目標檢測是一種廣泛應用于工業控制、航空航天等安全攸關場景的重要技術。近年來,隨著深度學習在目標檢 測領域的應用,檢測的精度得到了較大提升,但由于深度學習固有的脆弱性,使得基于深度學習的目標檢測技術的可靠性 和安全性面臨新的挑戰。本文通過對近幾年面向目標檢測的對抗樣本生成及防御的研究進行分析和總結,致力于為增強目 標檢測模型的魯棒性和提出更好的防御策略提供思路。首先,介紹了對抗樣本的概念、產生原因以及目標檢測領域對抗樣 本生成常用的評價指標和數據集。然后根據對抗樣本生成的擾動范圍將攻擊分為全局擾動攻擊和局部擾動攻擊。在這個分 類基礎上,又分別從攻擊的目標檢測器類型、損失函數設計等六個方面對目標檢測的對抗樣本生成方法進行了分析和總結, 并通過實驗對比了幾種典型目標檢測對抗攻擊方法的性能,同時比較了這幾種方法的跨模型的遷移攻擊能力。此外,本文 還對目前目標檢測領域常用的對抗防御策略進行了分析和歸納。最后,總結了目標檢測領域對抗樣本的生成及防御所面臨 的挑戰,并對未來發展方向做出了展望。
視頻目標檢測是為了解決每一個視頻幀中出現的目標如何進行定位和識別的問題。相比于圖像目標檢測,視頻具有高冗余度的特性,其中包含了大量的時空局部信息。隨著深度卷積神經網絡在靜態圖像目標檢測領域的迅速普及,在性能上相較于傳統方法顯示出了非常大的優越性,并逐步在基于視頻的目標檢測任務上也發揮了應有的作用。但現有的視頻目標檢測算法仍然面臨改進與優化主流目標檢測算法的性能、保持視頻序列的時空一致性、檢測模型輕量化等關鍵技術的挑戰。針對上述問題和挑戰,在調研大量文獻的基礎上系統地對基于深度學習的視頻目標檢測算法進行了總結。從基于光流、檢測等基礎方法對這些算法進行了分類,從骨干網絡、算法結構、數據集等角度細致探究了這些方法。結合在ImageNet VID等數據集上的實驗結果,分析了該領域具有代表性算法的性能優勢和劣勢,以及算法之間存在的聯系。對視頻目標檢測中待解決的問題與未來研究方向進行了闡述和展望。視頻目標檢測已成為眾多的計算機視覺領域學者追逐的熱點,將來會有更加高效、精度更高的算法被相繼提出,其發展方向也會越來越好。
對抗樣本攻擊與防御是最近幾年興起的一個研究熱點,攻擊者通過微小的修改生成對抗樣本來使深度神經網絡預測出錯。生成的對抗樣本可以揭示神經網絡的脆弱性,并可以修復這些脆弱的神經網絡以提高模型的安全性和魯棒性。對抗樣本的攻擊對象可以分為圖像和文本兩種,大部分研究方法和成果都針對圖像領域,由于文本與圖像本質上的不同,在攻擊和防御方法上存在很多差異。該文對目前主流的文本對抗樣本攻擊與防御方法做出了較為詳盡的介紹,同時說明了數據集、主流攻擊的目標神經網絡, 并比較了不同攻擊方法的區別。最后總結文本對抗樣本領域面臨的挑戰,并對未來的研究進行展望。
摘要: 機器學習以強大的自適應性、自學習能力, 成為網絡空間防御的研究熱點和重要方向. 然而, 機器學習模型在網絡空間環境下存在受到對抗攻擊的潛在風險, 可能成為防御體系中最為薄弱的環節, 從而危害整個系統的安全. 為此, 科學分析安全問題場景, 從運行機理上探索算法可行性、安全性, 對運用機器學習模型構建網絡空間防御系統大有裨益. 本文全面綜述對抗機器學習這一跨學科研究領域在網絡空間防御中取得的成果及以后的發展方向. 首先介紹了網絡空間防御、對抗機器學習等背景知識. 其次, 針對機器學習在網絡空間防御中可能遭受的攻擊, 引入機器學習敵手模型概念, 目的是科學評估其在特定威脅場景下的安全屬性. 而后, 針對網絡空間防御的機器學習算法, 分別論述了在測試階段發動規避攻擊、在訓練階段發動投毒攻擊、在機器學習全階段發動隱私竊取的方法, 進而研究如何在網絡空間對抗環境下, 強化機器學習模型的防御方法. 最后, 展望了網絡空間防御中對抗機器學習研究的未來方向和有關挑戰.
深度學習模型被證明存在脆弱性并容易遭到對抗樣本的攻擊,但目前對于對抗樣本的研究主要集中在計算機視覺領 域而忽略了自然語言處理模型的安全問題.針對自然語言處理領域同樣面臨對抗樣本的風險,在闡明對抗樣本相關概念的基 礎上,文中首先對基于深度學習的自然語言處理模型的復雜結構、難以探知的訓練過程和樸素的基本原理等脆弱性成因進行分析,進一步闡述了文本對抗樣本的特點、分類和評價指標,并對該領域對抗技術涉及到的典型任務和數據集進行了闡述;然后按 照擾動級別對主流的字、詞、句和多級擾動組合的文本對抗樣本生成技術進行了梳理,并對相關防御方法進行了歸納總結;最后 對目前自然語言處理對抗樣本領域攻防雙方存在的痛點問題進行了進一步的討論和展望.
行人檢測技術在智能交通系統,智能安防監控等領域表現出了極高的應用價值,已經成為計算機視覺領域的重要研究方向之一。得益于深度學習的飛速發展,基于深度卷積神經網絡的通用目標檢測模型被不斷擴展應用到行人檢測領域,并取得了良好的性能。但是由于行人目標內在的特殊性、復雜性,特別是考慮到復雜場景下的行人遮擋、尺度變化等問題,深度學習方法也面臨著嚴峻的挑戰。本文針對上述問題,以基于深度學習的行人檢測技術為研究對象,在充分調研文獻的基礎上,分別從基于錨點框、基于無錨點框以及通用技術改進(例如損失函數,非極大值抑制等)三個角度,對各類行人檢測算法進行細分,并選取具有代表性的方法進行詳細介紹和對比分析。此外,本文對行人檢測的通用數據集進行了詳細的介紹,對該領域先進算法的性能進行了對比分析,對行人檢測中待解決的問題與未來的研究方向做出預測和展望。
//www.cjig.cn/jig/ch/reader/view_abstract.aspx?flag=2&file_no=2020&journal_id=jig
深度學習作為人工智能技術的重要組成部分,被廣泛應用于計算機視覺和自然語言處理等領域。盡管深度學習在圖像分類和目標檢測等任務中取得了較好性能,但是對抗攻擊的存在對深度學習模型的安全應用構成了潛在威脅,進而影響了模型的安全性。在簡述對抗樣本的概念及其產生原因的基礎上,分析對抗攻擊的主要攻擊方式及目標,研究具有代表性的經典對抗樣本生成方法。描述對抗樣本的檢測與防御方法,并闡述對抗樣本在不同領域的應用實例。通過對對抗樣本攻擊與防御方法的分析與總結,展望對抗攻擊與防御領域未來的研究方向。
摘要: 深度學習作為人工智能技術的重要組成部分,被廣泛應用在計算機視覺、自然語言處理等領域。盡管深 度學習在圖像分類和目標檢測等方向上取得了較好性能,但研究表明,對抗攻擊的存在對深度學習模型的安全應 用造成了潛在威脅,進而影響模型的安全性。本文在簡述對抗樣本的概念及其產生原因的基礎上,分析對抗攻擊 的主要思路,研究具有代表性的經典對抗樣本生成方法。描述對抗樣本的檢測方法與防御方法,并從應用角度闡 述對抗樣本在不同領域的應用實例。通過對對抗樣本攻擊與防御方法的分析與總結,預測未來對抗攻擊與防御的 研究方向。
目標檢測的任務是從圖像中精確且高效地識別、定位出大量預定義類別的物體實例。隨著深度學習的廣泛應用,目標檢測的精確度和效率都得到了較大提升,但基于深度學習的目標檢測仍面臨改進與優化主流目標檢測算法的性能、提高小目標物體檢測精度、實現多類別物體檢測、輕量化檢測模型等關鍵技術的挑戰。針對上述挑戰,本文在廣泛文獻調研的基礎上,從雙階段、單階段目標檢測算法的改進與結合的角度分析了改進與優化主流目標檢測算法的方法,從骨干網絡、增加視覺感受野、特征融合、級聯卷積神經網絡和模型的訓練方式的角度分析了提升小目標檢測精度的方法,從訓練方式和網絡結構的角度分析了用于多類別物體檢測的方法,從網絡結構的角度分析了用于輕量化檢測模型的方法。此外,對目標檢測的通用數據集進行了詳細介紹,從4個方面對該領域代表性算法的性能表現進行了對比分析,對目標檢測中待解決的問題與未來研究方向做出預測和展望。目標檢測研究是計算機視覺和模式識別中備受青睞的熱點,仍然有更多高精度和高效的算法相繼提出,未來將朝著更多的研究方向發展。
目標檢測的任務是從圖像中精確且高效地識別、定位出大量預定義類別的物體實例。隨著深度學習的廣泛應用,目標檢測的精確度和效率都得到了較大提升,但基于深度學習的目標檢測仍面臨改進與優化主流目標檢測算法的性能、提高小目標物體檢測精度、實現多類別物體檢測、輕量化檢測模型等關鍵技術的挑戰。針對上述挑戰,本文在廣泛文獻調研的基礎上,從雙階段、單階段目標檢測算法的改進與結合的角度分析了改進與優化主流目標檢測算法的方法,從骨干網絡、增加視覺感受野、特征融合、級聯卷積神經網絡和模型的訓練方式的角度分析了提升小目標檢測精度的方法,從訓練方式和網絡結構的角度分析了用于多類別物體檢測的方法,從網絡結構的角度分析了用于輕量化檢測模型的方法。此外,對目標檢測的通用數據集進行了詳細介紹,從4個方面對該領域代表性算法的性能表現進行了對比分析,對目標檢測中待解決的問題與未來研究方向做出預測和展望。目標檢測研究是計算機視覺和模式識別中備受青睞的熱點,仍然有更多高精度和高效的算法相繼提出,未來將朝著更多的研究方向發展。
簡介:
如今,深度學習已被廣泛應用于圖像分類和圖像識別的問題中,取得了令人滿意的實際效果,成為許多人 工智能應用的關鍵所在.在對于模型準確率的不斷探究中,研究人員在近期提出了“對抗樣本”這一概念.通過在原有 樣本中添加微小擾動的方法,成功地大幅度降低原有分類深度模型的準確率,實現了對于深度學習的對抗目的,同時 也給深度學習的攻方提供了新的思路,對如何開展防御提出了新的要求.在介紹對抗樣本生成技術的起源和原理的 基礎上,對近年來有關對抗樣本的研究和文獻進行了總結,按照各自的算法原理將經典的生成算法分成兩大類——全像素添加擾動和部分像素添加擾動.之后,以目標定向和目標非定向、黑盒測試和白盒測試、肉眼可見和肉眼不可見的二級分類標準進行二次分類.同時,使用 MNIST 數據集對各類代表性的方法進行了實驗驗證,以探究各種方法的優缺點.最后總結了生成對抗樣本所面臨的挑戰及其可以發展的方向,并就該技術的發展前景進行了探討.
內容簡介:
本文重點對生成對抗樣本的已有研究工作進行綜述,主要選取了近年來有代表性的或取得比較顯著效果的方法進行詳細的原理介紹和優缺點分析.按照其生成方式和原理的不同,分為全像素添加擾動和部分像素添 加擾動兩類.在此基礎上,根據目標是否定向、是否黑盒和是否肉眼可見這 3 個標準進行細分,將各類方法中的 代表性算法在統一數據集(MNIST)上進行測試,驗證并分析其優缺點,終總結提出未來的發展前景. 本文第 1 節主要介紹對抗樣本的基本概念和基礎知識,包括對抗樣本本身的定義、其延伸有關的相關概念 以及基本操作流程.第 2 節則指出對抗樣本是從深度學習中衍生出來的概念,同時介紹了對抗樣本有效性的評估方法.第 3 節則介紹對抗樣本的起源,說明了對抗樣本的產生契機和原理解釋.第 4 節介紹生成對抗樣本的發展狀況,以全像素添加擾動和部分像素添加擾動兩大類進行算法說明,同時總結生成方法中常用的數據集.第 5 節是對第 4 節中代表方法的實驗,結合對同一數據集的效果測試來說明各類方法的優缺點.通過這些優缺點,在 第 6 節中討論對抗樣本生成技術面臨的挑戰和前景預測.
目錄:
1 簡 介
2 前 傳
3 起源
4 發 展
5 實驗結果對比
6 面臨挑戰與前景預測