇文章中,研究了這一假設以及聯盟與沖突之間的因果關系。具體來說,使用監督機器學習和廣義聯合回歸模型(GJRMs)將沖突因果路徑上的聯盟內生化。結果質疑了對聯盟與沖突關系的傳統理解,即聯盟既不會阻止沖突,也不會引發沖突。

付費5元查看完整內容

本專著既展示了反介入區域拒止(A2AD)問題,也是一個獨特的歷史性解決方案實例。作為分析的一部分,本文提出了一個假設,即美國陸軍地面部隊可能會在沒有空域保護和支持的對抗性環境中作戰,而自第二次世界大戰以來,空域一直是地面機動的主要要求。因此,這本專著探討了陸軍在需要在沒有空中優勢的情況下作戰時可能面臨的問題,以及重新獲得空中優勢的條件。本專著的核心論點是,美國陸軍多域作戰(MDO)中大規模作戰行動(LSCO)的成功,在未來可能會有通過最大限度地利用其他域手段,嘗試通過地面機動消滅敵方防空系統的要求。本研究分析并比較了兩個歷史案例:贖罪日戰爭和二戰時期德國的莫爾坦攻勢。這些案例研究提供了作戰指揮官如何在沒有空中優勢的情況下嘗試使用地面部隊的背景。它們是現代戰爭中面對無法通過空中支援地面機動時成功和失敗的范例。在這兩種情況下,縱深機動、火力和空中優勢的標準提供了一種手段,用于分析和解釋戰區指揮官如何在缺乏現代戰爭所必需的空中支援的條件下成功或失敗地尋求聯合兵種機動。

作為一個負責執行大規模作戰行動(LSCO)的軍事組織,美國陸軍的競爭對手是不斷發展以與美國軍事實力相匹敵的同行對手。這些對手開發的技術能力可以阻止多領域行動的融合。為了在未來的沖突中與這些對手競爭、滲透和瓦解,美國陸軍要不斷發展,適應戰場上的挑戰。俄羅斯是一個嚴重的同級威脅,可以挑戰美軍在大規模作戰行動中的主導地位。自 "沙漠風暴 "行動以來,俄羅斯一直密切關注著美國的戰爭方式。正如馬克-A-米利將軍所說,俄羅斯領導人知道,"我們擅長的戰爭方式強調聯合和聯合作戰;技術優勢;全球力量投送;戰略、作戰和戰術機動"。"因此,善于觀察的俄羅斯學會了利用作戰環境,開發能夠造成作戰對峙和阻止常規部隊有效使用的武器。

目前,俄羅斯對歐洲國家的侵略行為--她試圖恢復蘇聯時期的突出地位--增加了歐洲未來發生武裝沖突的可能性。由于俄羅斯研究了美軍的部署和作戰方式,美軍將不得不尋找適應性的方法來實現戰場上的領域融合。修正主義的俄羅斯實現了能力的現代化和發展,以對抗美軍執行空地一體化運動、機動和火力的能力。俄羅斯先進的遠程防空系統將使美國喪失空中優勢。其便攜式系統和先進的無人空中和地面系統的擴散對美軍編隊和關鍵節點構成重大威脅。美軍陸軍可能在沒有空域保護和支持的情況下在有爭議的環境中作戰,這是本文及其分析的一個關鍵假設。

根據聯合出版物(JP)3-01《反擊空中和導彈威脅》,"反擊空中和導彈威脅 "的最佳方法是 "在發射前利用進攻行動摧毀或瓦解空中和導彈威脅"。然而,面對像俄羅斯這樣的同行威脅,執行這樣的任務并非易事。俄羅斯目前擁有一套綜合防空系統(IADS),由遠程、中程和短程地對空導彈組成的分層結構,可在不同高度擊落作戰飛機。S-400 "凱旋 "地對空導彈系統(SAMS)是俄羅斯高度復雜的防空保護傘的基石。

俄羅斯 S-400 是一種高度機動的系統,能夠在四百公里范圍內攔截敵機。該系統不僅覆蓋了加里寧格勒州的波羅的海國家,還覆蓋了波蘭的廣大地區。這意味著在蘇瓦維缺口和波羅的海沿岸國家附近行動的俄羅斯地面部隊將受到機動靈活的 IADS 的保護。膽敢侵入俄羅斯領空的敵軍戰機將在俄羅斯西部邊境遭遇由 S-400 炮兵連和營組成的致命空中雷區。到 2020 年底,俄羅斯將增加 56 個 S-400 營,這只會提高俄羅斯 IADS 的殺傷力和能力。

俄羅斯最近舉行的 "東方 2018 "軍事演習展示了由 S-400、中程 "布克"、短程 "托爾 "和 "潘齊爾-S1 "系統組成的分層防空系統如何遏制大規模空襲。演習展示了訓練有素的機組人員如何最大限度地發揮 S-400 的能力,對試圖侵入俄羅斯領空的北約飛機造成重大損失。S-400 的射程使其能夠瞄準空中加油機和機載預警與控制飛機等敵方輔助飛機。此外,該系統靈活的瞄準能力可防范不同的威脅和攻擊,其反隱身能力可探測并擊落 F-35 等具有隱身能力的戰斗機。

據專家稱,擊敗俄羅斯先進防空系統的方法包括電子戰、空對地反輻射導彈、戰斧巡航導彈和隱形技術等壓制戰術。然而,這些方法的問題在于成本、可靠性和目標定位。俄羅斯龐大的 SAMS 機群使得壓制任務十分艱巨,而且無法保證成功。壓制俄羅斯的 IADS 需要大量使用反 SAMS 導彈和飛機,而且極有可能造成重大損失。此外,由于 S-400 的發射和機動速度快,因此很難定位和瞄準。同時,針對 S-400 地面雷達系統的隱形技術尚未得到驗證。盡管 B-2 轟炸機、F-22 和 F-35 等飛機的雷達信號很低,但它們也并非無法抵擋不斷發展的雷達技術和攻擊機。F-22 和 F-35 戰斗機的斜角外形和設計使這些飛機很容易受到發展中雷達系統的攻擊。

以色列人慘痛地發現,面對層層疊疊、精密復雜的地面防空系統困難重重。中央情報局關于 1973 年阿以戰爭的解密文件顯示了蘇聯 SAMS 對以色列空軍(IAF)的巨大威力。特別是埃及的 SAMS 網絡,在干擾以色列打擊任務和保護埃及地面部隊方面取得了巨大成功。埃及人在保護罩內行動,直到以色列設計出一種獨特的方法來擊潰他們的防空保護傘。

贖罪日戰爭中埃及的情況代表了與俄羅斯沖突中可能出現的結果。與埃及人一樣,俄羅斯軍隊也將在其防空保護傘下行動,在這種情況下,針對俄羅斯 IADS 的標準壓制戰術可能無法奏效,從而迫使作戰指揮官尋找其他替代方案。1973 年以色列解決這一問題的方法雖然不典型,但也是可以做到這一點的范例。以色列指揮官依靠地面部隊,將縱深滲透、地面炮火和空中優勢結合起來,擊潰了埃及的防空系統。

本文認為,多域作戰(MDO)中 LSCO 的成功可能取決于地面機動部隊能否消滅敵方的防空系統。由地面機動部隊實施并支持地面機動部隊的縱深機動、火力和空中優勢是本文研究作戰指揮官如何利用地面部隊刺破防空泡沫并重建制空權的評估標準。按照我們今天的理解,地面聯合作戰由空地一體化機動組成,因此 IADS 的先進性可能會抵消成功的地面聯合作戰所需的空中支援。在當今的作戰環境中,許多對手在陸基雷達和電子攔截能力方面也擁有類似的先進技術,以防止成功的 LSCO。解決這一問題的一個可能辦法是,戰區指揮官利用地面機動部隊深入敵方領土,解除敵方的空中防御,重新奪回空中優勢,并重建空地會合。

贖罪日戰爭和二戰中的莫爾坦攻勢是對比案例研究,為作戰指揮官如何在沒有相應空中優勢的情況下嘗試使用地面部隊提供了背景資料。這些對比鮮明的案例是現代戰爭中面對無法通過空中支援地面機動時成功與失敗的范例。在這兩個案例中,縱深機動、火力和空中優勢的標準為分析和解釋戰區指揮官如何成功或失敗地用地面機動部隊摧毀防空系統提供了一種手段。兩個案例都說明了縱深機動、火力和空中優勢對防空系統復雜性的重要作用。此外,案例比較還展示了在有爭議和不允許空中行動的環境下,運用縱深機動和火力重新獲得空地一體機動優勢所面臨的差異和挑戰。

美國陸軍將縱深機動描述為軍事行動在時間、空間和目的上的延伸,以便在高度競爭的環境中獲得對敵優勢。縱深機動部隊采用移動和火力相結合的方式,獲取優勢地位,以擊敗敵方部隊。因此,縱深機動在作戰中發揮著至關重要的作用。同樣,火力通過間接火力武器系統對目標產生致命和非致命影響,幫助機動單元奪取、保持和利用主動權。這樣,火力就能完成瞄準、投送和整合各種形式的炮火打擊對方部隊的關鍵任務。同樣,空中優勢通過 "一支部隊對空中的控制,使其在特定時間和地點開展行動時不受空中和導彈威脅的干擾",從而實現地面作戰行動。

在贖罪日戰爭中,埃及整合了反坦克武器和蘇聯先進的防空系統,使以色列國防軍(IDF)無法應用其裝甲機動和近距離空中支援的概念。以色列國防軍指揮官利用地面機動部隊恢復空地會合,擊敗埃及防空部隊,從而解決了這一作戰難題。以色列作戰指揮官使用了縱深機動和火力,通過摧毀埃及的地面防空系統來實現空中優勢。

在莫爾坦反擊戰中,德軍的表現與以色列人在贖罪日戰爭中的表現形成了鮮明的對比。D-Day 之后,德軍第七陸軍在法國小鎮莫爾坦附近發動了一次名為 "盧蒂奇行動 "的反擊,目的是在沒有適當的空中掩護和火力的情況下切斷美軍從諾曼底橋頭堡的滲透和突圍。德軍無法整合空地機動,降低了陸軍的戰績,阻礙了作戰的成功。由于盟軍在諾曼底上空擁有壓倒性的空中優勢,德軍無法對美軍防御發起成功的縱深機動,其火力也缺乏有效性。德軍地面機動部隊在進攻過程中沒有空中組成部分,也沒有能力攔截英國的空軍基地,因未能取得聯合武器優勢而遭受了災難性的失敗。

本研究參考了包括美國軍事條令和第一手資料在內的原始資料,這些資料為本項目分析歷史案例研究提供了一個視角。在贖罪日戰爭案例研究中,以色列和埃及方面參戰人員的自傳提供了大部分原始資料。這里值得關注的是 Saad El Shazly 將軍的《跨越蘇伊士運河》和 Avraham Adan 將軍的《蘇伊士運河畔:一位以色列將軍對贖罪日戰爭的親身經歷》。這兩本書提供了戰爭發生時的第一手資料。其他主要資料來源有美軍條令出版物和野戰手冊,如《野戰手冊》(FM)3-0《作戰》和《陸軍條令參考出版物》(ADRP)3-09《火力》。在二手資料方面,學術書籍和研究專著也提供了有關該主題的詳細信息。

薩阿德-沙茲利(Saad El Shazly)將軍的自傳體作品《跨越蘇伊士運河》代表了埃及對 1973 年以色列戰爭的看法。沙茲利的作品展示了埃及軍方如何將軍事手段與政治目的相結合。作為戰爭的戰略家和主要策劃者,沙茲利對埃及戰爭計劃的不同階段提出了寶貴的見解,并詳細介紹了埃及軍方如何建立綜合防空系統以遏制以色列的空中優勢。他從資源有限的埃及軍方角度描述了這場沖突,并詳細介紹了為克服這些挑戰所采取的措施。盡管沙茲利的軍事回憶錄并非對沖突的公正描述,但其價值在于對埃及作戰計劃的坦誠評估。

另一方面,阿夫拉罕-阿丹的戰爭回憶錄《蘇伊士運河畔》代表了以色列人對 1973 年戰爭的看法和描述。阿丹將軍講述了他作為師長的經歷,是對阿以最新戰爭史學的重要貢獻。本研究感興趣的是阿丹對關鍵事件的描述,尤其是在德韋爾蘇伊士攻勢中,以色列地面部隊采用了獨特的縱深機動、火力和空中支援組合,擊敗了埃及先進的防空系統,重新奪回了西奈天空的制空權。

亞伯拉罕-拉賓諾維奇(Abraham Rabinovich)的《贖罪日戰爭》等二手資料對贖罪日戰爭案例研究至關重要,因為它們通過證實關鍵事實和事件,補充了一手資料。拉比諾維奇的著作從以色列、埃及和敘利亞的角度對戰爭進行了平衡的敘述。書中的 "實地 "細節為本文的分析提供了依據。拉比諾維奇對戰爭的研究依賴于對退伍軍人的 130 多次采訪,以及他在沖突期間作為記者的工作。

對于莫爾坦攻勢的案例研究,現有原始歷史手稿的深度和廣度都很有限。不過,《第二次世界大戰中的美國陸軍,歐洲戰區》(The U.S. Army in World War II, The Europe Theater of Operations: 突圍與追擊》提供了大量信息。艾克-斯凱爾頓聯合武器研究圖書館(Ike Skelton Combined Arms Research Library)的檔案也對這次行動進行了詳細描述。德懷特-艾森豪威爾(Dwight D. Eisenhower)的《最高指揮官就盟軍遠征軍 1944 年 6 月 6 日至 1945 年 5 月 8 日在歐洲的行動向參謀長聯席會議提交的報告》和美國第 30 步兵師的《行動后報告》尤其值得關注。在二手資料方面,《拯救突圍: 25F 26 在二手資料方面,《拯救突圍:1944 年 8 月 7 日至 12 日第 30 師在莫爾坦的英勇戰斗》和《莫爾坦的勝利》是本研究中使用的其他學術著作。

馬克-里爾登(Mark Reardon)的《莫爾坦的勝利》(Victory at Mortain)一書為莫爾坦攻勢案例研究分析提供了參考,因為該書記錄了德國在 D-Day 入侵后試圖決定性地影響西歐戰爭進程的嘗試。通過研究多個裝甲師攻擊防守法國小鎮莫爾坦的一個美軍師的原因,Reardon 對戰術層面的戰斗、作戰演習和高級戰地指揮官的決策之間的關系提供了至關重要的見解。與此同時,阿爾溫-費瑟斯頓(Alwyn Featherston)的著作《拯救突圍》(Saving the Breakout)試圖將莫爾坦戰役從被遺忘的歷史中重新喚醒。在研究中,費瑟斯頓指出了缺乏空中支援和無法攔截英國空軍基地是如何阻礙德國地面機動部隊取得對美軍的聯合優勢的。

本研究的以下部分包括兩個案例研究--贖罪日戰爭和德國莫爾坦攻勢--以及一個結論,以證明 LSCO 的成功可能取決于地面機動部隊摧毀對方部隊的防空系統。第二節和第三節對這兩個歷史案例進行了比較和對比,以說明反介入區域拒止(A2AD)問題和獨特的解決方案。第二節通過強調以色列指揮官利用地面部隊的縱深機動和地面火力支援重新奪回制空權并擊敗埃及 SAMS 保護傘的獨特性,探討了以色列在面對埃及多層次、復雜的防空系統時取得成功的獨特性。

相反,第三節說明了面對在防空系統下作戰的敵軍的困難。它將德國的莫爾坦攻勢視為當今作戰指揮官在面對俄羅斯這樣的同級威脅時可能面臨的結果。該部分強調了德軍在沒有足夠空中支援的情況下,面對在其防空系統下作戰的盟軍所面臨的挑戰。最后,結論部分對兩個案例研究進行了總結,并強化了本項目的中心論點。

付費5元查看完整內容

無人駕駛飛機將繼續成為美國國防的關鍵。《美國國防戰略》優先考慮對人工智能(AI)、機器學習和自主功能進行投資,以保持軍事競爭優勢。本研究基于大規模作戰行動(LSCO)的嚴酷性,以及在開發利用人工智能的技術時采取果斷行動和遵守道德規范的必要性。研究采用定性研究的方法,分析了技術發展和作戰概念中存在的四種類型的自主無人駕駛飛機。研究采用了一項關于美國和大國軍事能力的非機密案例研究,并應用了包括專業定性訪談在內的多種分析形式。雖然分析發現所有四種類型的自主無人駕駛飛機都很有用,但它建議優先考慮完全自主的彈藥和半自主的環形載人技術,以滿足以 2035 年為中心的聯合部隊規劃時間表。研究結果還表明,需要改進數據收集和處理、云和網狀網絡以及數據和網絡系統的安全性。研究還發現,人工智能和自主功能具有提高人類性能和決策的潛力,保持有人駕駛飛機和無人駕駛飛機的組合可使美國管理作戰風險。

根據美國《國家安全戰略》和《國防戰略》,戰略和作戰環境已經發生了變化。具體地說,與大國競爭重新抬頭,導致軍事戰略和規劃考慮因素發生變化。《國防戰略》(NDS)指出,"國家間的戰略競爭,而不是恐怖主義,現在是美國國家安全的首要問題"。由于這種競爭,聯合軍種已將重點轉移到大規模作戰行動的準備狀態和未來能力上。這種類型的沖突是致命的、激烈的和殘酷的,歷史表明,這種規模的作戰行動更加混亂、激烈和具有破壞性。所有這一切都使得未來戰斗的作戰環境更加復雜,多個作戰領域(如空中、太空、網絡空間、陸地和海上)隨時都會影響戰斗空間。這種環境導致美國的大國競爭對手投資于各領域的能力,以縮小美國軍事優勢的差距。

這些投資帶來了能力上的進步,創造了強大而具有挑戰性的場景,需要更好的態勢感知和更快的人工決策。此外,在這種環境下可用的數據量對于當前的系統和決策者來說是難以承受的,而人工智能(AI)、機器學習(ML)和自主系統功能方面的進步則有望跟上行動的步伐并保持競爭優勢。

特別是,為了有效利用剩余能力并達到預期效果,需要在作戰空間內加快數據處理速度,以提高對態勢的感知能力,并加快各級決策的制定。空軍歷來使用 OODA(觀察、定向、決策、行動)循環的條令概念來加速作戰行動中的決策制定。OODA 循環被視為一種決策戰略,可在競爭激烈的環境中創造優勢。它最初由美國空軍上校約翰-博伊德(John Boyd)提出,是一個實用的概念,目的是在混亂和令人困惑的情況下創造理性思維。觀察步驟的重點是盡可能準確地全面了解情況。東方階段包括兩個子階段:破壞和創造。破壞包括將情況分析為更小的組成部分或問題,以便更好地了解情況。決策者會對問題進行分解,直到熟悉或接近可以制定計劃的情況為止。熟悉是通過教育、培訓、經驗和指導獲得的。然后,將問題和計劃的組成部分 "創造 "成一個整體行動計劃。決定 "階段只是合乎邏輯的下一步,是收集足夠數據以做出明智決定的結果。行動是 OODA 循環過程的執行階段。

人工智能有可能加速每個戰術、戰役和戰略層面的 OODA 循環。例如,可以利用更多可用數據構建態勢圖,從而進行更準確的觀察。然后,通過人工智能和機器學習對局勢數據進行提煉,為決策者指明方向,以便更快更好地制定行動計劃。我們需要人工智能來協助處理和分析現有的大量數據。這將導致更快、更明智的決策和行動,在戰場上創造巨大優勢。

隨著美國的大國競爭對手利用全球范圍內取得的進展,商業部門也越來越迫切地實施這些新興技術。這導致對手發現了通過將人工智能的使用整合到自己的軍事力量中來對抗美國軍事力量的方法。例如,對手的綜合防空系統通過集成更多使用人工智能的自主功能,在目標探測和交戰方面變得更加高效。

除人工智能外,全域聯合作戰(JADO)也是一種技術和概念,聯合軍種職能部門和作戰領域正在利用這種技術和概念來同步開展工作并產生協同效應。這一概念通過提高各領域的效力來減少脆弱性。我們的對手也在推進和使用全域作戰,這給我們的部隊帶來了挑戰和機遇。全域作戰的推進創造了一個競爭日益激烈的環境,這將使 LSCO 的指揮和控制更具挑戰性。因此,國防部創建了聯合全域指揮與控制(JADC2),以空軍為牽頭機構,將各軍種的傳感器連接起來。

美國空軍還在開發 "下一代空中優勢"(NGAD),這是一種有人、無人和可選有人平臺的混合能力,在概念上依賴于人工智能、機器學習和人機協同技術與無人平臺。這些技術使無人平臺具有不同類型的自主能力,并與人類進行不同程度的互動(例如,人在環中、環上和環下)。一種理論認為,具有致命能力的資產在執行致命行動時應 "環內有人"。一個更常見的擔憂是,有爭議的作戰條件會對人與機器之間的衛星鏈路造成干擾,在這種情況下,人工智能系統將如何行動尚不清楚。空軍認識到這是一個需要解決的重要問題,并已開始研究防止人工智能失靈的方法。具體而言,正在為使用人工智能的系統開發一個子項目,稱為 "復雜環境下的自主測試"(TACE),該項目正在調查、測試和推進人工智能保障措施。

問題陳述

現代戰爭越來越傾向于全領域作戰,需要同時進行交戰,以便在多個或所有領域產生效果。在過去幾十年中,美軍在每個作戰領域都享有無可爭議的優勢。在未來與大國競爭者的沖突中,情況將不會是這樣。此外,在以反叛亂為中心的環境中,我國持續時間最長的武裝沖突影響了大規模作戰行動的軍事準備。這一問題加上快速的技術變革,以及我們的對手在各個作戰領域日益增加的挑戰,創造了一個新的戰略安全環境,而美國目前尚未做好作戰準備。此外,重新崛起的大國競爭者正在利用技術的快速傳播,產生新的戰爭概念和技術,如數據分析、人工智能、自主化和機器人技術。鑒于戰略環境和快速的技術進步,《國防戰略》已將投資列為優先事項,以進一步發現人工智能、ML 和自主性的軍事應用。美軍的優勢是削弱還是加強,取決于這些新技術的整合方式,以及我們是否比對手更有效地實施這些技術。聯合部隊領導層已明確表示,將致力于利用和發揮最佳形式的人工智能,以更快的速度和更高的精度完成所有任務集。我們必須利用人工智能、自主功能和人機協作來滿足這一需求,以更快的速度、更高的精度和更強的殺傷力應對更復雜、節奏更快的 LSCO 環境。考慮到所有這些因素,聯合部隊現在應確定無人平臺所需的人工智能自主功能類型,以滿足 2035 年聯合規劃時限內大規模作戰行動的需求和要求。

研究問題

本研究試圖回答的首要問題是,在非許可的大規模作戰環境中,利用人工智能和人類協同技術的致命無人駕駛飛機應該能夠在指揮和控制方面應對哪些挑戰,實現哪些類型的自主功能?

次要問題

1.無人駕駛飛機是否應具備致命的自主功能?

2.哪些關鍵任務需要人工智能(AI)和人類協同能力?

3.聯合部隊應投資哪些類型的有人和無人資產?

4.什么是有人駕駛飛機和無人駕駛飛機的正確組合,以實現所需的未來能力,從而超越我們的對手?

5.在高致命性的大規模作戰環境中,以無人機為主的部隊有何優勢?

6.為保障指揮與控制通信鏈路,需要進一步開發哪些類型的技術?

付費5元查看完整內容

美國國防部(DoD)正迅速與各軍種合作,從多年期(如 7-10 年)傳統采購計劃轉向基于商業行業的軟件開發方法。雖然商業技術和方法為快速部署任務能力以應對威脅提供了機會,但商業技術是否適用于滿足水面作戰系統的實時要求尚不清楚。這項研究建立了技術數據,以驗證當前商業技術的有效性和適用性,從而滿足國防部作戰管理系統的硬實時要求。有學者進行了類似的研究;然而,微服務、容器和容器編排技術當時還未出現在國防部的雷達上。該領域的最新知識將為國防部未來的路線圖和投資提供參考。將采用基于任務的方法,利用任務工程為應用研究設定背景。已經建立了一個假設的但與業務相關的海峽過境方案,以便在評估假設時為確定實驗參數提供背景。將系統模型聯合起來形成一個系統架構,并利用云計算環境中的數據收集數據進行定量分析。

本文件編排如下:

  • 第 1 章(導言)討論了擬議研究背后的理論體系,討論了本研究的目的,并確定了要解決的問題。

  • 第 2 章(研究背景)介紹了文獻綜述,并討論了以往研究的局限性。

  • 第 3 章(方法論)討論了方法論方法,闡明了任務工程背景,提出了預測和假設,并討論了原型測試環境的開發和實例化。

  • 第 4 章(結果)討論統計分析結果。

  • 第 5 章(討論)概述了研究結果,并討論了研究意義和局限性。

  • 第 6 章(結論)介紹了本研究對工程管理與系統工程(EMSE)"知識體系 "的貢獻,并對未來研究提出了建議。

付費5元查看完整內容

遙控飛機執行的軍事任務類型不斷擴展到包括空對空作戰在內的各個方面。雖然未來的視距內空對空作戰將由人工智能駕駛,但遙控飛機很可能將首先投入實戰。本研究旨在量化延遲對高速和低速交戰中一對一視距內空對空作戰成功率的影響。研究采用了重復測量實驗設計,以檢驗與指揮和控制延遲相關的各種假設。有空對空作戰經驗的參與者在使用虛擬現實模擬器進行的一對一模擬作戰中受到各種延遲輸入的影響,并對每次交戰的作戰成功率進行評分。這項研究是與美國空軍研究實驗室和美國空軍作戰中心合作進行的

因變量 "戰斗得分 "是通過模擬后分析得出的,并對每次交戰進行評分。自變量包括輸入控制延遲(時間)和交戰起始速度(高速和低速)。輸入延遲包括飛行員輸入和模擬器響應之間的六種不同延遲(0.0、0.25、0.50、0.75、1.0 和 1.25 秒)。每種延遲在高速和低速交戰中重復進行。采用雙向重復測量方差分析來確定不同處理方法對戰斗成功率的影響是否存在顯著的統計學差異,并確定延遲與戰斗速度之間是否存在交互作用。

結果表明,在不同的潛伏期水平和交戰速度下,戰斗成功率之間存在顯著的統計學差異。潛伏期和交戰速度之間存在明顯的交互效應,表明結果取決于這兩個變量。隨著潛伏期的增加,戰斗成功率出現了顯著下降,從無潛伏期時的 0.539 降至高速戰斗中 1.250 秒潛伏期時的 0.133。在低速戰斗中,戰斗成功率從無延遲時的 0.659 降至 1.250 秒延遲時的 0.189。最大的遞增下降發生在高速潛伏期 1.00 至 1.25 秒之間,低速潛伏期 0.75 至 1.00 之間。高速交戰期間戰斗成功率的總體下降幅度小于低速交戰期間。

這項研究的結果量化了視距內空對空作戰中戰斗成功率的下降,并得出結論:當遇到延遲時,希望采用高速(雙圈)交戰,以盡量減少延遲的不利影響。這項研究為飛機和通信設計人員提供了信息,使他們認識到延遲會降低預期作戰成功率。這種模擬配置可用于未來的研究,從而找到減少延遲影響的方法和戰術

付費5元查看完整內容

美國海軍正在重組其艦隊結構。美海軍正在探索使用無人潛航器 (UUV) 平臺來補充艦隊的可行性。目前的 UUV 只能提供最低限度的監視和水雷探測能力;一種解決方案是在 UUV 平臺上增加攻擊性和增強型探測能力。本研究采用基于模型的系統工程(MBSE)方法,在聯合戰區模擬級全球作戰環境中探索具有增強能力的 UUV 的效果。該方法包括概念原型開發過程、作戰概念、效果衡量標準、不同的 UUV 因素(速度、組成和聲納類型)以及實驗設計。在對 540 次模擬運行的輸出結果進行分析后,結果證明所有三個因素對 UUV 的作戰性能都有重要影響,并表明使用先進的 UUV 可以提高特遣部隊的能力。此外,實驗還揭示了 UUV 的組成與探測和交戰速度之間的強相關性,并證實了使用主動聲納在作戰中的優勢,從而形成了 UUV 功能的交換空間。這項研究證明了 MBSE 在為未來艦隊進行可行性評估方面的實用性。

2016 財年,美國參議院軍事委員會下令海軍將艦隊規模擴大到 355 艘。然而,建造設施的缺乏阻礙了這一工作。負責預算的海軍副助理部長布萊恩-盧瑟少將估計,355 艘艦艇的目標要到 2050 年代才能實現(Larter 2018)。因此,美國海軍正在探索潛在的艦隊重組方案。海軍對用無人系統來補充傳統的有人海軍資產非常感興趣。無人潛航器 (UUV) 就是這樣一種系統。由于高層對艦隊和無人系統都很感興趣,海軍研究辦公室(N9)要求提供測試 UUV 未來能力的方法和流程,以及開展此類研究的實驗環境或工具。此外,目前的無人潛航器主要用于支持水雷戰和小型監視任務(美國防部,2007 年),因此還不了解其對其他角色的影響。

本研究的目的是在計算機輔助兵棋推演中使用基于模型的系統工程(MBSE)方法,特別是聯合戰區級模擬全球行動(JTLS-GO),以探索先進的 UUV 能力作為未來美國海軍艦隊資產的影響,以及作為日益減少的潛艇部隊的替代品的影響

MBSE 方法是一個多步驟過程,從頭至尾探索整個項目。通過這種方法,我們開發出了一種先進的 UUV 概念和 "眼鏡蛇黃金 2018"(CG18)小插圖或作戰概念(CONOP),這是一種六國(太平洋司令部主辦)指揮所演習(CPX)。小插圖的創建允許對 CG18 進行反復檢查,以確定 UUV 可以解決的能力不足問題。在這種情況下,虛擬演習的重點是敵方(索諾拉)特遣部隊與盟軍特遣部隊(包括 USS Benfold (DDG-65) 和 RSS Endurance (LS-207))之間的互動。實際演習的結果包括上述艦艇的傷亡。造成這些傷亡的原因是缺乏態勢感知和進攻火力。這些問題為在模擬中注入 UUV 以增強傳感器和火力提供了機會和動力。隨后,確定和建立新能力的作戰要求和限制的過程隨之展開。新的模擬 UUV 設計必須能夠提供額外的進攻和偵察能力。衡量無人潛航器的性能如何以及哪些屬性需要改變,從而制定了效能衡量標準(MOE)和性能衡量標準(MOPs)。這些衡量標準有助于指導實驗設計(DOE)的制定,從而指導名義 UUV 的實驗和評估。

性能指標包括探測效果和敵方減員。關注的性能因素(屬性)包括 UUV 速度、UUV 數量(UUV 艦隊組成)和聲納類型(主動或被動)。DOE 包括對這些因素在三個不同值(水平)下的測試。不同水平的因素組合產生了 18 個設計點。

JTLS-GO 模型是由 Rolands and Associates 設計的事件驅動兵棋推演模擬,用于測試多方聯合戰役和行動(Rolands and Associates 2018)。該項目測試戰爭的多個層面,包括政治、戰略、作戰和戰術層面。

雖然 JTLS-GO 在模擬交戰方面很有用,但根據 Cayirci 和 Marincic(2009 年)的說法,其功能是培訓總部人員更有效地指揮和控制單元。因此,僅使用 JTLS-GO 測試未來概念是不可行的,因為這需要大量資源。為了充分利用 CG18 的人的反應和結果,作者在 NPS 仿真實驗和高效設計(SEED)中心的幫助下,將原始 JTLS-GO 仿真程序轉換為自動化計算機輔助兵棋推演(CAW)仿真。這種轉換允許對未來能力進行多次重復模擬,以便進行統計分析。

這項工作涉及 540 次模擬運行,耗費了 810 個小時的計算機時間。通過回歸分析、趨勢分析和分區樹分析,得出了以下結論:

1.通過在 JTLS-GO 中的 CG18 自動版本中建立建模和實驗環境,MBSE 方法為評估未來 UUV 能力對作戰的影響提供了途徑。

JTLS-GO 中的 CG18 提供了一個框架,利用 MBSE 方法來定義操作差距、創建 UUV 原型、定義測量方式和內容(MOE 和因素)并快速進行實驗。MBSE 所要求的有條不紊和一絲不茍的努力表明,應用這一過程有利于探索 UUV 的未來能力,同時也表明它如何為考察未來艦隊的一系列能力提供機會。

2.UUV 的存在為提供態勢感知和攻擊火力提供了額外的能力,減少了水面的脆弱性。

即使增加了效果最差的因子組合的 UUV,也產生了積極的結果:3 個 "索諾蘭 "單元被擊斃,60% 的單元被發現。采用首選探測因子值的 UUV 使 RSS Endurance (LS-207) 在 30 次模擬中擊沉了 12 次。與此同時,USS Benfold (DDG-65) 在使用這些 UUV 的 30 次模擬演習中只擊沉了 2 次。當環境中存在具有優先損耗因子值的 UUV 時,RSS Endurance (LS-207) 在 30 次模擬中擊沉了 10 次,USS Benfold (DDG-65) 在 30 次模擬中擊沉了 2 次。因此,UUV 的性能導致模擬環境中盟軍傷亡人數減少。

3.主動聲納提高了殺傷力和探測能力,但在速度和 UUV 艦隊組成方面,并不是越多越好。

表 ES-1 列出了實驗中最佳和最差的 UUV 配置。根據該表,推薦的最佳組合是一支中等規模的 UUV 艦隊,以 8 節的速度航行并配備主動聲納。這種配置平均可摧毀近 88% 的敵方目標。

采用自動 JTLS-GO 仿真軟件包的 MBSE 方法所得出的結果可為先進的 UUV 性能提供深入見解,而無需投入大量人力和物力。海軍在規劃其未來架構的過程中,應考慮使用此類工具對平臺進行評估。此外,海軍還應考慮增加先進的 UUV 平臺以補充艦隊。

付費5元查看完整內容

作為分布式海上作戰(DMO)的一個關鍵原則,盡管有人和無人、水面和空中、作戰人員和傳感器在物理時空上都有分布,但它們需要整合成為一支有凝聚力的網絡化兵力。本研究項目旨在了解如何為 DMO 實現有凝聚力的作戰人員-傳感器集成,并模擬和概述集成實施所需的系統能力和行為類型。作為一個多年期項目,本報告所述的第一項工作重點是建立一個適用于 DMO 建模、模擬和分析的計算環境,尤其側重于有人和無人飛機的情報、監視和偵察 (ISR) 任務。

在半個世紀的建模和仿真研究與實踐(例如,見 Forrester, 1961; Law & Kelton, 1991),特別是四分之一世紀的組織建模和仿真工作(例如,見 Carley & Prietula, 1994)的基礎上,獲得了代表當前技術水平的計算建模和仿真技術(即 VDT [虛擬設計團隊];見 Levitt 等人, 1999)。這種技術利用了人們熟知的組織微觀理論和通過基于代理的互動而產生的行為(例如,見 Jin & Levitt, 1996)。

通過這種技術開發的基于代理的組織模型在大約三十年的時間里也經過了數十次驗證,能夠忠實地反映對應的真實世界組織的結構、行為和績效(例如,參見 Levitt, 2004)。此外,幾年來,已將同樣的計算建模和仿真技術應用到軍事領域(例如,見 Nissen, 2007),以研究聯合特遣部隊、分布式作戰、計算機網絡行動和其他任務,這些任務反映了日益普遍的聯合和聯盟努力。

本報告中描述的研究項目旨在利用計算建模來了解如何為 DMO 實現有凝聚力的戰斗傳感器集成,并建模和概述集成實施所需的系統能力和行為類型。作為一個多年期項目,本報告所述的第一項工作重點是建立一個適用于 DMO 建模、模擬和分析的計算環境。在這第一項工作中,將對當今的海上行動進行建模、模擬和分析,重點是有人駕駛和無人駕駛飛機的情報、監視和偵察(ISR)任務。這為與執行 ISR 任務的一個或多個 DMO 組織進行比較確立了基線。這也為與其他任務(如打擊、防空、水面戰)進行比較建立了基線。第二階段接著對一個或多個備用 DMO 組織進行建模、模擬和分析。

在本技術報告的其余部分,首先概述了 POWer 計算實驗環境,并列舉了一個實例,以幫助界定 DMO 組織和現象的計算建模。依次總結了研究方法。最后,總結了沿著這些方向繼續開展研究的議程。這些成果將極大地提高理解和能力,使能夠為 DMO 實現戰斗員與傳感器的集成,并為集成實施所需的系統能力和行為建模和概述。

付費5元查看完整內容
北京阿比特科技有限公司