發射無線電波的電子設備激增導致射頻 (RF) 頻譜擁塞。這對美國防部(DOD)的環境構成了重大威脅,尤其是嚴重依賴衛星系統的海軍通信,因為衛星系統很容易受到電磁干擾。缺乏足夠的干擾識別和鑒定能力進一步加劇了海軍部隊面臨的作戰風險。本論文研究利用機器學習(ML)技術檢測射頻傳輸中的干擾。憑借先進的數據分析和模式識別能力,ML 算法可增強干擾檢測和緩解能力。研究人員評估了基本自動編碼器和長短期記憶(LSTM)自動編碼器這兩種架構識別數據集中異常射頻數據的能力。研究方法包括在基本傳輸路徑中生成具有不同加性白高斯噪聲(AWGN)水平的射頻數據。使用正常射頻數據訓練 ML 模型,并評估其檢測和分類有干擾和無干擾信號的能力。結果表明,基本自動編碼器和 LSTM 自動編碼器模型都能有效識別干擾。LSTM 自編碼器的成功率約為 99%,這表明它們有望成為解決干擾識別能力差距的解決方案。
受赭石藻啟發的微電子機械系統(MEMS)傳感器可按一定配置排列,以探測入射聲波的到達方向(DoA)。先前的研究結果表明,可以確定方位角 360 度范圍內的明確到達方向。迄今為止,一直使用實驗室儀器進行模擬讀數。本研究的目標是開發、構建和測試一種電路配置,包括 MEMS 傳感器的外殼和電源,以及設計一種圖形用戶界面(GUI),以便從傳感器陣列中讀取 DoA,并利用 GPS 定位數據對多旋翼小型無人機的位置進行三角測量。測試場使用兩個節點的配置來探測小型旋翼無人機。操作場景顯示在地圖上。這種新配置可以探測到來自任何可探測來源的聲音,并提供聲音來源的坐標。
本論文提出開發一種彈性機器學習算法,可對海軍圖像進行分類,以便在廣闊的沿海地區開展監視、搜索和探測行動。然而,現實世界的數據集可能會受到標簽噪聲的影響,標簽噪聲可能是通過隨機的不準確性或蓄意的對抗性攻擊引入的,這兩種情況都會對機器學習模型的準確性產生負面影響。我們的創新方法采用 洛克菲勒風險最小化(RRM)來對抗標簽噪聲污染。與依賴廣泛清理數據集的現有方法不同,我們的兩步流程包括調整神經網絡權重和操縱數據點標稱概率,以有效隔離潛在的數據損壞。這項技術減少了對細致數據清理的依賴,從而提高了數據處理的效率和時間效益。為了驗證所提模型的有效性和可靠性,我們在海軍環境數據集上應用了多種參數配置的 RRM,并評估了其與傳統方法相比的分類準確性。通過利用所提出的模型,我們旨在增強艦船探測模型的魯棒性,為改進自動海上監視系統的新型可靠工具鋪平道路。
藍色亞馬遜管理系統
機器學習(ML)發展迅速,使機器能夠根據數據分析做出決策。計算機視覺(CV)是這一領域的一個專業部門,它使用先進的算法來解釋視覺信息,通過創造創新機會來改變汽車、醫療、安全和軍事等行業。在軍事領域,這些工具已被證明在改進決策、態勢感知、監視能力、支持行動以及促進在復雜環境中有效使用自主系統等方面大有裨益。
我們的研究主要集中在將 CV 原理應用于海軍領域,特別是解決二元分類問題,以顯示船只的存在與否。這構成了更廣泛的監視工具的重要組成部分,并采用了一種名為 "Rockafellian 風險最小化"(RRM)[1] 的新策略。RRM 方法旨在應對海上監控等復雜多變環境中固有的數據集標簽損壞所帶來的挑戰。我們方法的核心是交替方向啟發式(ADH),這是一種雙管齊下的策略,可依次優化不同的變量集。這種兩步迭代的過程可調整神經網絡權重并操縱數據點概率,從而有效隔離潛在的數據損壞。其結果是建立了一個更強大、更準確的海上監視和探測系統,從而增強了海軍行動中的決策和態勢感知能力。
我們的評估使用了兩個不同的數據集,即空中客車船舶探測(AIRBUS)[2] 和海事衛星圖像(MASATI)[3]。為了測試我們方法的魯棒性,我們逐步提高了這些數據集的標簽損壞水平,并觀察了這對模型性能的影響。
我們的研究在 ADH 流程中采用了兩種策略:w-優化和 u-優化。在 w 優化階段,我們試用了兩種不同的神經網絡(NN)優化器 Adam [4] 和 Stochastic Gradient Descent (SGD) [5, Section 3G],以調整神經網絡權重。u優化階段包括實施 ADH-LP(線性規劃)或 ADH-SUB(子梯度)算法,以修改每個數據點的概率,并有效隔離潛在的數據損壞。
ADH-LP 利用線性規劃進行計算優化,可提供全局最優解,但需要更多處理時間。另一方面,ADH-SUB 采用更快的子梯度方法,更適合較大的數據集或有限的計算資源。主要目的不是通過架構調整來提高性能,而是展示 RRM 方法如何提供優于傳統 ERM 方法的優勢,特別是在處理數據損壞和提高模型性能方面。
無論使用何種數據集(MASATI 或 AIRBUS),我們的研究采用 RRM 方法訓練 NN 始終優于或匹配 ERM 方法。RRM下的ADHLP和ADH-SUB算法在保持高性能水平的同時,對數據損壞表現出了顯著的適應能力,其中ADH-LP一直表現優異。總之,我們的研究結果表明,RRM 是一種穩健而有彈性的方法,可用于處理一定程度的數據損壞。
總之,我們利用 RRM 的創新方法為減少對標簽正確數據的依賴提供了一種有前途的解決方案,從而能夠開發出更強大的船舶檢測模型。這項研究在改進船舶自動檢測和整體海事安全方面邁出了一大步。通過有效處理數據損壞和測試創新方法,我們提高了海事監控系統有效監控沿海和劃界海域的能力。
在美國海軍及其盟國海洋行動中,最重要的是在海軍交戰中制定有效的戰略。盡管人們寄予厚望,但諸如 "約翰-麥凱恩 "號和 "菲茨杰拉德 "號這樣的事例表明,在每一次互動中確定有利的行動都具有挑戰性。本研究利用機器學習(ML)和人工智能(AI)的進步,開發了一個基于模擬的程序,將強化學習(RL)應用于海軍場景。該程序是對現有陸基兵棋推演模擬程序 Atlatl 的改編,旨在識別六種場景中己方兵力的高效行動。對深度 Q 網絡(DQN)、蒙特卡洛樹搜索(MCTS)和 AlphaStar 人工智能體在不同場景中的表現進行評估后發現,DQN 和 MCTS 能夠識別出更優越的策略,其中 DQN 一直表現出較高的得分,在某些場景中甚至超過了人類玩家。AlphaStar 顯示出的結果較少,但提供了如何改變它以在未來取得更好結果的見解。這些發現強調了人工智能作為海軍作戰決策輔助工具的潛力,有助于增強美國海軍的決策能力。建議今后開展研究,進一步挖掘這一潛力。
軍事決策過程(MDMP)包括分析地形以確保任務成功的關鍵任務。然而,傳統的地形分析方法,如二維(2D)模擬地圖、PowerPoint 演示文稿和任務式指揮系統,資源密集、耗時長,而且會使決策者無所適從。因此,本研究側重于使用移動頭戴式增強現實(AR)顯示技術進行三維(3D)地形可視化,以應對這些挑戰。AR 技術可讓用戶觀察到疊加在物理環境上的虛擬物體,從而增強身臨其境的體驗。該工具允許用戶查看和操作三維地形,添加軍事資源的表示,檢查由此產生的配置,并參與 MDMP。可用性研究評估了界面的有效性、效率和用戶滿意度,重點是三維可視化任務、衍生地形信息提取以及在有爭議的潮濕空隙穿越場景中的部隊部署。結果表明,AR 地形可視化原型為決策者提供了更全面、更準確的信息,使任務規劃和執行取得了成功。這項研究凸顯了三維地形可視化和 AR 技術在改進 MDMP、讓決策者更好地了解環境并做出更明智決策方面的潛力。
本研究側重于利用增強現實(AR)技術來支持軍事決策過程(MDMP),這是任務規劃的一個重要方面。該工具可使用戶與描述地形的本地三維(3D)數據集進行交互,并允許使用一套 3D工具。因此,該工具具有增強決策過程和提高 MDMP 會議效率的潛力。
傳統上,美國陸軍在規劃任務時依賴于二維(2D)圖形信息。然而,獲取更詳細的地形信息需要大量的時間和資源,例如創建額外的二維圖形表示法。相比之下,如果地形已被捕獲并表示為三維數據集,工作人員就能獲得所有必要信息,從而參與 MDMP 并做出更明智的決策。
論文研究包括設計和開發一種增強現實(AR)可視化工具,該工具可與三維虛擬地形一起操作,并支持 MDMP,尤其強調濕間隙穿越(WGC)的任務規劃。本論文旨在通過提供虛擬地形的精確數據、允許使用三維工具和更好地做出決策,改善 MDMP 期間的人員協作。此外,這項研究還有助于理解在 MDMP 中促進小團隊合作所需的技術前提條件。
技術進步往往會超越其采用和融入現有系統和流程的速度,這是一種常見現象。例如,在軍事任務中使用 AR 和虛擬現實(VR)技術進行信息共享,可以顯著改善復雜多變行動的規劃和執行。然而,將這些技術納入現有的任務式指揮系統和程序可能具有挑戰性且耗時較長,這主要是由于軍事行動對安全性和可靠性的要求。此外,用戶可能會抵制引入他們不熟悉的新解決方案和技術。因此,盡管信息共享技術進展迅速,但其融入軍事部門的速度卻慢得多。因此,復雜多變的軍事行動仍在使用過時的協議進行規劃和執行,任務式指揮系統長期以來也只是略有改進。
美國陸軍在 MDMP 期間使用各種方法提取信息和分析地形。主要是陸軍的每個作戰職能部門使用二維地圖提取地形信息;參謀部門通過情報地形科請求獲得更詳細的信息。然后,參謀部門將從二維地圖上收集的信息和情報科提供的信息制作成 PowerPoint 演示文稿。指揮官利用這套演示文稿做出最終決定。然而,由于二維地圖的固有局限性及其表現形式(在 PowerPoint 幻燈片中展示靜態二維地圖),參謀部無法始終從地形中提取衍生信息,從而做出明智的決策。如果能以本地三維數據格式顯示地形,并使用一系列合適的三維工具,工作人員就能從地形中提取衍生信息,加強協作,并更好地理解共同行動圖(COP)。
增強現實技術在軍事領域并不新鮮,但在 MDMP 期間尚未得到廣泛應用。通過在 MDMP 期間使用 AR 可視化工具,工作人員可以獲得以前無法用于工作和協作的系統功能。通過 AR 顯示三維虛擬地形并與之互動,每個 WWF 都可以使用簡單的手勢在地形周圍導航,操作這些數據集,操縱和放大縮小地形,并提取決策所需的衍生信息。因此,WWF 可以通過對地形具體情況的透徹了解來證實他們的決策,并更好地闡明他們向指揮官推薦特定行動方案的原因。此外,因誤解二維數據集而可能產生的錯誤也會減少,甚至消除。
關注 WGC 是部署 AR 技術和使用 3D 數據表示的沃土,這是有充分理由的。對于美國陸軍人員來說,WGC 是最具挑戰性的聯合武器任務之一;由于需要投入大量資源和人力資本,這類任務的規劃非常復雜(美國陸軍聯合武器中心,2019 年)。美國陸軍中的六個 WFF 必須緊密配合,以確保 WGC 的安全進行。在 MDMP 開始時,美國陸軍的每個 WFF 都要聽取情報部門關于地形分析的簡報;這一階段稱為戰場情報準備(IPB)。IPB 代表了對部隊行動區(AO)內地形的高層次審視,并提供了有關地形預期的歷史數據(陸軍部總部,2019 年);他們的大部分決策都是基于二維地圖做出的。進行 IPB 后,WFF 根據情報科提供的信息制定行動方案 (COA)。然而,依賴二維地圖有許多固有的局限性。例如,無法從任何給定點查看地形(數據集沒有三維記錄),因此缺少富有成效的 MDMP 所需的豐富地形信息。因此,使用卓越的數據表示,最大限度地減少出錯的可能性,并投入時間有效地研究替代方案和決策,有可能為此類復雜的軍事行動帶來急需的改進和戰略優勢。
本論文探討以下研究問題:
1.有可能為聯合武器 MDMP 提供最有效支持的技術框架是什么?
2.AR 支持的 MDMP 工具能否通過提供有關地形分析的衍生信息來增強作戰職能部門對地形的理解?
3.AR 支持的 MDMP 工具能否有效協助資源管理?
4.AR 支持的 MDMP 工具能否有效協助軍事參謀人員在聯合作戰場景中開展協作?
本論文僅限于開發一種 AR 可視化工具和虛擬環境,以支持 "濕間隙穿越 "和提取 MDMP 期間每個 WWF 所需的地形衍生信息。此外,同一工具還可實現軍事參謀部門之間的人員協作和信息交流。
用于解決所有研究問題的方法包括以下步驟:
1.文獻綜述:進行文獻綜述,提供論文中使用的基本構造的背景信息。
2.任務分析:對當前開展 MDMP 的實踐進行分析,以跨越濕間隙。這包括但不限于詳細分析行動方案制定過程中不同作戰功能之間的報告和互動、當前地形可視化實踐以及團隊協作。
3.設計 AR 可視化工具: 為工具和用戶界面設計支持系統架構。此外,選擇一套支持用戶任務所需的三維對象和地形。
4.可用性研究:開展可用性研究,重點關注支持 AR 的 MDMP 工具的功能和性能。
5.數據分析:分析在可用性研究中收集的綜合數據集。
6.得出結論并提出未來工作建議。
第一章:導言。本章介紹研究空間的最關鍵要素:領域、問題、研究問題、范圍以及用于解決所有研究問題的方法。
第二章:背景和文獻綜述。本章討論美國陸軍如何開展 ADM 和 MDMP 以規劃軍事行動。本章還討論了 VR 和 AR 過去和當前的使用情況,以及在 MDMP 過程中軍事人員合作時 AR 的潛在用途。
第三章:任務分析: 當前 MDMP 實踐。本章分析了當前陸軍參謀人員在 MDMP 期間分析地形時使用的方法和工具,以及如何向指揮官推薦 COA。此外,本章還討論了向指揮官提供 2D 信息時存在的知識差距。
第四章:原型系統設計與實施。本章討論了 AR 可視化工具、系統架構、用戶界面和模擬環境的設計與開發。文中還描述了 WGC 場景和為可用性研究所需的虛擬環境而構建的 3D 模型。
第五章: 可用性研究。本章討論了使用 AR 可視化工具進行可用性研究的方法,包括制定完整的機構審查委員會文件。此外,文中還討論了虛擬環境、技術要求以及在可用性研究中收集的客觀和主觀數據集。最后,本章分析了可用性研究的結果。
第六章:結論和未來工作。本章概述了研究的要點,并對今后的工作提出了建議。
對手的聲學傳感器會給試圖在不被發現的情況下行動的美國海軍潛艇帶來問題。解決這一威脅的潛在方法之一是使用主動噪聲消除來掩蓋潛艇噪聲。本論文通過數值求解偏微分方程約束優化問題,計算信號在模擬的二維海洋環境中傳播時,給定源信號的掩蔽信號,從而研究這一想法的可行性。我們研究了信號源的位置和類型對消除強度的影響。特別是,我們表明,只要知道聲源的位置和聲譜,就有可能有效地消除特定區域內聲源發出的聲音,例如聲學傳感器附近的區域。
本論文旨在利用深度學習技術提高從二維目標圖像中估計目標姿態的能力。為此,我們采用了一種名為高分辨率網絡(High-Resolution Net)的尖端卷積神經網絡來訓練關鍵點檢測模型并評估其性能。實驗使用了兩個不同的數據集,包括 600,000 張合成圖像和 77,077 張高能激光束控制研究試驗臺(HBCRT)圖像。這些圖像來自六種不同的無人駕駛飛行器,用于訓練和評估目的,高分辨率網在 80% 的圖像上進行訓練,在其余 20% 的圖像上進行測試。運行高分辨率網絡時使用了 MMPose 框架,這是一個 Python 庫,其中包含多種卷積神經網絡選項。研究結果表明,High-Resolution Net 在姿勢估計方面表現良好,但由于目標形狀的對稱性,在左右反轉方面仍存在明顯差距。這項研究為今后利用高分辨率網絡進行目標姿態估計研究奠定了基礎。進一步的研究將集中式提高圖書館中左右分辨的準確性,以增強這些成果。
本論文分為五章。第一章是引言,介紹了本課題的概況及其相關性,以及如何進行實驗。第二章是文獻綜述,通過相關的學術和行業資料更詳細地介紹了這一研究領域。第三章是問題的提出和方法,介紹了將要解決的問題和解決問題的方法。第四章是模擬結果和深度學習性能評估,對結果進行評估,看是否取得了有意義的進展。第五章是結論,從更廣闊的視角看待結果,并討論未來工作的可能性。
軍事分析人員可利用公開數據庫深入了解相關國際事件的發展。然而,這些數據庫依賴于以英語為基礎、經過整理的資料來源。這可能會導致偏差,不利于分析質量,尤其是在關注英語不是主要語言的地區和行動者時更是如此。
本研究旨在利用全球事件、語言和語調數據庫(GDELT)數據集來預測影響烏克蘭戰爭的重要因素,并將使用提取的數據和機器學習技術來開發預測模型。該項目旨在實現兩個目標。首先,提供一種從大數據集合中自動提取和預處理相關事件數據的方法。其次,將不同的機器學習模型應用于提取的數據,以預測重要因素,從而識別持續沖突中的事件趨勢。
所展示的數據采購可自由擴展到不同地區、行為體或其組合。在應用程序接口(API)中配置所需的參數后,相關的 GDELT 事件將自動提取。
由于本論文的重點在于預測,因此建模技術的應用側重于時間序列和遞歸神經網絡(RNN)模型。在測試過的時間序列預測模型中,自回歸綜合移動平均(ARIMA)模型與其他候選模型和天真模型相比,顯示出良好的預測性能。應用時間序列模型預測一至三個月的中期趨勢取得了最佳結果。
為了補充時間序列模型并利用 GDELT 的短期更新間隔,我們建立了不同類型的 RNN,并測試了它們在事件數量短期預測方面的性能。簡單 RNN 與長短期記憶 (LSTM) RNN 進行了比較,結果發現,簡單 RNN 的性能不如 LSTM RNN 模型。由此得出的結論是,數據中確實存在影響模型預測能力的長期和短期效應。
除了最初的跨語言 GDELT 數據庫,RNN 模型還運行了僅基于英語來源的 GDELT 數據提取,以及來自武裝沖突地點和事件數據項目(ACLED)數據庫的數據提取。
總體而言,在幾乎所有測試的模型中,使用基于英語來源的數據集都能獲得更好的均方根誤差值。不過,這并不一定意味著模型在捕捉現實生活中的變化方面表現更好。一項補充性探索數據分析(EDA)得出結論,在以英語為基礎的報告中,一系列事件的代表性不足。這一點在烏克蘭戰爭前奏期間尤為明顯,因為西方公眾對該地區的興趣和英語報道的一致性有時會降溫。事件報道不足導致數據的可變性較低,一致性較高,從而提高了基于英語模式的績效指標。
關于 RNN 模型在 ACLED 數據庫中的性能,除了 "爆炸/遠程暴力 "和 "戰斗 "這兩種事件類型外,本研究選擇的模型無法應用于 ACLED 數據提取。造成兼容性低的原因是報告事件的數量較少,以及報告中的空白與所選模型的相關性不高。
不同數據源之間的性能比較表明,要持續產生可靠的結果,挑選合適的預測因子和對結果進行初步分析并不容易實現自動化。強烈建議每次從 GDELT 首次提取新型數據子集時都進行一次 EDA。
圖 3.1. GDELT 事件數據庫中一個數據元素的示意圖。矩形代表中心數據元素,即事件。圓圈代表屬性,屬性 "GlobalEventID "用作唯一標識符。提及和音調 "屬性是灰色的,因為它不屬于本工作的范圍。
許多武裝部隊正變得以網絡為中心并高度互聯。數字化戰場的技術進步促成了這一轉變和分散決策。隨著戰場的演變,任務要求部隊具有機動性并支持多種戰術能力,目前部署靜態無線電中繼節點以擴大通信范圍的概念可能不再適用。因此,本論文旨在設計一種使用無人機系統(如航空浮空器和戰術無人機)的作戰概念,為戰術部隊提供視距外通信,同時克服全球定位系統失效環境下的限制。鑒于聯邦通信委員會規定工業、科學和醫療頻段的最大有效各向同性輻射功率為 36 dBm,擬議的概念分為三個階段,以評估操作和通信系統需求。兩個節點之間的最大通信距離可使用 Friis 傳播方程進行研究。此外,還使用 Simulink 軟件研究了有效應用吞吐量與距離的關系。分析結果表明,IEEE 802.11ax 可提供更高的數據吞吐量,并支持 2.4 GHz 和 5.0 GHz 兩個頻段。通過模擬環境和運行場景,確定了在 50 千米乘 50 千米的區域內提供通信覆蓋所需的航空系統估計數量。
隨著數字化戰場的擴展,以及對可進行多域作戰的高度互聯部隊的需求日益增長,目前在戰區采用靜態中繼節點的通信概念可能不再可行。因此,本論文旨在設計一種作戰概念,利用無人機作為戰術部隊的通信中繼節點,同時克服全球定位系統(GPS)封閉環境的限制。具體來說,這項研究的主要重點是確定這一作戰概念的最大通信范圍,并研究兩個空中中繼節點之間的有效數據吞吐量。此外,研究還試圖確定提供 50 千米乘 50 千米或同等通信覆蓋所需的空中中繼節點數量。最終,本論文的研究結果旨在進一步提高作戰行動環境中的通信效率。
擬議的作戰通信框架將采用一種混合通信系統,同時使用航空浮空器系統和戰術無人機作為通信中繼節點。利用戰術無人機的靈活性,在需要時可以方便地增加網絡數據帶寬。為分析行動需求和可部署的通信系統類型,擬議的行動構想分為三個不同階段。
為了研究擬議概念的可行性,采用了 IEEE 802.11ax 和 IEEE 802.11n Wi-Fi 標準來檢查網絡性能,并確定估計的有效通信范圍。之所以采用這些 IEEE 標準,是因為它們可以在 2.4 GHz 和 5.0 GHz 頻段上運行。
根據美國聯邦通信委員會 (FCC) 的規定,在 2.4 GHz 頻段工作時,工業、科學和醫療 (ISM) 頻段的最大有效各向同性輻射功率 (EIRP) 規定為 36 dBm。通過限制輸出功率和有效輻射功率,可以確定在 2.4 GHz 和 5 GHz 頻段工作時的理論有效通信范圍。利用弗里斯傳播方程,計算出的范圍分別約為 5.5 千米和 2.6 千米。
通過修改 MATLAB Simulink 軟件中現有的 IEEE 802.11 MAC 和應用吞吐量測量模型,確定了使用 IEEE 802.11ax 和 IEEE 802.11n 標準的有效應用吞吐量。從仿真結果可以看出,隨著距離的增加,兩種工作頻率的應用吞吐量都會下降,這是由延遲和數據包丟失數量增加等因素造成的。此外,與 2.4 GHz 相比,5 GHz 頻段的傳輸距離較短。因此,為了彌補傳輸距離的限制并優化在 5 GHz 頻段工作時的數據吞吐量,建議使用比在 2.4 GHz 頻段工作時更高的信道帶寬。
從模擬結果來看,IEEE 802.11ax Wi-Fi 標準的數據吞吐量高于 IEEE 802.11n。這是因為 IEEE 802.11ax 采用了比 IEEE 802.11n 更有效的調制和編碼方案。因此,以 IEEE 802.11ax 作為推薦的 Wi-Fi 標準,在 2.4 GHz 和 5 GHz 上運行時的最大應用吞吐量分別約為 4.403 Mbps 和 4.488 Mbps。
為了估算在 50 千米乘 50 千米的作戰區域內提供通信覆蓋所需的空中中繼節點數量,使用了地圖規劃工具軟件 ArcGIS Pro 來模擬作戰區域并規劃通信網絡。根據計算得出的有效通信距離和地圖規劃,估計總共需要 23 個航空浮空器系統才能在 2.4 GHz 頻段上提供網絡覆蓋,另外還需要 24 架戰術無人機才能支持在 5 GHz 頻段上運行的更高數據帶寬網絡。
值得注意的是,本論文僅限于分析兩個空中中繼節點之間的性能,并使用了仿真模型。在現實世界中,有多種因素可能會影響室外環境中的網絡性能,例如地形影響造成的衰減。因此,為了更好地了解系統的性能,建議在實地進行深入的開發測試,并考慮環境造成的衰減和干擾。在這種情況下,提供通信覆蓋所需的空中中繼節點的估計數量可能會有所不同。此外,性能和有效通信距離也可能下降。
除中繼通信外,空中中繼節點的高度優勢還可提供額外服務,如執行監視和偵察任務。因此,為了最大限度地提高系統性能,建議未來的研究人員研究不同傳感器系統可能造成的干擾影響。為了最大限度地降低干擾幾率,可能有必要制定詳細的頻率分配計劃,以確保不同系統之間有足夠的頻率間隔。
自主和半自主系統在一個系統的框架內運行,利用其自身的感知、認知、分析和執行行動的能力來實現其目標。無人系統對美國國防部(DoD)的采購程序提出了重大挑戰,該程序是為開發和部署人在環型能力而建立的。本論文的目的是對通過軍事采購程序開發半自主和自主系統的挑戰進行分析,以確定增加項目成功的可能性所需的最佳做法和趨勢。
分析的第二個目標是比較和對比具有自主能力的系統的測試和評估方法。測試和評估過程的目的是使決策者能夠管理技術風險,并在做出實戰決定之前評估能力的強大和成熟程度。自主系統需要嚴格的測試/制造策略,對大多數項目來說,這將導致成本超支和進度違反。此外,試圖跟上快速變化的技術步伐超過了美國防部使用尖端技術的成熟系統的能力。
圖12。DoDI 5000.02自適應采購框架。
頻譜稀缺是許多通信系統面臨的問題,在軍事領域和其他領域都是如此。認知無線電網絡是一種機會主義地利用廣播頻譜的方法。其基本概念包括將用戶分為兩類:第一類和第二類。主要用戶在資源分配過程中擁有優先權,而次要用戶需要使用頻譜進行通信。本論文試圖應用認知無線電的概念來實現高流量環境下的蜂群通信。主要用戶可能包括無法控制的優先友好或敵對發射器。這項研究采用了認知無線電的概念和機器學習算法,在網絡內開發了一種動態聚類技術,將優化資源分配。提出了三種方法來訓練神經網絡以找到最佳的頻譜分配。即使提出的算法沒有超過基線啟發式的表現,但證明了最優解決方案的存在。建議繼續這項研究,因為所使用的算法可以進一步修改并以各種方式應用。