機器學習領域中,歸納偏差的研究是最為全面的主題之一。歸納偏差不僅定義了學習的效率和速度,還定義了特定機器學習系統最終能學到什么。現代機器學習的歷史與心理學、認知科學和神經科學緊密相連,因此許多最有影響力的歸納偏差直接來源于這些領域。例子包括卷積神經網絡,其靈感來自于自然視覺系統的組織結構,以及旨在模擬理想化抽象神經回路的人工神經網絡本身。然而,鑒于近年來機器學習的巨大成功,人們更多地關注了擴展機器學習系統所面臨的工程挑戰,而對其歸納偏差的關注較少。本論文將嘗試采取相反的方向。為此,我們將覆蓋自然相關的學習算法,以及神經表示中固有的自然結構。我們將構建模仿這些自然屬性的人工系統,并將展示它們如何有利于計算,并可能幫助我們更好地理解自然智能本身。
現代機器學習主要受到黑盒模型的驅動,這些模型提供了卓越的性能,但對于如何進行預測的透明度有限。對于需要了解模型如何做出決策的應用,以及協助模型調試和數據驅動的知識發現,我們需要可以回答有關影響模型行為的問題的工具。這就是可解釋機器學習(XML)的目標,這是一個子領域,它開發了從多個角度理解復雜模型的工具,包括特征重要性、概念歸因和數據估值。本文提供了對XML領域的幾個貢獻,主要思想分為三部分:(i)一個框架,使得可以統一分析許多當前的方法,包括它們與信息論和模型魯棒性的聯系;(ii)一系列技術,用于加速Shapley值的計算,這是幾種流行算法的基礎;以及(iii)一系列用于深度學習模型的特征選擇的方法,例如,在無監督和自適應的設置中。這些思想中的許多都是受到計算生物學和醫學應用的啟發,但它們也代表了在各種領域中都有用的基本工具和觀點。
在模型透明度的辯論中,傳統的觀點是我們面臨解釋性與準確性之間的權衡。1有些人辯稱這種權衡并不存在,聲稱我們可以使用“天生可解釋”的模型達到近乎最優的性能(Rudin, 2019);這對于簡單的表格數據集往往是正確的,但對于像圖像和語言這樣的復雜數據模態則較為罕見。在這里,我們采取了更為寬容的立場:鑒于黑盒模型目前提供了最佳的性能并且已經廣泛部署,我們探討是否有可能從任何模型中獲得足夠的見解。在這樣做的過程中,我們開發了一套在很大程度上對模型的內部機制持中立態度,或者說是模型不可知的工具集,因此即使在今天的最高性能的黑盒模型中也能正常運行。 這一目標也被可解釋機器學習(XML)子領域的許多工作所共享,并且近年來已經取得了顯著的進展。目前,XML工具已被用于了解新疾病的風險因素(Razavian等人,2020;Snider等人,2021),加速數學猜想的發現(Davies等人,2021),在有限的訓練數據標簽下識別蛋白質結合位點(Gligorijevi?等人,2021),審計有缺陷的醫學診斷系統(DeGrave等人,2021)以及從功能系統中獲得新的見解(Ting等人,2017;Sundararajan等人,2017)。這些早期的成功表明了這些工具的潛力,但在這些方法的底層理論以及使它們在實踐中高效的計算程序方面仍有進展空間。這篇論文介紹了我在博士期間進行的幾項工作,旨在解決這些挑戰。
這篇論文包含了我在博士期間完成的大部分項目,所有這些項目都與透明機器學習的核心主題相關。我們首先在第2章建立符號和幾個初步的概念。接下來,每一章都基于一篇第一作者的出版物,其中在某些情況下與共同第一作者共享。為了使它們在一個文檔中更具連貫性,對各個作品進行了修改,但這里沒有提供新的信息,這些論文也可以單獨閱讀。這些作品被組織成三個部分,如下所述。
**第一部分:XML的基礎 **我們首先討論一個統一了大部分文獻的觀點:許多現有的方法都基于一個解釋原則,即通過移除或量化從模型中移除特征的影響。我們描述了一個框架,在這個框架中,這些方法基于三個實現選擇而有所不同,我們為26個現有的算法確定了這些選擇(第3章)。基于這個觀點,我們對這些方法進行了統一分析,并找到了與信息理論、博弈論和認知心理學的聯系。然后,我們探索這些方法的魯棒性特性,并得出了描述它們對輸入和模型擾動的魯棒性的新結果(第4章)。 第二部分:Shapley值計算 接下來,我們探討XML中最廣泛使用的工具之一:Shapley值,一種博弈論信用分配技術。這些是最受歡迎的特征歸因方法之一,SHAP(Lundberg和Lee,2017)的基礎,以及一個著名的數據估值技術(Ghorbani和Zou,2019),但它們是臭名昭著的難以計算。有一系列方法來加速它們的計算(Chen等人,2022),我們在這里討論兩個:基于加權線性回歸的近似(第5章),和基于深度學習的攤銷優化的近似(第6章,第7章)。 第三部分:深度學習的特征選擇 最后,特征選擇為提供透明度的同時也降低了特征獲取成本提供了另一個方向。由于多次訓練不同特征集的模型的高昂成本,似乎很難與深度學習一起實施,但我們探討了如何使用可微分的層來阻止特征信息進入網絡(第8章)。然后,我們討論如何在自適應設置中應用這些思想,其中我們根據當前可用的信息為每個預測單獨選擇特征(第9章,第10章)。
新型機器學習方法是科學和工程變革的核心。概率模型已成為知識發現的基礎學習模型。作為替代模型,它們允許在有限的預算下進行高效的黑箱優化或積極學習復雜系統的行為。另一個重要的用例是使用概率模型作為生成模型,生成具有所需屬性的新設計,或從物理系統的平衡分布中生成樣本。但是,為了充分發揮概率模型在知識發現中的潛力,必須開發既能應對不斷增長的數據大小和復雜性,又能讓領域專家容易解讀的模型。
在這篇論文中,我從開發一種新方法開始,該方法解決了貝葉斯優化中的概率替代模型的稀疏解識別問題。稀疏解的發現不僅增強了解決方案對人類的可解釋性,以便理解系統行為,還便于使用較少的參數更輕松地部署和維護。
接下來,我介紹了一種利用深度學習增強高斯過程推斷可擴展性的新方法。高斯過程被廣泛用作知識發現中的概率替代模型,但由于在GP回歸中識別核超參數的高成本,其實際使用受到限制,涉及到昂貴的邊緣可能性。我展示了如何通過使用“攤銷”超參數推斷來繞過昂貴的邊緣可能性的需求。這是通過訓練一個單一的神經網絡實現的,該網絡消耗一組數據并產生一個估計的核函數,用于不同的任務。
最后,我介紹了邊緣化模型,這是一種新的高維離散數據生成模型,在科學發現中無處不在。通過使用神經網絡對所有誘導的邊緣分布進行明確的建模,邊緣化模型提供了可擴展和靈活的生成建模與合理的可能性。直接建模邊緣使得邊緣推斷效率高,能夠對給定的(非規范化)概率函數進行任意階的生成模型的可擴展訓練,克服了以前具有精確可能性的方法的主要限制。
概率模型作為建模數據分布的原則機器學習方法,最近開始在促進科學探索和發現中起到重要作用。替代模型在科學、工程、機器人學和許多其他領域都是寶貴的工具,其中它們模擬復雜的系統行為。利用概率代理模型提供的不確定性量化,可以設計自動算法通過與系統主動交互來有效地完成給定用例的目標。一個主要的用例是優化,例如通過實驗測試確定電池正極的最佳材料組成。在這種情況下,使用概率模型進行貝葉斯優化(Shahriari等,2015b),根據實驗結果了解和迭代微調組成和性能之間的關系。同時,基于替代模型的不確定性量化,策略性地選擇下一個實驗條件,平衡對新組成的探索與對已知性能良好的組成的利用,從而加速最佳組成的發現。
主動學習提供了另一個主要的用例,例如在訓練替代模型準確模擬分子動力學(Vandermause等,2020)。該過程從基于有限數據的初始概率模型開始,然后通過主動查詢系統獲取額外的標記數據來系統地加強。選擇最具信息性的樣本進行標記是由替代模型的固有不確定性估計指導的,從而得到一個準確的模型,標記工作量最小。
除替代模型外,概率生成模型在跨多個領域建模復雜數據分布方面也取得了顯著進展,包括自然語言建模(Brown等,2020)、圖像生成(Song和Ermon,2019; Ho等,2020)、音頻合成(Huang等,2018)和科學發現應用(Wang等,2022; Schneuing等,2022)。在訓練科學發現的生成模型時,有兩個主要設置。第一個設置是最大似然訓練,目標是訓練生成模型以最大化訓練數據的似然。這種設置通常用于圖像生成、自然語言建模和藥物設計等任務,目標是生成與訓練數據分布非常相似的數據。第二個設置是分布匹配,目標是將生成分布與目標密度對齊。這種設置在圖像和語言方面研究較少,但在如采樣晶格模型和估計分子或材料的平衡性質等應用中經常使用,其中需要從物理系統的熱力學平衡分布中生成樣本。
在這篇論文中,我提出了新方法來解決知識發現背景下概率模型的解釋性和可擴展性挑戰。在深入研究所提議的方法的細節之前,我為替代模型和生成模型的現有文獻提供了簡短的概述。 本章的其余部分組織如下:第1.1.1節首先簡要介紹了高斯過程,這是一種在科學發現中使用的流行的概率替代模型。然后在第1.1.2節中,我回顧了貝葉斯優化的基本方法論方面。第1.2節簡要概述了關于生成模型的現有文獻,重點關注科學發現中的應用。最后,在第1.3節中,我總結了整個論文的大綱。
隨著實用量子計算機的可能出現,人們開始研究其潛在的應用,特別是在人工智能的背景下。受到經典機器學習中深度神經網絡成功的激勵,人們普遍希望這種成功可以被轉化到所謂的量子變分算法或由經典機器學習啟發的量子神經網絡中。當前的深度學習算法主要是基于一系列啟示法開發的,這些啟示法通常缺乏嚴格的證明來證明其有效性。由于這些算法的不透明性,提供關于它們性能的明確保證仍然是一個巨大的挑戰。盡管這種復雜性延伸到深度學習的量子模擬,但越來越多的文獻已經識別出一套理論工具,以更好地了解為什么經典機器學習模型在現實任務中如此有效。我們使用這些工具來研究這些量子模擬,以部分解答在何時以及在什么條件下我們可以期望成功的問題。我們主要使用統計學習理論、量子力學、隨機矩陣理論和群論的工具來研究量子機器學習算法的可學習性。我們的發現表明,我們必須仔細考慮量子機器學習算法的設計,以達到合理的成功水平。事實上,我們的一些結果顯示,在量子機器學習中,隨機或無結構的方法容易遇到各種挑戰,包括與訓練性相關的問題或與最佳經典算法相比沒有顯著的優勢的問題。在整篇論文中,我們提供了幾個如何可能地向這些算法中引入結構來部分地解決這些問題的例子。此外,我們還探討了量子計算如何通知和加強經典機器學習的反向問題。我們研究了將酉矩陣納入經典神經網絡,這導致了這些酉神經網絡的更高效的設計。
機器學習(ML)和人工智能(AI)在廣泛的領域實現了非凡的、超乎人類的性能:包括計算機視覺、自然語言處理、蛋白質折疊等等。直到最近,大多數的進步都是采取模型中心化的方法,主要關注于改善神經網絡架構(如卷積神經網絡、殘差網絡、變換器等)和訓練這些模型的優化程序(如批量標準化、dropout、神經結構搜索等)。相對來說,我們對用來訓練這些模型的數據的關注度較低,盡管眾所周知,機器學習對高質量數據的依賴可以用"垃圾進,垃圾出"這句話來精辟地概括。隨著對越來越大且更復雜的模型(如Nvidia和Microsoft的5300億參數的MT-NLG)的回報逐漸減小,研究人員開始認識到采取數據中心化方法的重要性,并開發了原理性的方法來研究這些模型的燃料:數據本身。數據中心視角不僅可以提高任務性能,還可以讓我們考慮到一些社會關鍵考慮因素,如數據隱私。在本論文中,我們將對機器學習數據管道中的幾個點進行深入分析:在模型訓練前、訓練中和訓練后。在模型訓練前,我們將探索數據選擇的問題:應該用哪些數據來訓練模型,我們應該期望我們的模型在何種類型的數據上工作?當我們進入模型訓練時,我們將把注意力轉向由我們的ML系統與其部署環境的交互可能導致的兩個問題。第一個問題是數據隱私:我們如何防止我們的模型泄露有關其訓練數據的敏感信息?第二個問題涉及一些被模型化的群體的動態性。特別是當我們的模型被用于做出具有社會影響力的決策(如自動貸款批準或推薦系統)時,模型本身可能會影響數據的分布,導致性能降低。最后,盡管我們在模型訓練前和訓練中遵循最佳實踐,但可能在訓練后我們希望對模型進行后處理,以移除某些訓練后的數據的影響。如何以計算效率高的方式實現這一點呢?本論文將涵蓋每一個先前問題的新穎解決方案,強調的是每一個提議的算法都有可證明的保證。通過將數學嚴謹性應用于具有挑戰性的現實問題,我們可以開發出既有效又可信賴的算法。
在過去的十年中,機器學習(ML)和人工智能(AI)研究已經取得了飛速的進步。到目前為止,大部分的研究都采用了模型中心化的方法:也就是說,數據集被視為已給定,研究人員不斷迭代應用于這些數據集以提取有用信息的模型。這種模式下有一套標準的假設。例如,數據通常假設是從固定概率分布中獨立同分布(i.i.d.)抽取的,此外還假設數據是固定的和給定的。通常還假設測試數據與訓練數據來自同一分布,即不存在分布漂移。而且,通常唯一衡量成功的指標是模型的性能(如預測任務的準確率)。盡管這種范式已經帶來了大量令人印象深刻的進步,但往往與數據科學家在實踐中面臨的情況相去甚遠。例如,收集和策劃一份高質量的訓練集通常比使用更復雜的模型架構帶來更大的收益。關于獨立同分布的假設,在現實中,數據分布可能由于各種因素而不斷變化,包括時間變化(如消費者偏好的季節性影響)和空間變化(如不同地理位置的醫院患者分布不同)。在某些情況下,我們的模型本身可能導致數據分布的變化,特別是如果該模型被用于做出具有社會影響力的決策。最后,最近的立法,如加利福尼亞消費者隱私法案和歐盟的通用數據保護法規,要求在設計AI模型過程中也要考慮消費者隱私。也就是說,隱私以及模型性能,都是必須考慮的關鍵指標。 所有這些重要的實踐問題都有一個共同的主題:它們更多地關聯到數據本身,而不是訓練在其上的模型。在這篇論文中,我們遵循這種數據中心的觀點,并為數據通過典型的ML管道可能出現的問題提出新穎的算法。我們特別強調可以為每個提出的算法提供的可證明的保證。
受寬神經網絡(NNs)理論的啟發,核學習和特征學習近期作為兩個范式浮現出來,通過它們我們可以實際理解大規模深度學習系統的復雜行為。在文獻中,它們通常被描述為二分法的兩個對立面,各自具有優點和缺點:核學習與經過深入研究的機器學習技術(如核方法和高斯過程)建立聯系,而特征學習則承諾捕捉更多豐富而尚未解釋的,獨特于神經網絡的屬性。在這篇論文中,我們介紹了三項研究,研究結合了來自兩個角度的見解來研究神經網絡的性質,不僅強調它們的差異,而且強調共同點。我們首先回顧了有關深度學習理論的相關文獻,重點是寬神經網絡的研究。這為核學習和特征學習的討論提供了背景,基于此,我們繼續描述我們的貢獻。首先,我們研究了寬神經網絡集合與貝葉斯推斷之間的關系,利用核學習與高斯過程之間的聯系,并提出了一種修改,以解釋神經網絡函數在初始化時缺失的方差,從而使我們訓練過的深度集合具有貝葉斯解釋。接下來,我們結合核學習和特征學習來展示特征核的適用性,即通過最終層神經網絡特征的內積引導的核,作為知識蒸餾的目標,其中人們尋求使用強大的教師模型來提高弱學生模型的性能。最后,我們探討自監督學習中折疊特征和白化特征之間的差距,強調特征核中特征值的衰減率作為一項關鍵量,它彌合了這一差距,并影響下游泛化性能,特別是在標記數據稀缺的情況下。我們以討論我們的貢獻,包括局限性和未來展望,作為結論。
在過去的十年中,自然語言處理(NLP)系統幾乎完全建立在大型神經模型的基礎上。由于這些模型的能力,可行的任務范圍擴大了,應用的空間也擴大了,包括具有現實世界影響的子領域,如事實核查、假新聞檢測和醫療決策支持。這些模型的規模和非線性的增加導致了不透明,阻礙了機器學習從業者和外行用戶理解其內部原理并從其預測中獲得意義或信任的努力。可解釋人工智能(XAI)和更具體的可解釋NLP (ExNLP)領域通過提供對人類用戶有意義的文本解釋,已成為糾正這種不透明度并確保模型在高風險場景中的可靠性和可信性的活躍領域。可以檢查為其個人預測提供理由的模型,以調試、量化偏差和公平性、理解模型行為以及確定魯棒性和隱私(Molnar 2019)。無論任務模式如何,文本解釋是機器學習數據集中的主要解釋形式。因此,本文涵蓋了自然語言任務解釋和自然語言任務解釋兩個方面。本文提出了兩種語義定義下的模型解釋質量評估測試集:忠實度(faithfulness)和人類可接受性(human acceptability)。我使用這些評估方法來研究兩種解釋形式和三種模型架構的效用。最后,我提出了兩種方法來提高解釋質量——一種增加了忠實突出解釋的可能性,另一種提高了人類對自由文本解釋的可接受性。本文努力增加在實踐中部署人工智能系統時積極使用和產生結果的可能性。
機器學習在過去十年取得了重大進展。其最成功的范式是深度神經網絡,由連續表示層組成,其參數通過梯度下降在大規模數據集上進行優化。
深度神經網絡在許多任務上取得了卓越的性能,如物體識別、語言理解和自動駕駛。然而,他們仍然在推理任務中掙扎,這些任務通常需要操作符號并將多個步驟組合起來,例如,求解數學方程或編寫計算機程序。在這篇論文中,我們的目標是彌合這一差距,并教機器以精確、系統、可解釋和魯棒的方式進行推理,以應對現實環境中的模糊性。**本文采用神經符號方法,結合機器學習和符號推理的互補優勢。符號推理具有精確性和系統性。**但它已被限制在可嚴格形式化的領域。相比之下,主要的機器學習方法很靈活,但眾所周知難以解釋,需要大量數據,并且無法在訓練分布之外進行泛化。集成兩種方法的優勢對于構建具有精確和系統泛化能力的靈活推理機至關重要。具體而言,本文從兩個角度研究了神經符號推理。首先,將機器學習應用于與符號推理相關的任務,如自動定理證明(第2章)。其次,將符號推理啟發的歸納偏差引入機器學習模型,以提高其可解釋性、泛化性和數據效率(第3章和第4章)。結果強調了(1)神經符號模型架構,(2)在適當的抽象水平上進行推理,以及(3)明確的、推理的組合表示,如符號證明。 //dataspace.princeton.edu/handle/88435/dsp015q47rr958
近十幾年來,序列數據的粗糙路徑理論與機器學習的融合一直是人們關注的熱點。這兩個主題領域的統一是自然的:粗糙路徑理論為我們提供了描述由多維(和潛在的高度不規則)信號驅動的微分方程的解決方案的語言,而機器學習提供了從數據中學習此類解決方案的工具。粗糙路徑理論的核心目標是提供一個通用的數學框架,以回答關于數據流對系統可能產生的影響的問題。此類數據的一個常見例子是時間序列,廣泛存在于生活的各個領域(這也是我們在本文中最常考慮的流類型);因此,用粗糙路徑語言框架問題為我們提供了在現實世界中具有真正效用的模型。本文的目的是介紹粗糙路徑理論在機器學習中的應用,然后介紹最近的有效貢獻,進一步將這兩個領域聯系起來。本文涉及的主題包括:神經控制微分方程(neural CDEs)——神經常微分方程的擴展,可以納入外部數據處理的變化;神經粗糙微分方程(neural RDEs)——對神經CDEs的粗糙路徑擴展,可為長或高頻時間序列帶來好處;廣義簽名法——一種多元時間序列特征提取方法最后給出簽名方法在膿毒癥和壓力檢測中的實際應用。
關系數據在現代計算中無處不在,并驅動跨多個領域的幾個關鍵應用程序,如信息檢索、問題回答、推薦系統和藥物發現。因此,人工智能(AI)的一個主要研究問題是建立以有效和可靠的方式利用關系數據的模型,同時注入相關的歸納偏差和對輸入噪聲的魯棒性。近年來,圖神經網絡(GNNs)和淺節點嵌入模型等神經模型在關系結構的學習表示方面取得了重大突破。然而,這些系統的能力和局限性還沒有被完全理解,在賦予這些模型可靠性保證、豐富它們的關系歸納偏差以及將它們應用于更具挑戰性的問題設置方面仍存在一些挑戰。在這篇論文中,我們研究了關系數據的學習和推理。更具體地說,我們從理論上和實證上分析了現有模型的性質和局限性,并提出了改進關系歸納偏差和表征能力的新方法。
//ora.ox.ac.uk/objects/uuid:da7744ad-effd-4fc9-b7ab-a00b03a86a53
1. 引言以神經網絡為動力的深度學習系統已經在各種具有挑戰性的任務上取得了突破性的成果,如計算機視覺[96]和機器翻譯[160]。深度學習模型在最少人為干預的情況下從數據中學習模式,并在其訓練集之外進行經驗歸納。因此,在多個領域應用深度學習系統的興趣越來越大。沿著這些思路,近年來一個突出的研究前沿是將深度學習應用到關系數據中。從根本上說,關系數據將信息表示為一組通過語義意義關系連接的實體。例如,可以將在線市場上的產品、賣家和用戶表示為實體,并將交易描述為跨上述三種實體類型的三元關系,例如,Alice從Charlie那里購買了一個球。關系數據的一個流行的特例是圖結構,其中關系最多是二進制的。在這種情況下,關系可以被視為定義(標記)圖實體之間的邊,這些實體本身構成了圖節點。關系表示非常通用,并且出現在各種應用程序領域中。例如,社交網絡中的用戶根據他們的互動(友誼、關注、點贊)成對連接,可以被視為一個圖結構。這同樣適用于引文網絡中的論文[153,154]及其引文連接,以及分子,其中原子可以被視為實體,它們的鍵可以表示為二進制關系。事實上,關系數據封裝了幾個傳統數據域。例如,圖像是網格形狀的圖形的一種特殊情況,其中相鄰的像素由一條邊連接,序列是一系列實體,這些實體的邊連接著連續的實體。鑒于關系數據的普遍存在和圖結構的普遍存在,構建強大的關系機器學習模型是一個重要的研究問題,其分支涉及多個任務,如信息檢索[182]、問題回答[20]、推薦系統[173]和藥物發現[60]。廣義上講,機器學習任務可以分為三大類:
1. 節點級的任務。給定一個帶有未標記或部分標記節點的輸入圖,節點級任務旨在預測節點屬性,例如,對于沒有預標記屬性的節點,預測一個類或一個值。例如,在引用網絡中,論文(輸入圖中的實體)具有內容特征,并且通過二元引用關系與其他論文相連,預測論文的主題就是一個節點分類任務。
2. Graph-level任務。給定一個輸入圖,圖級任務尋求基于節點特征、邊和整體輸入圖結構預測全局圖屬性,如類或值。這些任務在分子圖中非常突出,包括幾個圖性質預測問題,如毒性分類和零點振動能(ZPVE)回歸[140]。
3.Edge-level任務。給定一個輸入圖,邊級任務旨在預測現有邊的未知邊屬性,或者更常見的是,基于現有邊和節點特征預測圖中缺失的邊。對于后一種情況,當輸入圖是單關系圖時,該問題稱為鏈接預測,如引用網絡,當輸入圖是多關系圖時,該問題稱為知識圖譜補全(KGC)。在本文中,我們研究了關系數據(圖結構和更一般的關系數據)的學習和推理,并提出了幾個模型和框架,以理論分析和結果支持,以提高該領域模型的關系歸納偏差和表示能力。更具體地說,我們系統地研究現有模型,證明它們的理論屬性和結果,并提出擴展和新模型,以(i)可證明地捕獲和/或強加豐富的關系歸納偏差,(ii)更好地理解現有模型的表現力和表征局限性,以及(iii)將現有模型和方法擴展到與推理和推理相關的新穎的、具有挑戰性的應用領域。
設計具有不確定性的深度學習模型,使其能夠在預測的同時提供合理的不確定性,一直是部分機器學習社區的目標。從業者也經常需要這樣的模型。最普遍和最明顯的方法是采用現有的深層架構,并嘗試將現有的貝葉斯技術應用于它們,例如,將神經網絡的權重作為貝葉斯框架中的隨機變量處理。本文試圖回答這個問題: 現有的神經網絡架構是獲得合理不確定性的最佳方式嗎?在本文的第一部分,我們提出了在對抗環境下貝葉斯神經網絡的不確定性行為的研究,這表明,雖然貝葉斯方法在數據分布附近的確定性網絡上有顯著的改進,但外推行為是不受歡迎的,因為標準神經網絡架構在結構上偏向于自信外推。基于此,我們探索了兩種標準深度學習架構的替代方案,試圖解決這一問題。首先,我們描述了一種新的膠囊網絡生成公式,它試圖通過對場景結構的強假設來將結構強加到學習任務中。然后,我們使用這個生成模型來檢查這些潛在的假設是否有用,并論證它們實際上存在重大缺陷。其次,我們探索了bilipschitz模型,這是一種解決深度神經網絡中確保先驗回歸這一更有限目標的體系結構。這些方法基于深度核學習,試圖通過使用最終分類層來控制神經網絡的行為,當與支持向量集的距離增加時,分類層會恢復到先驗值。為了在使用神經特征提取器的同時保持這一特性,我們為這些模型描述了一種新的“bilipschitz”正則化方案,該方案基于通過施加由可逆網絡上的工作激發的約束來防止特征崩潰。我們描述了這些模型的各種有用的應用,并分析了為什么這種正則化方案似乎仍然有效,即使它背后的原始動機不再成立,特別是在特征維度低于輸入的情況下。我們的結論是,雖然膠囊網絡可能不是一個有前途的方向,但本文最后部分討論的模型是未來研究的一個富有成果的領域,在許多應用中作為標準貝葉斯深度學習方法的一個有前途的潛在替代方案。