軍事規劃人員往往只關注個體能力的發展,而不考慮他們如何與國家其他部隊協同工作,更不用說盟軍了。與任何優秀的交響樂團一樣,協調這些能力需要一個世界級的指揮家。指揮和控制(C2)系統及其操作員在軍事上相當于指揮家的角色。直觀地說,改進的C2系統可以提高作戰效率和效力,相當于交響樂團更迅速地演奏,并努力爭取完美的表演。然而,什么才是真正的C2改進,如何評判這種改進?是不是簡單地說,如果在戰略層面的成本/效益比得到改善,同時控制相同的效果交付工具,就可以認為新的C2系統更好,還是改進涉及更多的方面?這種改進的主要因素可能是整體速度的提高和友軍減員的降低。假設兩個相互競爭的系統在戰術層面上一對一的公平決斗的結果是相對統計學上的拋硬幣,這種公平的平衡需要受到從戰術層面到戰略層面所獲得的優勢影響。下面將探討一些選項的好處及弊端。
一種扭曲平衡和改善單個系統交付效果的方法是實現比對立系統更好的態勢感知 (SA),這應該能夠實現優化和更快的決策。這就要求在每個過程(如計劃、部署、交戰)中都能及時獲得所有必要的信息,以創造優勢。這通常也被稱為信息優勢。北約及其國家可利用來自各個領域的大量主動和被動傳感器(包括技術和人力),產生了大量的數據。接下來的步驟是將數據轉換為信息,然后可能轉換為知識,接著是將其傳播給所需的用戶。假設國家來源的數據和信息的持續共享,需要決定什么可以、將必須被傳遞,以及傳遞給誰。在傳輸之前,知識到信息的轉換需要信任,但也需要在為多個用戶服務時利用較少的帶寬以節省時間。應用于數字內容的信任有時被稱為電子信任。然而,這減少了地方指揮官/操作者進行背景分析的選擇,這反過來又強調了對數據/信息真實性的需求。此外,可用的數據/信息越多,就越需要確定 "什么是相關的 "以創造優勢。實際上,這只能在接近收集點時進行,除非客戶確切知道他實際需要什么。隨著可用材料數量的不斷增加,再加上通過現有網絡分銷的瓶頸,這種可能性變得越來越小。此外,隨著數據量的增加,對計算機化分析支持的實際需求也在增加,這對于檢測、分類、識別和相關數據的分類都是如此。這就是不斷發展的人工智能(AI)、大數據、深度學習和量子計算等領域可以幫助提高速度和效率的地方。
這種增強的效率也有其缺點。我們不僅要思考和處理新類型的錯誤信息,因為它對人工智能的意義與對人類操作者的意義不同,而且還需要對錯誤信息的潛在最終接受者進行相應的培訓。人類的決策過程基于兩種類型的推理:1)更耗時的深思熟慮的推理;2)常規決策的自動推理。研究表明,人類在與自動化系統互動時,傾向于使用更多的自動推理。系統越快,操作者就越不可能慎重推理。關于殺手機器人的辯論圍繞著自動或自主決策展開,在使用致命武力時缺乏有意義的人類控制。這可以通過將這些決定權留在人類手中來避免。然而,如果操作者沒有經過良好的訓練,在某些情況下,結果可能沒有什么區別。
以地基防空和導彈防御(SBAMD)系統為例,外部提示數據允許優化排放控制,因此,輻射檢測較晚,電子對抗措施較少。這也支持優化攔截點和采用先進的火力控制概念,如遠程交戰或發射。然而,在伊拉克自由戰中,SBAMD部隊發生了幾起自相殘殺事件后,美國國防部的一份報告指出有三個不足之處,導致了這些有時是致命的情況。首先,關鍵的識別系統表現不佳;其次,防空系統嚴重缺乏安全保障;第三,SBAMD的作戰概念與實際作戰條件不符,但操作人員卻被訓練成信任該系統。這支持了這樣一種觀點,即技術方案需要與作戰要求同時進行,最重要的是,需要進行充分的培訓。
軍事行動的總體效果取決于所使用的能力和其使用的方式。加強其中之一肯定會改善結果。然而,僅僅優化現有的能力和程序以達到必要的效果會有局限性,例如技術上的限制或程序上的不足。這可能需要開發全新的方法或能力。最后,新方法或性能力需要提供預期的效果,同時保持對突發情況的穩健。
一對一或一對多的交戰是每一次軍事對抗中的單個拼圖,然而,總體目的是在使用軍事力量時實現預期的最終戰略狀態。除了單個系統的有效性,軍事行動的藝術是協同使用選定的軍事力量以創造整體優勢。在作戰/戰術層面,目標是盡可能地協同使用各個系統。近幾十年來,顯著增加的態勢感知(SA)使軍事行動從更注重消耗的方法轉向更注重效果的方法。此外,軍事力量網絡化的能力使聯合和合成作戰越來越有活力。在目前的北約作戰中,一個聯合部隊分部領導各個領域的組成部分(如聯合部隊航空分部),這些組成部分在各自的領域提供能力。例如,這就需要聯合部隊對目標和受保護的資產進行強有力的聯合協調,同時仍然采用以領域為中心的方式來關注效果交付本身。在這方面,一個由空中部門領導的SBAMD單位可以為陸地部門要求的資產提供掩護,或者為攻防一體化接受陸地或海軍的支持。盡管進行了聯合協調,但領域規劃仍主要停留在領域分部層面。獲得優勢的一種方法是比對手的規劃周期更快規劃和執行,不讓對手有機會獲得最佳執行。我們所有可用的效果,將有助于把問題空間轉化為我們所期望的最終狀態,可以被視為解決方案空間,整體SA越好,軍事規劃者就越能定義和理解問題空間。當從效果方面考慮時,需要最大限度地提高應用某種方法或能力的預期成功幾率。有兩種方法可以實現這一點:使用新的武器,如高超音速滑翔飛行器,通過利用對手的能力差距來保證高成功概率,或者通過結合一個或多個領域的各種能力來削弱有效的反制措施。每一個交付的效果都會改變我們的問題空間,從而對我們的規劃產生后續影響。目前,空戰和相關的空中任務指令通常以72小時為周期進行規劃和執行,以便適應問題空間的變化。在現有網絡和現代軟件工具的支持下,通過在聯合層面上對問題和解決方案空間的最佳認識,這一過程可以被簡化,以減少規劃周期長度,并包括更有力地利用多個領域能力來實現一個目標的解決方案,而不需要廣泛的協調。
此外,在多效應任務中,支持單位和被支持單位之間的關系應該變得更加靈活,因為所選擇的指揮關系結構可以是臨時的、取決于效應的,而不是以任務為中心的長期關系。這種更加集中的規劃和分布式的執行,將進一步把領域內的組成部分轉變為主要是能力保管者和效果提供者。軍事決策空間將在C2層次中向上移動,最低級別的軍事實體規劃成為強大效果的提供者或貢獻者,而強大必須從多領域的角度來定義。這可能也會影響到哪些國家以及如何向北約作戰派遣部隊,因為臨時的、靈活的部隊規劃可能會受到國家紅牌持有者概念的阻礙。對于戰術層面的執行,變化的程度取決于戰術能力在影響戰斗空間和提供更廣泛效果方面的通用性。高度機動的航空資產,特別是那些擁有各種有效載荷的資產,可以比以前更加靈活和有效地使用。一般來說,SBAMD系統將大大受益于改進的SA,導致優化的射擊和排放控制理論,更好的分層防御的射擊管理和整體上更好地利用防御庫存。然而,單位的機動性水平將對靈活使用決策的附加值產生重大影響。長程SBAMD部隊的機動性相對較低,這將不允許非常快速的長距離重新部署以應對臨時的任務變化。然而,短程SBAMD部隊具有較高的機動性,將能夠以更靈活的方式提供覆蓋。在聯合層面上,隨著SA的大幅增加以及規劃和執行工具的增強(如AI功能),有可能使類似于全域聯合作戰的結構成為現實。反過來,這可以使規劃到執行的周期更快,讓對手陷入多域的困境,并集中精力采用基于效果的方法來實現預期的最終狀態。盡管聽起來很有希望,但這種方法至少有兩個必須考慮的弊端。
在新技術成就的基礎上發展新的C2結構并不是一個原創的想法。我們可以假設我們的潛在對手正在研究類似的概念,同時他們也在加快作戰節奏。保持足夠的SA以充分了解問題空間將變得更加復雜。此外,我們的決策周期必須不斷加快,以便能夠向對手的規劃過程注入影響。由于在處理速度方面,使用人類操作員本身就是一個限制因素,新的C2結構必須越來越多地依賴技術解決方案。這可能會導致軍事上的技術奇點、戰場奇點,即人類的認知不再能跟上機器的速度。因此,在計算機、人工智能或深度學習的幫助下開始加速未來戰爭的進程,我們必須意識到對整個進程的后果。此外,我們的倫理和司法框架也必須解決這個難題。暫時讓我們考慮一下,這個挑戰是可以應對的,并創造一個未來戰爭可行的C2結構。人類行為者/操作者,從政治/戰略層面到戰術層面,都需要適應并訓練在這樣的環境中發揮作用。以快節奏、多領域的效果來思考問題,需要專業的、有能力的人員。由于從工程角度來看,針對現有能力的開發比較容易,因此可以假設未來的對手會設計一些方案來中斷或否定這種新環境。例如,對手可以使用量子計算來破譯我們的安全通信,這將大大影響數據/信息的可用性、可信賴和保密性。因此,需要準備、提供和演練一項應急計劃。這個應急計劃不僅需要提供用于規劃、執行和通信的后備技術,而且還需要保持熟練掌握未來和當前C2結構的人員能力。由于軍事設備和可用時間有限,這可能成為資源管理的一個挑戰。目前的一個例子是我們對定位、導航和定時(PNT)系統的依賴,如全球定位系統(GPS)。因此,士兵們需要能夠利用PNT的好處,認識到干擾的可能性,但也要保留在沒有GPS的情況下執行任務的能力。在SBAMD領域,GPS干擾的一個很好的例子是,在沒有PNT服務的情況下,要準確安置傳感器和射手以進行正確的交戰,并提供一個明確的空中畫面。因此,有無GPS的兩種方法都必須不斷地進行實踐。然而,在未來復雜的C2系統中,對技術解決方案的依賴程度越來越高,也有類似的問題。整個系統需要準備好在任何情況下都能發揮作用。未來C2結構的基礎技術越強大,從核心(如情報、監視和偵察平臺或規劃/執行工具)到使能系統(如通信網絡或PNT)都包括在內,我們就越不需要考慮遺留問題;但這將是昂貴和費時的。系統的穩健性被定義為在特殊輸入或壓力條件下的正常運行,只能針對目前可以想象的所有條件和輸入進行測試。因此,穩健性需要不斷地重新評估和不斷地維護,特別是在一個快速發展的環境中。
技術創新一直使軍事戰爭得到改進。然而,若僅僅因為技術上是可行的,這并不意味著它可以被輕松地納入,或沒有副作用。優化的SA和更有能力的工具總是能讓我們更好更快地規劃和執行。然而,這種能力需要在所有預期的情況下盡可能地強大,并有適當的后備方案作為支持。所有人員都必須在這兩個世界中得到充分的教育和訓練,并能夠在兩者之間無縫切換。此外,由于技術支持而提高的軍事行動速度,必須在道德和法律框架內與人的能力保持平衡。系統越是復雜,就越需要強調在不斷發展的環境中保持穩健和彈性。這不是一次性采購C2工具包的問題,而是系統的不斷發展和對各級操作人員進行必要的教育和培訓。給管弦樂隊一些新的樂器或新的指揮,肯定需要微調、持續的排練和真正的表演審查,總是有一個后備選項來復制熟悉的質量標準以滿足聽眾的期望。
然而,在選擇進化我們的C2系統的道路上,沒有真正的選擇,因為潛在的對手也會這樣做,從而有可能獲得決定性的、難以匹敵的優勢。潛在的專制對手在使用新興技術(如人工智能、深度學習)方面的法律和道德約束可能要少得多,因此可以不受限制地發揮這些能力。因此,我們的系統不僅需要跟上這一步伐,還需要有能力用其他手段彌補使用限制,讓我們保持競爭力。
作者:
安德烈亞斯-施密特中校:1993年加入德國空軍。在軍官學校學習后,他在慕尼黑的德國武裝部隊大學學習計算機科學。自1998年以來,他在地基防空,特別是 "愛國者 "武器系統方面建立了廣泛的背景。他開始擔任戰術控制官,隨后在不同的 "愛國者 "部隊中擔任偵察官、炮臺執行官和炮臺指揮官。此外,他在德克薩斯州的布利斯堡有兩個不連續的任務。他第一次任務的主要是為德國PATRIOT辦公室進行戰術層面的武器系統行為的美國和歐盟雙邊研究。在他的第二次任務中,他是德國空軍防空中心的綜合防空和導彈防御的主題專家(SME)。在這之間,他曾在前空軍分部擔任A3C的任務。目前,他是JAPCC的綜合防空和導彈/彈道導彈防御SME。
作者:
全世界對人工智能(AI)軍事應用的興趣正在增長。事實上,與其他一些技術進步一樣,人工智能越來越被視為軍事效力的潛在重要推動力。
毫不疑問,人們對人工智能對加拿大陸軍(CA)的影響以及其采用人工智能的可能性的興趣正在上升。關于如何以及在多大程度上可以利用人工智能來潛在地幫助實現緊密作戰應用的問題:加拿大陸軍的頂點作戰概念--"不確定性時代的陸地力量 "的實現,以及加強陸軍的五項作戰功能的實施,這些問題尤為突出。有關有效采用人工智能可能面臨的挑戰以及克服這些挑戰所需措施的問題也同樣突出。
本文對這些問題進行了初步研究。它源于加拿大陸軍陸戰中心正在進行的關于人工智能的工作,以研究和確定人工智能對加拿大陸軍和有效實現陸軍頂點作戰概念的影響。
文章概述了人工智能在軍隊采用和開展軍事行動方面所帶來的潛在好處和挑戰。然后,文章研究了人工智能對實現密切交戰的潛在影響,確定了人工智能的應用有望提高軍隊的作戰效率的領域。文章最后概述了一些必要的關鍵前提條件和做法,以確保這些工作是負責任的和有效的。
人工智能的定義有很多,而且在不斷發展。然而,按照國防部目前的定義,人工智能是 "計算機執行與人類邏輯有關功能的能力,如推理、學習和自我改進"。 雖然沒有被普遍接受,但這樣的表述為在CA背景下討論人工智能提供了一個體制上熟悉和充分的基礎。
軍事組織探索、開發和采用人工智能的激勵措施是引人注目的。鑒于高速計算機(網絡速度和處理能力)和人工智能算法處理和分析大量數據的能力,其速度和準確性遠遠超過人類,聲稱人工智能系統有可能全面改變國防,這并不令人驚訝。通過作為一種提高人類和機器分析速度的手段,人工智能有希望提高數據使用、管理和態勢感知能力。對于軍隊來說,其結果很可能轉化為成本節約、改進控制系統、加快決策、新的作戰概念和更大的行動自由。
由人工智能支持的信息和決策輔助系統有可能促進在 "復雜的、時間緊迫的戰地環境 "中做出更好的決策,允許更快地識別威脅,更快、更精確地確定目標,并根據戰地條件的變化為指揮官創造靈活的選擇。應用范圍可以從指揮和控制以及情報、監視和偵察到訓練和后勤。此外,作為機器人和自主系統的骨干技術,人工智能為武器裝備的創新提供了前景,使具有相當大的軍事潛力的先進自主系統(如機器人系統和無人機)得以發展。人工智能甚至可能在部隊結構和作戰概念方面產生巨大的變化,有可能減少人員的負擔和軍事硬件的成本,同時提高戰爭本身的效率和效力。
這些技術無處不在,而且越來越多的盟軍和對手都可以使用,這一事實進一步刺激了對人工智能軍事技術的追求。就前者而言,盟國對人工智能日益增長的興趣突出表明,需要有足夠的人工智能能力來確保未來盟國的互操作性和軍事有效性。至于后者,有證據表明,對手(如俄羅斯、中國)對人工智能的軍事應用進行了持續的探索和投資,這增強了追求此類技術的動力,以檢測和防御未來越來越多的人工智能軍事威脅。
然而,有效引進人工智能的先決條件是相當多的,很可能對軍事組織充分實現人工智能應用所帶來的一些可能性的能力造成限制。此外,軍隊可能不完全愿意追求人工智能技術本身所固有的一些可能性。
事實上,目前的能力僅限于執行離散的功能和學習具體的任務(如狹義的人工智能)。人工智能技術的脆弱性令人擔憂。脆弱性是指任何算法不能泛化或適應狹窄的假設集以外的條件。例如,在添加了一些位數后,一個停車標志可以被讀成一個45英里/小時的限速標志。應用于涉及過度不確定性的情況實際上可能特別危險。例如,錯誤地選擇和起訴友軍目標,如友軍戰士或民用車輛。因此,在軍事環境中,特別是在軍事行動中,對人工智能的使用限制是相當大的。面對傳來的信息可能不可靠、不完整或甚至被對手故意偽造的環境,相信這些技術提供的解決方案仍然很脆弱。
除此之外,即使在這種技術被普遍認為是可靠的領域,其開發和應用也可能是苛刻的。要求包括確保有足夠數量的數據可供開發用于啟用軍事系統的算法。它們還包括確保算法本身的質量,這一要求取決于在將人工智能納入軍事系統之前提供和有效地準備和編碼訓練數據,以及確保來自現實世界數據的有效性,其中包括邊緣案例(不常見的使用案例)。而且,它們包括確保開發和集成到軍事系統中的人工智能是可靠的(即它以預定的方式工作)。
這些要求中的每一項都可能涉及相當大的挑戰。獲取大量的訓練數據可能會遇到基于政治和法律限制的數據共享阻力,從而降低待訓練算法的質量和使用這些算法的系統的可靠性。獲得的數據可能包含種族、性別和其他源于數據準備和編碼的偏見。此外,隨著算法變得更加復雜,通過對手在訓練數據集中注入不良數據而被操縱的可能性會增加。只要存在這些挑戰,對人工智能的信任及其在軍事領域的應用就可能受到影響。
這些風險可以通過仔細的人工監督和強大的測試得到控制。也就是說,真正有效的監督需要操作者熟悉人工智能技術的細節,以及重要的系統整合和社會化,這可能很難實現。由于對技術本身的理解存在困難,有效監督挑戰就更大了。機器推理的過程不等同于人類,人工智能系統采用的邏輯也不容易理解。對于負責使用這些能力的指揮官和系統操作者來說--其中一些能力可以很好地決定生命和死亡--相信那些決策過程不透明的技術,可能是一座太遙遠的橋梁。
這些現實表明,加拿大陸軍采用人工智能,雖然有希望,但必須謹慎行事,并對限制有一個現實的認識。無論是加拿大還是加拿大陸軍,都無法避免遇到上述挑戰。例如,人工智能技術在沒有適當人類監督的情況下越接近殺戮鏈,可能發生災難性后果的風險就越大。因此,必須注意研究或采用能夠幫助人類決策的技術。一個指示人類做什么的 "黑盒"人工智能將是不可接受的。人工智能顧問必須能夠解釋其建議/結論,以便人類能夠理解并對所提出的建議有信心。人類決策者必須能夠對人工智能所提供的解決方案向領導作出清晰和可理解的解釋。
然而,如果謹慎地追求和應用,人工智能的大部分內容通常與《近距離接觸,不確定時代的陸地力量》中詳述的陸軍要求非常吻合。緊密的作戰應用目的是應對以快速變化為特征的作戰環境的挑戰,以及廣泛的復雜的人道主義挑戰和技術能力越來越強的對手,他們能夠使用一系列機動性越來越強的致命和非致命系統以及精心設計的反措施。應對這些挑戰在很大程度上取決于確保獲得必要的信息和分析的能力,以便比對手更快地了解和調整不斷變化的條件。作為一種先進的信息處理方法,人工智能可以提供一種重要的手段,通過提供比人類更快、更準確地處理和分析來自越來越多來源的數據來幫助滿足這些需求。因此,人工智能可以作為一個重要的決策輔助工具,使個人和共同的理解得到發展,這對于確定潛在的作戰方案,優先獲得、處置和使用軍事資產,以及提供及時開展行動所需的數據、信息和可操作的情報至關重要。
除此之外,人工智能甚至可能有助于加強陸軍所依賴的網絡安全。"能夠遠距離運行的高容量網絡為軍隊行動的開展提供了顯著的優勢。事實上,一個安全和強大的網絡是確保快速、安全地分發有效開展軍隊作戰所需的數據和分析的核心。通過開發能夠防范網絡故障、電子戰和網絡攻擊的算法,人工智能可以更充分地確保軍隊能夠 "獲得網絡的優勢",從而以更安全、協調和協作的方式開展行動。在諸如互操作性、力量生成、力量投射和維持以及開展分散行動等方面的改進,都可能因此而受益。
自始至終,隨著人工智能技術被推向戰術邊緣,將有必要確保有足夠的電力(能源)來支持它。除了網絡,先進的電源管理和電池技術將是至關重要的。
圖:加拿大國防研究與發展部-瓦爾卡蒂爾項目的數據收集工作,該項目被稱為聯合算法戰機傳感器。該項目是較大的加拿大陸軍科學和技術組合的一部分,即數字時代的授權分布式作戰。
指揮、控制和通信(C3)系統是所有軍事作戰的基礎,為國防部(DoD)的所有任務提供計劃、協調和控制部隊和作戰所需的關鍵信息。歷史上,美軍取得并保持了C3技術的主導優勢,但同行的競爭者和對手已經縮小了差距。國防部目前的C3系統沒有跟上威脅增長的步伐,也沒有滿足我們聯合作戰人員不斷增長的信息交流需求。聯合部隊必須配備最新的C3能力,為所有領域提供實時態勢感知和決策支持。
未來的沖突很可能由信息優勢決定,成功的一方將來自多個領域的分布式傳感器和武器系統的大量數據轉化為可操作的信息,以便更好、更快地做出決策并產生精確的效果。國防部(DoD)正在執行一項重點工作,通過綜合和同步的能力發展,在所有領域迅速實現靈活和有彈性的指揮和控制(C2),以確保對我們的對手的作戰和競爭優勢。這項工作被稱為聯合全域指揮與控制(JADC2),是決策的藝術和科學,將決策迅速轉化為行動,利用所有領域的能力并與任務伙伴合作,在競爭和沖突中實現作戰和信息優勢。JADC2需要新的概念、科學和技術、實驗以及多年的持續投資。
該戰略代表了國防部對實施國防部數字化現代化戰略中C3部分的設想,并為彌合今天的傳統C3使能能力和JADC2之間的差距提供了方向。它描述了國防部將如何創新以獲得競爭優勢,同時為完全網絡化的通信傳輸層和先進的C2使能能力打下基礎,以使聯合全域作戰同步應對21世紀的威脅。該戰略的重點是保護和保持現有的C3能力;確保美國、盟國和主要合作伙伴在需要的時候能夠可靠地獲得關鍵信息;提供無縫、有彈性和安全的C3傳輸基礎設施,使聯合部隊在整個軍事作戰中更具殺傷力。這一戰略的實施需要在作戰領域內和跨作戰領域內同步進行現代化工作,從完美的解決方案過渡到一個高度連接的、敏捷的和有彈性的系統。
本文件確定的目標為DOD的C3系統和基礎設施的現代化提供了明確的指導和方向。然而,現代化并不是一個終點,而是一項持續的工作。國防部將評估和更新該戰略,以適應在通往JADC2道路上的新的作戰概念和技術。
美國防部正面臨著幾十年來最復雜和競爭激烈的全球安全環境。在這個大國競爭的新時代,國防部必須提高聯合作戰人員的殺傷力,加強聯盟伙伴關系,吸引新的合作伙伴,并改革國防部以提高績效和經濟效益。
當我們建立一支更具殺傷力的部隊并加強聯盟和伙伴關系時,DOD必須專注于關鍵的有利工具,以有效地運用聯合多國部隊對抗大國競爭。有效的部隊使用始于有效的C2,即由適當指定的指揮官在完成任務的過程中對指定和附屬部隊行使權力和指導。在現代戰爭中,這可能是人對人、機器對機器(M2M)的循環,或者隨著自主程度的提高,M2M的循環中也有人類。在其最基本的層面上,成功的C2需要有可靠的通信、發送和接收信息的手段,以及其他處理和顯示可操作信息的能力,以幫助指揮官進行決策并取得決定性的信息優勢。
圖1:指揮、控制和通信現代化
該戰略的重點是支持有效的聯合和多國作戰的C3使能能力(圖1)。C3使能能力由信息整合和決策支持服務、系統、流程以及相關的通信運輸基礎設施組成,使其能夠對指定和附屬的部隊行使權力和指導。這些能力使指揮官和決策者能夠迅速評估、選擇和執行有效的作戰方案以完成任務。
具體而言,該戰略為2020-2025年的C3使能能力現代化提供了方法和實施指南。作為2018年國防戰略(NDS)實施的一部分,聯合參謀部正在制定聯合和任務伙伴網絡的工作概念,以便在有爭議的環境中執行全域聯合作戰。根據這些概念,負責研究和工程開發的國防部副部長辦公室(OUSD(R&E))正在開發和發展一個長期的(2024年及以后)全網絡化指揮、控制和通信(FNC3)架構。實施這些未來的概念和架構將需要時間來使得新的技術和多年的投資成熟可用。這個C3現代化戰略為彌合今天的傳統C3使能能力和未來的FNC3使能JADC2之間的差距提供了方向,以確保聯合部隊能夠 "今晚作戰(fight tonight)",同時為聯合全域作戰所需的未來技術創造一個可行的過渡路徑。
本戰略提出的C3現代化目標與國防部數字化現代化戰略(DMS)和其他更高層次的指導意見相一致,包括國家發展戰略、國防部2018年網絡戰略、聯合作戰的基石概念:《聯合部隊2030》和《國防規劃指南》。它實施近期的現代化作戰和創新解決方案,通過更安全、有效和高效的C3環境提供競爭優勢。為此,國防部必須解決這些C3現代化的目標:
1.開發和實施敏捷的電磁頻譜操作;
2.加強定位、導航和授時信息的交付、多樣性和彈性;
3.加強國家領導指揮能力;
4.提供綜合的、可互操作的超視距通信能力;
5.加速和同步實施現代化的戰術通信系統;
6.全面建立和實施國防部公共安全通信生態系統;
7.創造一個快速發展5G基礎設施和利用非美國5G網絡的環境;
8.提供有彈性和響應的C2系統;9.提供任務伙伴環境能力。提供任務伙伴環境能力和服務。
圖2:DOD數字現代化戰略
圖3:DOD C3現代化和數字現代化戰略的一致性
圖2和圖3分別顯示了本戰略中實施的DMS要素以及兩個戰略之間的目標和目的的一致性。
DOD C3依賴于一個復雜的、不斷發展的系統,從網絡基礎設施和核心服務到戰術邊緣的手持無線電和移動設備。本戰略中包含的九個目標是對圖2中強調的六個DMS目標的更細粒度的分解。C3現代化的其他關鍵因素包括聯合信息環境能力目標、數據中心化和數據分析,分別包含在DMS、國防部云戰略和國防部人工智能戰略中。有效的國防部事業管理將確保這些戰略的成功同步和實施。
互動、討論和各種信息的交流使網絡成為今天的場所。文本、圖像、視頻,甚至諸如地理空間和健康數據等信息都以前所未有的規模被分享。網絡上的這種信息交流為各種數據驅動的應用產生了一個廣泛的、可自由訪問的數據源--有多種機會,但也有風險。在本文中,我們介紹了研究項目ADRIAN--"在線網絡中依賴權威的風險識別和分析 "的總體思路,該項目致力于研究和開發基于人工智能的方法,以檢測基于異質性在線數據集的個人和機構的潛在威脅。我們將首先監測選定的社交運動應用程序,并分析收集的地理空間數據。在第二步,體育應用和社交媒體平臺的用戶資料將被關聯起來,以便能夠形成一個個人集群,并能夠識別潛在的威脅。由于所謂的 "數字孿生 "可以通過這種方式重建,因此會產生敏感數據。如果這些數據也能與其他機密數據相關聯,就有可能估計出個人、團體或地點所受威脅的合理性。
現代網絡是基于互動、討論和信息交流的。然而,網絡也為數據驅動的應用創造了一個巨大的、可自由訪問的信息源。由于網絡上用戶生成的數據以自動化的方式與現有資源有效地聯系在一起,即使是無意中透露的個人信息也會產生破壞性的后果。因此,即使是微不足道的,有時是無意披露的信息也會對個人、團體或整個組織產生潛在的有害影響[1,2,3]。盡管服務提供商現在有責任和利益來確保網絡上用戶數據的安全和隱私,但這些數據被濫用、泄露,或者公開的信息被用來對付原始創建者[4]或政府機構[5]的情況越來越多。執法部門和其他人群在社交媒體平臺上面臨著越來越多的潛在威脅,這不僅僅是自2020年美國發生暴亂以來。特別是,社交媒體賬戶和帖子(如Twitter或Instagram)與流行的體育應用程序的跟蹤和位置數據的收集和鏈接,使用戶和他們的親人可以被識別,使他們可以追蹤,成為網絡攻擊的潛在目標(如網絡跟蹤,doxing,身份盜竊)[5,6]。在這種情況下,另一個與安全有關的方面是,可以利用收集到的跑步路線的地理空間數據來定位軍事基地[7]。由于不是所有的信息本身或組合都會造成威脅,單純的數據最小化、限制數據訪問、數據規避和預防工作是不夠的[8]。在研究項目ADRIAN--"在線網絡中依賴權威的風險識別和分析"中,我們采取了主動搜索、建模、預測和突出網絡威脅的方法,并特別針對政府機構進行研究。我們的方法的目標是自動監測選定的(體育)應用程序,并分析其收集的數據,將其與社會媒體資料相關聯,形成個人集群,以確定潛在的目標并評估其風險潛力。這是基于處理文本(如推文)、圖像(如建筑物前的自拍、地圖)和地理空間信息(如跑步路線)。這意味著我們正在處理一個異質的數據集。由于它的構成,對處理方法的要求也非常不同。由于在數據分析和知識提取過程中可以通過這種方式重建所謂的 "數字孿生",因此產生了極其敏感的(元)數據[6]。通過將這些信息與其他分類數據相關聯,就有可能確定相應(群體)個人或地點的威脅可信度。為了實現這些目標,技術實施必須結合信息檢索方法和法醫語言學的方法。此外,網絡分析和聚類的方法將被用來開發新的評估功能,以根據披露的信息識別目標(人、地點等)。
在本文中,我們介紹了我們對這一主題的理解,也介紹了我們的方法和我們的原型,我們正在不斷地開發。本文的組織結構如下。在第2節中,我們回顧了當前的研究現狀,重點是現有的方法和定義,因為通常缺乏統一的術語。在第3節中,我們介紹了我們自己在ADRIAN中采取的方法,從有針對性的數據收集、數據聚合和充實以及交互式可視化開始。在第4節中,我們介紹了我們在原型上的工作,并在第5節中討論了我們的方法,然后在第6節中得出結論并提出展望。
2022年3月,美國蘭德公司發布《開發嵌入人工智能應用的聯合全域指揮控制作戰概念》報告,論述了嵌入人工智能/機器學習(AI/ML)的聯合全域指揮控制(JADC2)的需求,說明了如何在JADC2中利用商業AI/ML系統和需要克服的障礙,并指出了發展路徑。報告認為,為實現嵌入人工智能應用的JADC2,需要投入人力和資源來超越如今的人力密集型指揮控制模式,用自動化和AI/ML技術改進當前的規劃過程。
報告核心觀點包括:
將人工智能(AI)和機器學習(ML)納入JADC2進行多域作戰(MDO)之前要完成一項艱巨的任務,即建立“信息基礎”。信息基礎中的數據帶有標記,能夠安全地存儲和傳輸,且易于訪問。建立信息基礎需要持續整理和保護軍方為開展指揮控制所需的跨領域、跨軍種和跨梯隊的所有信息。這些信息是AI和ML算法所需的輸入。如果沒有這樣一個信息基礎,將AI融入JADC2的工作就無法取得進展。 盡管最近AI/ML在游戲領域取得了令人鼓舞的成功,但考慮到信息不完整、數據質量差和對手行動等現實障礙,在某些指揮控制功能中使用類似的技術仍具有挑戰性。其他AI/ML技術,例如用于預測戰區內飛機狀態的應用,其成熟度更高。實現JADC2目標取決于確定核心軍事任務集的指揮控制需求,以及建立在近期和遠期都可以實現的軟件開發計劃。
現代戰爭已經超越了傳統的陸、空、海領域,軍事指揮官及其參謀人員計劃、指揮和控制部隊不能局限于這些傳統領域,還要擴展到太空、網絡和電磁頻譜領域。更復雜的是,跨領域的活動已經超出了傳統戰爭的范疇,**在還未采取公開敵對行動之前,大多數國家早已身處競爭環境。**軍隊必須能夠在戰爭和競爭中整合這些領域。今天的軍事行動已經需要靈活和安全的手段來跨梯隊、領域、組織和地理區域進行通信和共享數據。未來的全域戰爭和競爭將對獲取信息的規模和速度、對信息的理解和快速決策提出更高的要求,這些都是JADC2能力的關鍵要素。
但是,今天用于規劃、調度和執行監視軍事任務的既存系統和基礎設施不適用于現代全域作戰。鑒于多域作戰規劃日益復雜,期限縮短,而且數據要求增加,軍事規劃人員需要新的工具,包括AI/ML工具。 要想確定對AI/ML工具投入的優先級,就需要了解這些工具的能力、面臨的障礙以及它們滿足多域作戰下新興指揮控制需求的潛力。
圖1 機器學習的類型
近來,AI/ML系統在日益復雜的游戲中展現出人類所不能及的能力,再加上人們對未來高端沖突作戰需求日益加深的理解,使AI/ML變得極具吸引力。作為一種AL/ML系統,AlphaStar在即時戰略游戲《星際爭霸》中的成功**預示著監督學習和強化學習未來有可能應用于戰術級和戰役級指揮控制。**但是,將這些技術從游戲過渡到戰爭仍需要大量的研究。
隨著人工智能算法被開發用于現實、動態、多領域、大規模和快節奏的作戰,需要選擇、評估和監控重要的度量標準來衡量算法的性能、有效性和適用性。關鍵的算法度量標準包括:效率(計算所需的時間和內存)、可靠性(算法是否產生有效的結果)、最優性(算法是否為給定目標提供最佳結果)、穩健性(算法是否能夠在意外情況下平緩降級)、可解釋性(人是否能理解所產生結果的原因)和確定性(算法是否按預期運行)。
由于商業和學術AI/ML系統沒有直接應用于軍事任務,這些技術需要過渡到軍事環境才能帶來作戰優勢。為了決定采用哪些AI/ML技術,軍方**必須首先了解需要這些技術支持哪些作戰需求,如空中優勢、防空、加油機支持等。隨后作戰需求將決定****實現作戰任務所需的指揮控制過程,**如態勢感知、空域去沖突等。**了解AI/ML技術的局限性,**尤其是它們在不確定條件下進行推理時遇到的困難,也同樣重要。否則,這些技術可能會達不到預期。
圖2 AI/ML關系
實現AI/ML的軍事應用存在以下四個主要障礙。
(1)軍事文化與商業文化的差異
由于在戰爭中生命始終處于危險之中,軍事文化通常是規避風險的。但是在商業世界中,承擔大的風險可能獲得豐厚的經濟回報。這種文化差異在共享數據方面表現最為突出。軍方傾向于保護信息(只有那些“需要了解”的人才能獲取信息),而商業世界重視開放數據訪問(“廣泛共享”),以促進應用開發并獲得經濟利益。因此,將安全考慮納入軍事軟件開發和信息技術(IT)行動(稱為DevSecOps)非常重要,由此能夠挫敗試圖通過網絡手段削弱指揮控制的對手和危險份子。最大的挑戰可能是如何確保AI/ML算法適用于真實戰場。在戰場中,“戰爭迷霧”、不完整的信息和對手的行動與游戲環境截然不同。
(2)軍方內部數據不可訪問
軍方需要統一的數據管理政策和足夠先進的信息技術使指揮控制人員可以訪問大量數據,由此支持他們的人工智能輔助決策。換句話說,**必須有一個支持收集、標記、存儲、保護和共享數據的AI生態系統。**這個生態系統將依賴于通用數據標準、明確指定的權限、完整性檢查和入侵防護。**云計算和數據湖將是關鍵組成部分。**云數據湖可以用于分布式計算、冗余存儲和整個企業內的連接。考慮到現有的軍事政策、文化、權限、預算和獲取途徑,構建這樣一個環境以跨領域和跨安全級別的安全方式提供大量數據將對JADC2提出挑戰。
(3)需要重組軍事行動中心并培訓中心的人員
機器之間通信的增加和指揮控制過程的自動化,可能會帶來作戰中心硬件和人員的變化,這使人類作戰人員能夠聚焦認知任務,如評估和完善潛在的行動方案。采用AI/ML技術將創造出新的角色和職責。作戰人員需要接受培訓以便管理和運營AI生態系統,同時充當數據管理員,確保在該生態系統中捕獲和存儲的數據的質量和完整性。此外,雖然現在規劃人員和決策人員受到的培訓是要在一個領域內思考,但新的職責可能會出現,需要人們同時在多個領域內思考。
**(4)存在軍事亞文化 **
由于作戰人員之間亞文化的差異、規劃時間線的不同,以及為實現不同的作戰效果而采用的不同的權限分配方案,即使在一個軍種內,也很難跨越空中、太空和網絡領域集成AI能力。 盡管如此,對全域指揮控制的需求是急迫的,而且這種需求越來越普遍。為此,在JADC2中嵌入AI應用必須面對和克服以上所有障礙——軍事文化、網絡安全問題、用于知識質量較差的問題的算法、數據不可訪問、作戰中心重組和培訓以及軍事亞文化。
以上障礙讓現狀看起來很嚴峻,必須立即做出改變來響應快速向前推進的迫切需求。但是,如果將實現目標的步驟分解成一個個容易解決的問題,如果軍方清楚技術的可能性和局限性,就可以取得進展。**我們的目標不應該是指揮控制的完全自動化,而是指揮控制的高效人機組隊。**實現這一目標的步驟應該包括:第一,繼續開發JADC2作戰概念并確定其優先次序;第二,在指揮控制過程中確定采用AI/ML來增強能力的需求和機會。
與此同時,有必要為數據驅動的AI生態系統設置環境,這意味著要將武器系統和相關數據遷移至多域數據湖中,供有權限的人使用,同時應用“零信任”和其他安全原則來靈活且安全地管理這些數據。隨著AI軟件應用程序的開發,有必要在作戰測試環境中對這些應用程序進行實驗,將它們與指揮控制系統集成,然后將有限的能力部署到作戰中心,接著根據用戶反饋快速更新軟件應用程序。分析師和技術專家希望探索作戰概念來促進人機組隊,建立人們對AI智能算法的信任,并提高算法的可解釋性。商業需求較少的領域可能需要有針對性的軍事投資,例如用于數據稀缺領域的AI算法學習,或者用于防御針對這些算法的攻擊的AI算法。
當前的AI/ML技術需要學習用的數據。由于缺乏真實世界的數據(缺乏這類數據也是一件幸事)來為改進這些戰爭技術提供信息,軍方可以利用建模、模擬和演習來為AI/ML算法生成訓練數據。這類算法有助于武器-目標配對等。監督或強化學習算法可以支持這種指揮控制功能,類似于最近應用于商業游戲的學習算法。但是軍事算法也必須考慮到現實世界中的不確定性,這對人類和算法來說都是一個主要困難。
正如美國空軍參謀長查爾斯?布朗(Charles Brown)2020年8月所說:“要么加速變革,要么失敗。”對現代戰爭來說,及時向JADC2邁進是必要的,而且有必要“在競爭對手的防守期限內”完成。這一需求真實存在,但對AI/ML設定現實的預期很重要。現有的指揮控制流程在自動化方面還有改進的空間,在某些情況下,在AL/ML方面也有改進的空間。美國眾議院軍事委員會主席、華盛頓州民主黨眾議員亞當?史密斯(Adam Smith)于2021年9月談到JADC2時說:“目標是正確的,但不要低估實現這個目標的難度。”
來源:防務快訊
本文件是北約 IST-151 研究任務組 (RTG) 活動的最終報告,題為“軍事系統的網絡安全”。該 RTG 專注于研究軍事系統和平臺的網絡安全風險評估方法。 RTG 的目標如下:
? 協作評估軍事系統的網絡安全,并在 RTG 的北約成員國之間共享訪問權限;
? 在 RTG 的北約成員國之間共享風險評估方法和結果;
? 將 RTG 的北約成員國使用的評估方法整合到一個連貫的網絡安全風險評估方法中,以使北約國家受益。
軍事平臺比以往任何時候都更加計算機化、網絡化和受處理器驅動。他們大量使用數據總線,如 MIL-STD-1553A/B、CAN/MilCAN、RS-422/RS-485、AFDX 甚至普通以太網,以及戰術通信的舊標準,如 MIL-STD-188C 和 Link 16。此外,捕獲器、傳感器、執行器和許多嵌入式系統是擴展攻擊面的額外無人保護的潛在輸入。結果是增加了網絡攻擊的風險。然而,這些平臺的持續穩定運行對于軍事任務的成功和公共安全至關重要。
軍事系統和平臺是網絡攻擊的首選目標,不是因為它們像消費電子產品那樣普遍,而是因為它們潛在的戰略影響。一旦受到影響,就可以實現各種短期和長期影響,從拒絕能力到秘密降低其有效性或效率。因此,軍隊必須在各個層面解決網絡安全問題:戰略層面,同時獲取平臺和系統;作戰層面,同時規劃軍事任務和戰術。
北約國家擁有大量可能面臨網絡攻擊的軍事平臺和系統。因此,北約將受益于利用當前的流程和方法來設計更安全的系統并評估當前系統的網絡安全。
本報告介紹了針對軍事系統和平臺量身定制的網絡安全評估方法,該方法由 RTG 團隊成員合作開發,并建立在他們的經驗和專業知識之上。團隊成員已經使用的流程被共享、分析、集成和擴充,以產生本報告中描述的流程。本報告的目標受眾是愿意評估和減輕其軍事系統的網絡安全風險的決策者。
圖一:網絡安全評估過程的五個主要步驟。
第 2 節介紹了 RTG 團隊在其存在的三年中用于開發流程的方法。第 3 節列出了可以應用該過程的系統的一些特征。最后,第 4 節描述了評估流程,而第 5 節總結本報告。
軍事平臺比以往任何時候都更加計算機化、網絡化和受處理器驅動。這導致增加了網絡攻擊的風險。然而,這些平臺的持續穩定運行對于軍事任務和公共安全的成功至關重要。
絕對的網絡安全是不存在的。必須通過迭代風險評估持續管理網絡安全。傳統 IT 系統存在許多網絡安全風險管理框架和流程。然而,在軍事平臺和系統方面,情況遠非如此。本文檔介紹了針對軍事系統量身定制的網絡安全風險評估流程。該流程由北約 IST-151 研究任務組 (RTG) 活動的團隊成員開發,該活動名為“軍事系統的網絡安全”。該過程可以應用于傳統的 IT 和基于固件的嵌入式系統,這些系統在軍事平臺和系統中無處不在。
任務規劃對于建立成功執行任務所需的態勢感知至關重要。全規劃有助于預測不同的情況,這一點尤其重要,因為威脅的多樣性和復雜性會增加。規劃過程是需要收集、分析相關信息并將其整合到一個全面的規劃中。由于第 5 代平臺、傳感器和數據庫生成的大量信息,這些流程面臨壓力。
本文描述了軍用直升機任務規劃環境的創建,在該環境中,不同來源的數據被整合、分析和可視化。參與規劃過程的所有人員都可以查看所有可用信息并與之交互。算法處理后的數據,為規劃的特定部分提供潛在的解決方案。交互式可視化有助于直觀理解輸入數據和算法輸出,而交互式增強現實環境有助于有效協作。
集成系統和算法是未來智能、協作任務規劃的重要組成部分,因為它們允許有效處理與第 5 代平臺相關的大量多樣的數據流。結合直觀的可視化和協作,這使工作人員能夠構建靈活且響應迅速的操作所需的共享 態勢感知。
圖1: 增強協同技術下的智能任務規劃(IMPACT)
IMPACT系統由三層組成(見圖2):
圖2:從功能角度看IMPACT架構。
?以消費者和企業為中心的新技術的爆炸式增長已成為美國民眾體驗醫療保健和福祉的顛覆性力量。這些技術——統稱為“數字健康”——有可能改變個人、家庭和社區管理他們的醫療保健和福祉的方式。
美國機構和其他利益相關者正在對新工具進行大量投資;獲取、提供和使用數據的方法;以及提供衛生服務的創新方式。然而,對于指導眾多創新實現共同目標、協作工作和高優先級成果的國家優先事項集,并沒有達成一致意見。需要一個包括協作治理流程在內的戰略框架,以建立一個值得信賴、透明和公平的數字健康生態系統。
被統稱為“數字健康”的技術正在擾亂美國乃至世界各地的醫療保健和福祉現狀。在這方面,COVID-19大流行似乎是一個分水嶺。環境促使遠程保健的使用激增,在這一過程中產生了關于遠程保健的交付、影響、價值和可持續性方面的數據和潛在教訓。大流行可能產生對個人、家庭和社區產生積極影響的轉變。替代方案——在當前系統之上簡單地分層數字技術——將不僅僅維持現狀。這將使那些在連通性、數字素養和獲得護理方面已經落后的人的處境更加糟糕,并將進一步為濫用、欺詐和浪費打開大門。在一個如此富有和創新能力的國家,這樣的結果是不可接受的。國家需要采取戰略性行動,充分考慮數字衛生帶來的獨特挑戰和機遇。
該戰略為指導美國數字健康生態系統的發展提供了一個框架。該戰略包括六個目標,每個目標都有建議的行動。總的來說,這些目標旨在實現數字健康生態系統推動的改善國民健康和福祉的愿景。
本文檔旨在為領導者提供實施變革的框架。其中涉及的變化范圍很廣——不僅是技術上的,還有政治、社會和文化上的。這里的想法的實施需要大量的時間、金錢、資源的投資,最重要的是領導能力。其他國家也在國家規劃的指導下進行這些投資。美國必須采取明智的行動,但不能拖延,以實現數字衛生生態系統的愿景。
戰略的最后一個組成部分是治理。我們需要對支離破碎且過時的治理結構進行廣泛改革。避免重復、協調努力并代表全國做法的戰略投資將受益于數字衛生。該策略詳細說明了所需治理結構的關鍵組成部分,并建議了實現有效治理機制的步驟。