現代機器學習主要受到黑盒模型的驅動,這些模型提供了卓越的性能,但對于如何進行預測的透明度有限。對于需要了解模型如何做出決策的應用,以及協助模型調試和數據驅動的知識發現,我們需要可以回答有關影響模型行為的問題的工具。這就是可解釋機器學習(XML)的目標,這是一個子領域,它開發了從多個角度理解復雜模型的工具,包括特征重要性、概念歸因和數據估值。本文提供了對XML領域的幾個貢獻,主要思想分為三部分:(i)一個框架,使得可以統一分析許多當前的方法,包括它們與信息論和模型魯棒性的聯系;(ii)一系列技術,用于加速Shapley值的計算,這是幾種流行算法的基礎;以及(iii)一系列用于深度學習模型的特征選擇的方法,例如,在無監督和自適應的設置中。這些思想中的許多都是受到計算生物學和醫學應用的啟發,但它們也代表了在各種領域中都有用的基本工具和觀點。
在模型透明度的辯論中,傳統的觀點是我們面臨解釋性與準確性之間的權衡。1有些人辯稱這種權衡并不存在,聲稱我們可以使用“天生可解釋”的模型達到近乎最優的性能(Rudin, 2019);這對于簡單的表格數據集往往是正確的,但對于像圖像和語言這樣的復雜數據模態則較為罕見。在這里,我們采取了更為寬容的立場:鑒于黑盒模型目前提供了最佳的性能并且已經廣泛部署,我們探討是否有可能從任何模型中獲得足夠的見解。在這樣做的過程中,我們開發了一套在很大程度上對模型的內部機制持中立態度,或者說是模型不可知的工具集,因此即使在今天的最高性能的黑盒模型中也能正常運行。 這一目標也被可解釋機器學習(XML)子領域的許多工作所共享,并且近年來已經取得了顯著的進展。目前,XML工具已被用于了解新疾病的風險因素(Razavian等人,2020;Snider等人,2021),加速數學猜想的發現(Davies等人,2021),在有限的訓練數據標簽下識別蛋白質結合位點(Gligorijevi?等人,2021),審計有缺陷的醫學診斷系統(DeGrave等人,2021)以及從功能系統中獲得新的見解(Ting等人,2017;Sundararajan等人,2017)。這些早期的成功表明了這些工具的潛力,但在這些方法的底層理論以及使它們在實踐中高效的計算程序方面仍有進展空間。這篇論文介紹了我在博士期間進行的幾項工作,旨在解決這些挑戰。
這篇論文包含了我在博士期間完成的大部分項目,所有這些項目都與透明機器學習的核心主題相關。我們首先在第2章建立符號和幾個初步的概念。接下來,每一章都基于一篇第一作者的出版物,其中在某些情況下與共同第一作者共享。為了使它們在一個文檔中更具連貫性,對各個作品進行了修改,但這里沒有提供新的信息,這些論文也可以單獨閱讀。這些作品被組織成三個部分,如下所述。
**第一部分:XML的基礎 **我們首先討論一個統一了大部分文獻的觀點:許多現有的方法都基于一個解釋原則,即通過移除或量化從模型中移除特征的影響。我們描述了一個框架,在這個框架中,這些方法基于三個實現選擇而有所不同,我們為26個現有的算法確定了這些選擇(第3章)。基于這個觀點,我們對這些方法進行了統一分析,并找到了與信息理論、博弈論和認知心理學的聯系。然后,我們探索這些方法的魯棒性特性,并得出了描述它們對輸入和模型擾動的魯棒性的新結果(第4章)。 第二部分:Shapley值計算 接下來,我們探討XML中最廣泛使用的工具之一:Shapley值,一種博弈論信用分配技術。這些是最受歡迎的特征歸因方法之一,SHAP(Lundberg和Lee,2017)的基礎,以及一個著名的數據估值技術(Ghorbani和Zou,2019),但它們是臭名昭著的難以計算。有一系列方法來加速它們的計算(Chen等人,2022),我們在這里討論兩個:基于加權線性回歸的近似(第5章),和基于深度學習的攤銷優化的近似(第6章,第7章)。 第三部分:深度學習的特征選擇 最后,特征選擇為提供透明度的同時也降低了特征獲取成本提供了另一個方向。由于多次訓練不同特征集的模型的高昂成本,似乎很難與深度學習一起實施,但我們探討了如何使用可微分的層來阻止特征信息進入網絡(第8章)。然后,我們討論如何在自適應設置中應用這些思想,其中我們根據當前可用的信息為每個預測單獨選擇特征(第9章,第10章)。
近年來,機器學習在許多應用中證明了其極高的用途性。然而,這些成功故事很多都源于在與訓練數據非常相似的數據上評估算法。當應用于新的數據分布時,機器學習算法已被證明會失敗。鑒于現實世界數據的非平穩和異構性質,我們需要更好地掌握算法在分布外(out-of-distribution)的泛化能力,以便算法能被廣泛部署和信任。我的論文提出了三個研究課題,旨在調查和發展分布外泛化的領域。這些研究努力的中心目標是產生新的工具,如算法、理論結果、實驗結果和數據集,以提高在數據分布發生變化時機器學習方法的理解和性能。貫穿這三個機器學習場景的高級思想是模塊性——由組合在一起形成一個整體的獨立部分的質量。模塊化方法被假設為引導機器學習方法遠離僵化的記憶示例,走向更靈活和“更智能”的支持泛化的學習。
在我的第一項貢獻中,我從多個訓練分布的學習角度來接近論文目標。對這一研究方向的貢獻有兩方面。首先,我呈現了一組新的標準化任務,用于評估和比較分布外泛化算法。其次,我陳述了一系列新的理論結果,填補了數據中心和算法方法之間在分布外泛化方面的現有差距。這些理論發現引導了一組關于如何采用算法方法的新的實用建議。
在第二項貢獻中,我處理了監督圖像識別中的泛化問題。在這一背景下,我首先調查了多級特征聚合對泛化的影響,并證明了使用其中一種考慮的方法進行增強可以持續提高性能。其次,我提出了一組簡單的圖像數據集,可作為評估和比較圖像分類方法在分布外泛化方面的墊腳石。最后,我深入研究了多個神經網絡通信以解決共享任務的學習場景。這項工作以兩種方式支持論文目標。首先,我提出了一個新的環境,圖引用游戲(graph referential games),并在數據表示和相應的數據表示學習方法對分布外泛化的影響上提出了結果。這些結果連接了之前不相連的圖表示學習和新興通信領域。其次,我解決了基于現實圖像的群體通信這一具有挑戰性的領域。這篇論文中的數據集、算法、定理和實驗結果代表了在機器學習中理解和改進分布外泛化方面的幾個步驟。它們為研究人員提供了旨在促進這一領域研究的新工具和結果,其中一些已被證明對研究社群有用。最后,這項工作提出了機器學習的多個分布學習、圖像分類和多代理通信子領域中重要的未來方向。
//www.repository.cam.ac.uk/items/8680585b-87ca-4196-987f-c4d379259092
記憶與學習是否相同?阿根廷作家豪爾赫·路易斯·博爾赫斯(Jorge Luis Borges)的短篇小說《記憶者富內斯》(Funes the Memorious,由James E. Irby翻譯成英文[71,第59–66頁])描述了一個名叫富內斯的男孩,在頭部受傷后獲得了完美的記憶。他開始詳細地記住他一生的每一個時刻。同時,他失去了泛化的能力:他的記憶彼此是孤立的。例如,他從不同的角度看到同一只狗,卻只把同一只狗的不同側面視為獨立的信息。他甚至不了解自己的身體是什么樣的(‘每次看到鏡中的自己的臉,看到自己的手,都讓他感到驚訝’),這導致了一個結論:‘思考就是忘記一個差異,進行泛化,進行抽象。在富內斯過于充實的世界里,只有細節。’""與富內斯相似,具有數百萬參數的現代神經網絡已被證明會記住訓練樣本,這可能導致一系列問題,例如:(1)對噪聲數據的高度敏感性[150, 221],(2)易受對抗性攻擊的影響[271, 87, 269, 287],(3)與人類學習相比樣本效率低[302, 303, 275],以及(4)對新數據的泛化能力差[62],即使新數據樣本直觀地與模型已經訓練過的數據有相似之處[61, 251]。這些問題可能出現在應用現代機器學習的任何領域。它們可能導致機器學習系統在使用過程中產生不透明的故障模式,從而導致對機器學習系統的信任度下降[297]。"
"標準機器學習方法中缺少對分布外泛化(Out-of-distribution generalisation)的能力。這些方法得到了統計學習理論[279]的支持,該理論證明了使用基于平均值的優化(經驗風險最小化[279])以及使用測試集估計泛化誤差的做法是合理的。然而,這一理論假設訓練(過去)和測試(未來)數據是獨立同分布的。在應用機器學習的許多實際領域中,這一假設是不正確的:現實世界的數據是異構的,其分布通常會隨時間變化。分布變化的實際來源包括機器學習系統用戶特性的變化,或一個有實體的代理(embodied agent)所處環境的變化。另一個常見的分布變化例子是由于語言(包括在線使用的語言)動態性而產生的。自然語言的不斷演變已被證明會改變語言模型的困惑度(perplexity),當這些模型在數月內多次應用時[164]。背景章節的第2.4節更多地涵蓋了分布變化的類型和相應的例子。由于這些變化,即使在常用的分布內測試集上達到接近100%的準確率也不總是能預示未來的性能,這一點已被眾多論文所證明[137, 15, 61, 235, 204, 62]。"
"在機器學習領域,關于分布外泛化(OOD generalisation)的主題實質上與機器學習本身一樣廣泛和復雜,并且在研究社群中同樣容易受到瞬息萬變的趨勢和不同觀點的影響。在我看來,面對分布變化提高泛化能力是必要的,原因如下: ? 工程原因 — 提高樣本效率,并在沒有數千個訓練樣本的低資源領域提高性能[110]; ? 科學原因 — 深入了解神經網絡是如何學習的,并可能讓機器學習更接近人類學習; ? 商業原因 — 在目前由人類執行的越來越復雜的任務中使用神經網絡; ? 社會原因 — 通過控制簡單性偏見[246]來消除機器學習系統的偏見。
利用數據中的‘捷徑’可能會導致不公平的解決方案(例如,這可以在招聘工具中利用性別信息時看到[59])。在我的博士研究期間,我一直在問自己:致力于分布外泛化的機器學習研究社群最需要什么樣的工具?這篇論文旨在以新數據集、新理論結果、新測試平臺、新實驗結果和新算法的形式提供這樣的工具。這些研究努力的具體成果總結在圖1.1中。"
導致這篇論文的研究工作涉及機器學習的三個子領域:多分布學習(第3章)、圖像分類(第4章)和多智能體通信(第5章)。這種廣泛的視角使我能夠收集更多證據來支持中心假設,并探討研究問題(第1.2節)。同時,本論文中介紹的工具旨在對我在博士研究期間有幸與之合作和學習的幾個機器學習社群有所用處:(1)不變學習和群體魯棒性社群(第3章),(2)視覺社群(第4章),以及(3)新興通信社群(第5章)。所有這些社群都在獨立地研究機器學習中的分布外泛化,正如我在背景章節(第2章)以及各自貢獻章節中所回顧的。本論文聯系了我在研究中涉足的之前是分離的社群,例如圖神經網絡[141]與新興通信[43](第5章),以及面向群體魯棒性的數據導向方法[36]與分布魯棒優化[21](第3章)。"
隨著實用量子計算機的可能出現,人們開始研究其潛在的應用,特別是在人工智能的背景下。受到經典機器學習中深度神經網絡成功的激勵,人們普遍希望這種成功可以被轉化到所謂的量子變分算法或由經典機器學習啟發的量子神經網絡中。當前的深度學習算法主要是基于一系列啟示法開發的,這些啟示法通常缺乏嚴格的證明來證明其有效性。由于這些算法的不透明性,提供關于它們性能的明確保證仍然是一個巨大的挑戰。盡管這種復雜性延伸到深度學習的量子模擬,但越來越多的文獻已經識別出一套理論工具,以更好地了解為什么經典機器學習模型在現實任務中如此有效。我們使用這些工具來研究這些量子模擬,以部分解答在何時以及在什么條件下我們可以期望成功的問題。我們主要使用統計學習理論、量子力學、隨機矩陣理論和群論的工具來研究量子機器學習算法的可學習性。我們的發現表明,我們必須仔細考慮量子機器學習算法的設計,以達到合理的成功水平。事實上,我們的一些結果顯示,在量子機器學習中,隨機或無結構的方法容易遇到各種挑戰,包括與訓練性相關的問題或與最佳經典算法相比沒有顯著的優勢的問題。在整篇論文中,我們提供了幾個如何可能地向這些算法中引入結構來部分地解決這些問題的例子。此外,我們還探討了量子計算如何通知和加強經典機器學習的反向問題。我們研究了將酉矩陣納入經典神經網絡,這導致了這些酉神經網絡的更高效的設計。
本論文旨在設計有效的方法,將已知結構融入機器學習模型中。結構的產生源于問題的形式化(例如,物理約束、聚合約束)或模型所需的屬性(能效、稀疏性、魯棒性)。在許多情況下,建模者對他們正在建模的系統有一定的了解,這必須以精確的方式進行加強。這對于提供充分的安全保證,或提高系統效率是必要的:用更少的數據訓練系統,或減少計算成本。本論文在各種設置中提供了方法,這些方法建立在連續的、受約束的優化和可微統計建模(也稱為深度學習)的兩個基礎領域之上。
論文的第一部分集中于設計和分析帶有凸約束的優化問題的高效算法。特別是,它關注Frank-Wolfe算法的兩個變體:第一個變體提出了一個快速的回溯線搜索算法,以自適應地設置全梯度設置中的步長;第二個變體提出了一個快速的隨機Frank-Wolfe算法,用于受約束的有限和問題。我還描述了對開源受約束優化軟件的貢獻。這篇論文的第二部分關注設計確切強制某些約束的深度學習模型:基于物理的約束,以及概率預測模型的聚合約束。這部分利用了雙層優化模型,并利用可微優化約束復雜神經網絡的輸出。我們證明,可以在復雜的非凸模型上強制執行復雜的非線性約束,包括概率模型。
這些例子展示了混合模型的威力,這些模型結合了數據驅動的學習,利用如深度神經網絡這樣的復雜非線性模型,并允許高效算法的經過深入研究的優化問題。這些混合模型幫助高度靈活的模型捕獲結構模式,有時甚至不需要任何數據訪問就能實現出色的性能。
近年來,機器學習模型在旨在匹配人類感知的領域(計算機視覺、音頻處理、自然語言)中取得了無數的成功。這些成功是通過理解如何利用模型輸入中的結構來實現的:圖片、聲音、文本、代碼,甚至分子的數字表示[1, 2, 3, 4]。為了在工程和科學中達到相似的成功水平,模型必須納入額外的結構性約束:模型的內部和輸出都應滿足某些關鍵屬性(例如,模型內部的稀疏或低秩權重,以及模型輸出的物理方程)。盡管優化領域長期以來一直關注如何實施這些約束,但將優化方法帶來的結構與數據驅動模型的靈活性結合起來的努力是非常近期的[5, 6]。這篇論文提出了新穎、高效的方法,將結構融入機器學習模型中,無論是在模型的內部(第一部分)還是在模型的輸出(第二部分)。我們認為這樣的混合系統將是為復雜的物理應用開發高性能系統的關鍵。機器學習中的結構性約束最近再次將Frank-Wolfe(FW)算法家族推到了聚光燈下。Frank-Wolfe算法允許對決策變量(例如,模型權重)施加凸約束,同時保持決策變量的稀疏表示。這篇論文的第一部分開發了新穎的Frank-Wolfe算法變體,以提高算法的實際速度。此外,我們還描述了我們的兩個開源優化庫:COPT和CHOP。在實際環境中部署決策制定系統時,系統必須執行物理約束:差異可能導致未定義的決策。例如,如果我們預測一個地區不同粒度的水庫的入水流量,不同級別的預測必須執行質量守恒;否則,會有未被計入的水量,破壞決策制定系統。這篇論文的第二部分考慮了將物理約束納入深度學習模型的問題,采用偏微分方程和分層質量守恒的形式。
機器學習(ML)和人工智能(AI)在廣泛的領域實現了非凡的、超乎人類的性能:包括計算機視覺、自然語言處理、蛋白質折疊等等。直到最近,大多數的進步都是采取模型中心化的方法,主要關注于改善神經網絡架構(如卷積神經網絡、殘差網絡、變換器等)和訓練這些模型的優化程序(如批量標準化、dropout、神經結構搜索等)。相對來說,我們對用來訓練這些模型的數據的關注度較低,盡管眾所周知,機器學習對高質量數據的依賴可以用"垃圾進,垃圾出"這句話來精辟地概括。隨著對越來越大且更復雜的模型(如Nvidia和Microsoft的5300億參數的MT-NLG)的回報逐漸減小,研究人員開始認識到采取數據中心化方法的重要性,并開發了原理性的方法來研究這些模型的燃料:數據本身。數據中心視角不僅可以提高任務性能,還可以讓我們考慮到一些社會關鍵考慮因素,如數據隱私。在本論文中,我們將對機器學習數據管道中的幾個點進行深入分析:在模型訓練前、訓練中和訓練后。在模型訓練前,我們將探索數據選擇的問題:應該用哪些數據來訓練模型,我們應該期望我們的模型在何種類型的數據上工作?當我們進入模型訓練時,我們將把注意力轉向由我們的ML系統與其部署環境的交互可能導致的兩個問題。第一個問題是數據隱私:我們如何防止我們的模型泄露有關其訓練數據的敏感信息?第二個問題涉及一些被模型化的群體的動態性。特別是當我們的模型被用于做出具有社會影響力的決策(如自動貸款批準或推薦系統)時,模型本身可能會影響數據的分布,導致性能降低。最后,盡管我們在模型訓練前和訓練中遵循最佳實踐,但可能在訓練后我們希望對模型進行后處理,以移除某些訓練后的數據的影響。如何以計算效率高的方式實現這一點呢?本論文將涵蓋每一個先前問題的新穎解決方案,強調的是每一個提議的算法都有可證明的保證。通過將數學嚴謹性應用于具有挑戰性的現實問題,我們可以開發出既有效又可信賴的算法。
在過去的十年中,機器學習(ML)和人工智能(AI)研究已經取得了飛速的進步。到目前為止,大部分的研究都采用了模型中心化的方法:也就是說,數據集被視為已給定,研究人員不斷迭代應用于這些數據集以提取有用信息的模型。這種模式下有一套標準的假設。例如,數據通常假設是從固定概率分布中獨立同分布(i.i.d.)抽取的,此外還假設數據是固定的和給定的。通常還假設測試數據與訓練數據來自同一分布,即不存在分布漂移。而且,通常唯一衡量成功的指標是模型的性能(如預測任務的準確率)。盡管這種范式已經帶來了大量令人印象深刻的進步,但往往與數據科學家在實踐中面臨的情況相去甚遠。例如,收集和策劃一份高質量的訓練集通常比使用更復雜的模型架構帶來更大的收益。關于獨立同分布的假設,在現實中,數據分布可能由于各種因素而不斷變化,包括時間變化(如消費者偏好的季節性影響)和空間變化(如不同地理位置的醫院患者分布不同)。在某些情況下,我們的模型本身可能導致數據分布的變化,特別是如果該模型被用于做出具有社會影響力的決策。最后,最近的立法,如加利福尼亞消費者隱私法案和歐盟的通用數據保護法規,要求在設計AI模型過程中也要考慮消費者隱私。也就是說,隱私以及模型性能,都是必須考慮的關鍵指標。 所有這些重要的實踐問題都有一個共同的主題:它們更多地關聯到數據本身,而不是訓練在其上的模型。在這篇論文中,我們遵循這種數據中心的觀點,并為數據通過典型的ML管道可能出現的問題提出新穎的算法。我們特別強調可以為每個提出的算法提供的可證明的保證。
隨著機器學習模型在各種應用中的部署越來越頻繁,我們越來越需要更好地理解、交互和調節它們的行為。解釋性機器學習是一個致力于這一需求的研究領域,其主要焦點最初在滿足有利于揭示有關模型預測的可能有用信息的算法屬性的方法論發展。然而,批評也強調了需要更為嚴謹地評估這些方法在不同用戶的具體任務中的應用。在這篇論文中,我們對該領域的方法論和應用方面做出了我們個人的貢獻。在方法論上,我們提出了一種有效的算法,通過影響力大的訓練數據點提供關于模型行為的重要信息。然后,我們提出了一種理論框架,以理解模型在性能和公平性指標上的權衡。接下來,從應用驅動的角度,我們討論了一個評估框架,測試現有的圖像顯著性方法是否適用于實際的假相關檢測任務。最后,受到學術同行評審中實際問題的啟發,我們展示了我們對新的和現有的方法在幫助人類用戶進行文檔匹配任務方面的效用的發現。
在計算機視覺和自然語言處理等實踐領域表現出色的復雜機器學習模型,越來越多地被用來協助人類進行高風險的決策,如醫療、金融、法律和社會應用。這種加速的采用使得人類用戶越來越需要更好地理解、調節和與這些模型交互。解釋性機器學習是一個致力于這一需求的廣泛研究領域。許多文獻中的工作側重于方法論的發展:開發新的滿足各種技術目標的方法,可以有效地從一個黑盒機器學習模型中引出重要和有用的信息。然而,這些方法使用的各種技術目標與引出的信息的實際“重要性”或“有用性”沒有明確的聯系,這本質上依賴于用戶使用信息進行某些下游任務。因此,基于具體應用對開發的方法進行評估,對于完全閉環開發具有實用價值的新方法至關重要。在這篇論文中,我們提出了對這個領域的方法論和應用重點方面的個人貢獻。
在大型標注數據集上訓練的強大機器學習(ML)模型,推動了自然語言處理和計算機視覺等領域的令人印象深刻的進步。反過來,這些發展導致了ML在醫療健康、電子商務和預測性維護等領域的有效應用。然而,獲得訓練高容量機器學習模型所需的標注數據集,往往是機器學習有前途應用的瓶頸。本文研究了獲取領域知識的替代途徑,并開發了從弱監督中學習的方法,即不完美的和間接的監督形式。我將介紹三種形式的弱監督:成對聯動反饋、程序化弱監督和成對多模態數據。這些形式的信息通常很容易大規模獲取,我開發的方法減少了——在某些情況下消除了——對點真實感注釋的需要。我首先研究了成對監督的效用。我介紹了一種新的約束聚類方法,它使用少量的成對約束來同時學習核和聚類數據。該方法在大量多樣的公開數據集上優于相關方法。接下來,將不完全成對監督引入程序化弱監督標簽模型。我根據經驗表明,僅一個弱成對反饋源就可以顯著提高下游性能。通過引入與弱標簽相協調的輸入分布建模方法,進一步研究了程序化數據標記方法。本文首先介紹了一個框架,在觀察到的弱標簽的基礎上聯合學習標簽和端模型,顯示了端模型在下游測試集上的性能比之前的工作有所改進。接下來,介紹一種融合生成式對抗網絡和程序化弱監督標簽模型的方法,以使兩者都受益,由標簽模型性能和數據生成質量衡量。在本文的最后一部分,我解決了程序性弱監督的一個核心挑戰:專家需要提供標簽規則。首先,介紹了一個交互式學習框架,幫助用戶發現弱監督源,以高效的方式捕獲應用領域領域專家的知識。然后,我通過直接從非結構化自然語言描述中學習來研究完全省去標記功能的機會。特別是,我研究了如何將生物醫學文本與圖像配對用于自監督視覺-語言處理,產生數據高效的表示并實現零樣本分類,而不需要專家定義文本或圖像的規則。這些工作提供了新的方法和框架,以在機器學習模型中更有效地編碼和使用專家領域知識,減少了因需要手工真實注釋而產生的瓶頸。
//www.ri.cmu.edu/publications/learning-with-diverse-forms-of-imperfect-and-indirect-supervision/
機器學習被廣泛應用于各種不同的學科,以開發感興趣的變量的預測模型。然而,構建這樣的解決方案是一個耗時且具有挑戰性的學科,需要經過高度訓練的數據科學家和領域專家。作為回應,自動化機器學習(AutoML)領域旨在通過自動化減少人工工作量并加快開發周期。由于超參數在機器學習算法中無處不在,以及調優的超參數配置可以對預測性能產生影響,超參數優化是AutoML的一個核心問題。最近,深度學習的興起推動了神經架構搜索(NAS),這是一個專注于自動化神經網絡設計的超參數優化問題的專門實例。對于大規模調優問題,網格搜索和隨機搜索等簡單的超參數優化方法在計算上是難以處理的。因此,本文的重點是開發高效和有原則的超參數優化和NAS方法。
**在回答以下問題方面取得了進展,目的是開發更高效和有效的自動化機器學習算法。**1. 超參數優化(a)我們如何有效地使用早期停止來加速超參數優化?(b)如何利用并行計算來執行超參數優化,同時在順序設置中訓練單個模型所需的時間?(c)對于多階段機器學習管道,我們如何利用搜索空間的結構來減少總計算成本?
鑒于這些問題,本文分為兩個部分。第一部分側重于通過解決1a, 1b和1c問題在高效超參數優化方面取得的進展。第二部分側重于通過解決問題2a, 2b和2c,在理解和改進神經架構搜索的權重共享方面取得的進展。
設計具有不確定性的深度學習模型,使其能夠在預測的同時提供合理的不確定性,一直是部分機器學習社區的目標。從業者也經常需要這樣的模型。最普遍和最明顯的方法是采用現有的深層架構,并嘗試將現有的貝葉斯技術應用于它們,例如,將神經網絡的權重作為貝葉斯框架中的隨機變量處理。本文試圖回答這個問題: 現有的神經網絡架構是獲得合理不確定性的最佳方式嗎?在本文的第一部分,我們提出了在對抗環境下貝葉斯神經網絡的不確定性行為的研究,這表明,雖然貝葉斯方法在數據分布附近的確定性網絡上有顯著的改進,但外推行為是不受歡迎的,因為標準神經網絡架構在結構上偏向于自信外推。基于此,我們探索了兩種標準深度學習架構的替代方案,試圖解決這一問題。首先,我們描述了一種新的膠囊網絡生成公式,它試圖通過對場景結構的強假設來將結構強加到學習任務中。然后,我們使用這個生成模型來檢查這些潛在的假設是否有用,并論證它們實際上存在重大缺陷。其次,我們探索了bilipschitz模型,這是一種解決深度神經網絡中確保先驗回歸這一更有限目標的體系結構。這些方法基于深度核學習,試圖通過使用最終分類層來控制神經網絡的行為,當與支持向量集的距離增加時,分類層會恢復到先驗值。為了在使用神經特征提取器的同時保持這一特性,我們為這些模型描述了一種新的“bilipschitz”正則化方案,該方案基于通過施加由可逆網絡上的工作激發的約束來防止特征崩潰。我們描述了這些模型的各種有用的應用,并分析了為什么這種正則化方案似乎仍然有效,即使它背后的原始動機不再成立,特別是在特征維度低于輸入的情況下。我們的結論是,雖然膠囊網絡可能不是一個有前途的方向,但本文最后部分討論的模型是未來研究的一個富有成果的領域,在許多應用中作為標準貝葉斯深度學習方法的一個有前途的潛在替代方案。
長期以來,隨著數據處理系統的復雜性不斷增加,系統設計者一直在想象能夠根據環境線索進行自我配置和適應的系統(如數據庫、調度程序)。在這種情況下,強化學習(RL)方法從一開始就吸引了系統開發人員。他們承諾從原始反饋信號中獲取復雜的決策策略。盡管RL方法在概念上很流行,但在現實世界的數據處理系統中卻很少見到。最近,由于利用大型神經網絡(深度強化學習)取得了引人注目的成功,RL受到了爆炸性增長的關注。新興的機器學習框架和強大的硬件加速器催生了大量新的潛在應用。在本文中,我首先提出,為了高效地設計和執行深度RL算法,需要新穎的軟件抽象來適應通信密集和快速進化算法的獨特計算模式。我提出了一種將邏輯算法構造與本地和分布式執行語義解耦的體系結構。我將進一步介紹RLgraph,這是我對這個體系結構的概念驗證實現。在RLgraph中,算法開發人員可以通過組合邏輯組件構建高級數據流圖來探索新的設計。此數據流圖獨立于特定的后端框架或執行概念,只在以后通過分階段構建過程映射到執行語義。RLgraph支持高性能算法實現,同時保持快速原型的靈活性。
//www.repository.cam.ac.uk/handle/1810/304385
其次,我研究了系統本身中RL應用程序稀缺的原因。我認為,由于缺乏用于任務模型設計的工具來彌合系統和算法之間的差距,以及缺乏評估模型能力的共同標準,應用RL的進展受到了阻礙。在本文中,我介紹了應用RL中第一個用于增量模型設計的工具——Wield。Wield 提供了一小組原語,將系統接口和特定于部署的配置從表示中分離出來。運用的核心是一種新的指導性實驗協議,稱為漸進隨機化,它幫助從業者逐步評估非確定性的不同維度。我演示了如何使用和漸進的隨機化可以用來再現和評估之前的工作,并指導新RL應用程序的實現。
在過去的十年里,深度學習取得了巨大的成功,但在權值更新和訓練樣本數量方面,實際有用的深度模型的訓練仍然非常低效。為了解決這些問題的一個方面,本文研究了持續學習設置,該模型利用一系列的任務,利用之前的知識來快速學習新任務。持續學習的主要挑戰是,在為新任務更新模型時,避免模型災難性地忘記之前的信息。
//ora.ox.ac.uk/objects/uuid:7a3e5c33-864f-4cfe-8b80-e85cbf651946
為此,本文首先提出了一種持續學習算法,通過正則化兩個連續任務的條件似然之間的kl -散度來保留之前的知識。結果表明,這種正則化對網絡權值施加了二次懲罰,該懲罰基于上一個任務的最小曲率。其次,本文提出了一種更有效的持續學習算法,利用對過去任務的情景記憶作為約束,這樣當對新任務進行權重更新時,情景記憶的損失不會增加。結果表明,使用情景記憶約束目標比正則化網絡參數更有效。此外,為了提高學習新任務的速度,提出了使用組合任務描述符的聯合嵌入模型,大大提高了正向遷移。基于情景記憶的持續學習目標通過直接在損失函數中使用記憶來簡化。盡管它傾向于記憶出現在微小情景記憶中的數據,結果算法顯示出比使用記憶作為約束的算法更好的泛化。分析認為,這種驚人的概化是由于新任務數據帶來的正則化效應。然后利用該算法對合成數據和真實數據進行持續學習。為此,提出了一種方法,通過優化重放緩沖區上的事后遺忘損失,為每個任務生成合成數據點。設計了一個嵌套的持續學習優化目標,有效地利用這些綜合點來減少基于記憶的持續學習方法的遺忘。最后,本文提出了一種持續學習算法,在不重疊的特征子空間中學習不同的任務。通過保持不同任務的子空間相互正交來最小化重疊,可以減少這些任務表示之間的干擾。