亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

在過去幾年中,人工智能(AI)通過諸如聊天機器人、圖像生成器、語音合成和轉錄等高調應用進入了公眾意識。這些都歸功于深度學習的成功:從大量數據中學習任務的機器學習算法。用于深度學習的神經網絡模型涉及許多參數,通常達到數十億個。這些模型經常無法處理計算機傳統上擅長的任務,如計算算術表達式、推理多種不同的信息、規劃和調度復雜系統以及從數據庫中檢索信息。這些任務傳統上使用基于邏輯和正式推理的人工智能中的符號方法來解決。而神經符號AI旨在將深度學習與符號AI整合。這種整合有許多承諾,例如減少訓練神經網絡所需的數據量,提高模型給出答案的可解釋性和可解讀性以及驗證訓練系統的正確性。我們主要研究神經符號學習,其中我們除了數據之外,還有用符號語言表達的背景知識。我們如何連接符號和神經組件,以將這些知識傳達給神經網絡?

我們考慮兩個答案:模糊和概率推理。模糊推理研究真理的程度。一個人可能非常高或有點高:高度不是一個二元概念。相反,概率推理研究某事是真的或將發生的概率。硬幣有0.5的可能性正面朝上。我們從不說它落在了“有點正面”。當我們使用模糊(第一部分)或概率(第二部分)方法進行神經符號學習時會發生什么?此外,這些方法是否使用了我們期望它們使用的背景知識?我們的第一個研究問題研究了不同形式的模糊推理如何與學習結合。我們發現了一些令人驚訝的結果,如與烏鴉悖論的聯系,該悖論指出,當我們觀察到一個綠蘋果時,我們確認“烏鴉是黑色的”。在這項研究中,我們給神經網絡一個由背景知識創建的訓練目標。然而,當我們部署我們的模型進行訓練后,我們沒有使用背景知識。在我們的第二個研究問題中,我們研究了如何在部署模型中使用背景知識。為此,我們開發了一個基于模糊推理的新神經網絡層。其余的研究問題研究了概率方法在神經符號學習中的應用。概率推理是神經網絡的自然選擇,我們通常訓練它們是概率性的。然而,概率方法有一個成本:它們計算昂貴,并且不適合大規模任務。在我們的第三個研究問題中,我們研究了如何通過抽樣來估計平均值,將概率推理與神經網絡連接起來。抽樣避免了為所有輸入組合計算推理結果。在第四個也是最后一個研究問題中,我們研究了將概率神經符號學習擴展到以前不可能的更大問題。我們的洞察是訓練一個神經網絡來預測概率推理的結果。我們僅使用背景知識進行這一訓練過程:我們不收集數據。這與優化有什么關系?所有研究問題都與優化問題相關。在神經符號學習中,使用像梯度下降這樣的流行方法進行優化是一種推理形式。有充分的機會研究這種優化視角如何改進我們的神經符號學習方法。我們希望這篇論文能提供一些必要的答案,使實用的神經符號學習成為現實:從業者提供數據和知識,神經符號學習方法盡可能高效地使用它們來訓練下一代神經網絡。

//research.vu.nl/en/publications/optimisation-in-neurosymbolic-learning-systems

付費5元查看完整內容

相關內容

博士論文是由攻讀博士學位的研究生所撰寫的學術論文。它要求作者在博士生導師的指導下,選擇自己能夠把握和駕馭的潛在的研究方向,開辟新的研究領域。由此可見,這就對作者提出了較高要求,它要求作者必須在本學科的專業領域具備大量的理論知識,并對所學專業的理論知識有相當深入的理解和思考,同時還要具有相當水平的獨立科學研究能力,能夠為在學科領域提出獨創性的見解和有價值的科研成果。因而,較之學士論文、碩士論文,博士論文具有更高的學術價值,對學科的發展具有重要的推動作用。

智能軟件具有改變我們社會的潛力。它正在成為現實世界中許多系統的基石。然而,盡管機器學習模型在基準測試上表現出色,像神經網絡這樣的最新方法在遇到現實情境時經常失敗。由于神經網絡通常學習相關性而不是根據正確的信號和知識進行推理,它們在面對分布變化、意外破壞和最壞情況時會失敗。由于神經網絡是黑盒模型,用戶無法解釋或信任它們。為了在最關鍵的應用和系統中自信和負責任地部署機器學習,我們需要構建魯棒的模型。 在這篇論文中,我介紹了我們的魯棒機器學習系統的進展,通過緊密將上下文整合到算法中。上下文有兩個方面:自然數據的內在結構和來自領域知識的外在結構。兩者都至關重要:通過利用自然數據的內在結構,我的工作表明,我們甚至可以在最壞情況下創建魯棒的機器學習系統,這也是一項強有力的實證收益。通過整合外部知識,如任務之間的關聯和因果結構,我的框架可以指導模型使用正確的信號進行推理,為可控和可解釋的模型開啟新的機會。 這篇論文分為三個部分。在第一部分中,我旨在涵蓋三個使用內在結構作為約束以實現魯棒推理的工作。我介紹了我們的框架,該框架執行測試時優化以尊重自然約束,這些約束由自監督任務捕獲。我闡述了測試時優化如何改善分布外泛化和對抗性魯棒性。除了推理算法,我還展示了通過離散表示來改善分布外魯棒性的內在結構。 在論文的第二部分中,我詳細介紹了使用外部領域知識的工作。我首先介紹了如何利用來自外部領域知識的因果結構來提高領域泛化魯棒性。然后,我展示了多個任務和正則化目標的關聯如何幫助提高魯棒性。 在這篇論文的最后部分,我展示了關于值得信賴和可靠的基礎模型的三個工作,這是許多人工智能應用的基礎模型。我展示了一個利用上下文來保護、解釋和控制基礎模型的框架。

付費5元查看完整內容

近年來,機器學習在許多應用中證明了其極高的用途性。然而,這些成功故事很多都源于在與訓練數據非常相似的數據上評估算法。當應用于新的數據分布時,機器學習算法已被證明會失敗。鑒于現實世界數據的非平穩和異構性質,我們需要更好地掌握算法在分布外(out-of-distribution)的泛化能力,以便算法能被廣泛部署和信任我的論文提出了三個研究課題,旨在調查和發展分布外泛化的領域。這些研究努力的中心目標是產生新的工具,如算法、理論結果、實驗結果和數據集,以提高在數據分布發生變化時機器學習方法的理解和性能。貫穿這三個機器學習場景的高級思想是模塊性——由組合在一起形成一個整體的獨立部分的質量。模塊化方法被假設為引導機器學習方法遠離僵化的記憶示例,走向更靈活和“更智能”的支持泛化的學習。

在我的第一項貢獻中,我從多個訓練分布的學習角度來接近論文目標。對這一研究方向的貢獻有兩方面。首先,我呈現了一組新的標準化任務,用于評估和比較分布外泛化算法。其次,我陳述了一系列新的理論結果,填補了數據中心和算法方法之間在分布外泛化方面的現有差距。這些理論發現引導了一組關于如何采用算法方法的新的實用建議。

在第二項貢獻中,我處理了監督圖像識別中的泛化問題。在這一背景下,我首先調查了多級特征聚合對泛化的影響,并證明了使用其中一種考慮的方法進行增強可以持續提高性能。其次,我提出了一組簡單的圖像數據集,可作為評估和比較圖像分類方法在分布外泛化方面的墊腳石。最后,我深入研究了多個神經網絡通信以解決共享任務的學習場景。這項工作以兩種方式支持論文目標。首先,我提出了一個新的環境,圖引用游戲(graph referential games),并在數據表示和相應的數據表示學習方法對分布外泛化的影響上提出了結果。這些結果連接了之前不相連的圖表示學習和新興通信領域。其次,我解決了基于現實圖像的群體通信這一具有挑戰性的領域。這篇論文中的數據集、算法、定理和實驗結果代表了在機器學習中理解和改進分布外泛化方面的幾個步驟。它們為研究人員提供了旨在促進這一領域研究的新工具和結果,其中一些已被證明對研究社群有用。最后,這項工作提出了機器學習的多個分布學習、圖像分類和多代理通信子領域中重要的未來方向。

//www.repository.cam.ac.uk/items/8680585b-87ca-4196-987f-c4d379259092

記憶與學習是否相同?阿根廷作家豪爾赫·路易斯·博爾赫斯(Jorge Luis Borges)的短篇小說《記憶者富內斯》(Funes the Memorious,由James E. Irby翻譯成英文[71,第59–66頁])描述了一個名叫富內斯的男孩,在頭部受傷后獲得了完美的記憶。他開始詳細地記住他一生的每一個時刻。同時,他失去了泛化的能力:他的記憶彼此是孤立的。例如,他從不同的角度看到同一只狗,卻只把同一只狗的不同側面視為獨立的信息。他甚至不了解自己的身體是什么樣的(‘每次看到鏡中的自己的臉,看到自己的手,都讓他感到驚訝’),這導致了一個結論:‘思考就是忘記一個差異,進行泛化,進行抽象。在富內斯過于充實的世界里,只有細節。’""與富內斯相似,具有數百萬參數的現代神經網絡已被證明會記住訓練樣本,這可能導致一系列問題,例如:(1)對噪聲數據的高度敏感性[150, 221],(2)易受對抗性攻擊的影響[271, 87, 269, 287],(3)與人類學習相比樣本效率低[302, 303, 275],以及(4)對新數據的泛化能力差[62],即使新數據樣本直觀地與模型已經訓練過的數據有相似之處[61, 251]。這些問題可能出現在應用現代機器學習的任何領域。它們可能導致機器學習系統在使用過程中產生不透明的故障模式,從而導致對機器學習系統的信任度下降[297]。"

"標準機器學習方法中缺少對分布外泛化(Out-of-distribution generalisation)的能力。這些方法得到了統計學習理論[279]的支持,該理論證明了使用基于平均值的優化(經驗風險最小化[279])以及使用測試集估計泛化誤差的做法是合理的。然而,這一理論假設訓練(過去)和測試(未來)數據是獨立同分布的。在應用機器學習的許多實際領域中,這一假設是不正確的:現實世界的數據是異構的,其分布通常會隨時間變化。分布變化的實際來源包括機器學習系統用戶特性的變化,或一個有實體的代理(embodied agent)所處環境的變化。另一個常見的分布變化例子是由于語言(包括在線使用的語言)動態性而產生的。自然語言的不斷演變已被證明會改變語言模型的困惑度(perplexity),當這些模型在數月內多次應用時[164]。背景章節的第2.4節更多地涵蓋了分布變化的類型和相應的例子。由于這些變化,即使在常用的分布內測試集上達到接近100%的準確率也不總是能預示未來的性能,這一點已被眾多論文所證明[137, 15, 61, 235, 204, 62]。"

"在機器學習領域,關于分布外泛化(OOD generalisation)的主題實質上與機器學習本身一樣廣泛和復雜,并且在研究社群中同樣容易受到瞬息萬變的趨勢和不同觀點的影響。在我看來,面對分布變化提高泛化能力是必要的,原因如下: ? 工程原因 — 提高樣本效率,并在沒有數千個訓練樣本的低資源領域提高性能[110]; ? 科學原因 — 深入了解神經網絡是如何學習的,并可能讓機器學習更接近人類學習; ? 商業原因 — 在目前由人類執行的越來越復雜的任務中使用神經網絡; ? 社會原因 — 通過控制簡單性偏見[246]來消除機器學習系統的偏見。

利用數據中的‘捷徑’可能會導致不公平的解決方案(例如,這可以在招聘工具中利用性別信息時看到[59])。在我的博士研究期間,我一直在問自己:致力于分布外泛化的機器學習研究社群最需要什么樣的工具?這篇論文旨在以新數據集、新理論結果、新測試平臺、新實驗結果和新算法的形式提供這樣的工具。這些研究努力的具體成果總結在圖1.1中。"

導致這篇論文的研究工作涉及機器學習的三個子領域:多分布學習(第3章)、圖像分類(第4章)和多智能體通信(第5章)。這種廣泛的視角使我能夠收集更多證據來支持中心假設,并探討研究問題(第1.2節)。同時,本論文中介紹的工具旨在對我在博士研究期間有幸與之合作和學習的幾個機器學習社群有所用處:(1)不變學習和群體魯棒性社群(第3章),(2)視覺社群(第4章),以及(3)新興通信社群(第5章)。所有這些社群都在獨立地研究機器學習中的分布外泛化,正如我在背景章節(第2章)以及各自貢獻章節中所回顧的。本論文聯系了我在研究中涉足的之前是分離的社群,例如圖神經網絡[141]與新興通信[43](第5章),以及面向群體魯棒性的數據導向方法[36]與分布魯棒優化[21](第3章)。"

付費5元查看完整內容

在過去的十年中,自然語言處理(NLP)系統幾乎完全建立在大型神經模型的基礎上。由于這些模型的能力,可行的任務范圍擴大了,應用的空間也擴大了,包括具有現實世界影響的子領域,如事實核查、假新聞檢測和醫療決策支持。這些模型的規模和非線性的增加導致了不透明,阻礙了機器學習從業者和外行用戶理解其內部原理并從其預測中獲得意義或信任的努力。可解釋人工智能(XAI)和更具體的可解釋NLP (ExNLP)領域通過提供對人類用戶有意義的文本解釋,已成為糾正這種不透明度并確保模型在高風險場景中的可靠性和可信性的活躍領域。可以檢查為其個人預測提供理由的模型,以調試、量化偏差和公平性、理解模型行為以及確定魯棒性和隱私(Molnar 2019)。無論任務模式如何,文本解釋是機器學習數據集中的主要解釋形式。因此,本文涵蓋了自然語言任務解釋和自然語言任務解釋兩個方面。本文提出了兩種語義定義下的模型解釋質量評估測試集:忠實度(faithfulness)和人類可接受性(human acceptability)。我使用這些評估方法來研究兩種解釋形式和三種模型架構的效用。最后,我提出了兩種方法來提高解釋質量——一種增加了忠實突出解釋的可能性,另一種提高了人類對自由文本解釋的可接受性。本文努力增加在實踐中部署人工智能系統時積極使用和產生結果的可能性。

付費5元查看完整內容

深度學習的發展導致了在各種應用領域的各種任務上的顯著性能提升,這些應用領域包括計算機視覺、自然語言處理、強化學習、生成模型,以及最近從圖結構數據中進行的關系學習。這一成功的主要原因是計算能力的提高,這允許深度和高度參數化的神經網絡架構,這些架構可以從原始數據中學習復雜的特征轉換。然而,深度神經網絡的高表示能力往往是以高模型復雜度為代價的,這指的是高參數化,以及與深度學習相關的內存和計算負擔。**在本文中,我依靠參數有效的神經算子,對數據的適當建模假設和網絡結構的歸納偏差,在幾個應用領域提出更簡單的神經網絡模型。**對于我工作的每個應用領域,我使用這些效率原則的組合來設計新穎的方法。首先,在醫學圖像處理的背景下,我觀察到空間對齊的神經圖像比自然圖像表現出更少的自由度,這證明使用低容量卷積算子是合理的。我通過應用參數高效的卷積變體來實現這一點。我展示了早期阿爾茨海默病預測的最先進結果,同時使用的參數減少了多達125倍,乘累加操作減少了17倍以上。對于設計用于識別受試者亞型的神經圖像的無監督方法也得出了類似的結論。其次,我著手緩解從零開始訓練參數高效的深度模型的挑戰。這可以減少在資源受限的"邊緣"設備上訓練深度模型的不可行性。所提方法基于一個簡化的網絡結構假設,即參數無關性,允許在組合多臂匪徒的背景下建模問題。該方法可以動態地,即在訓練期間,在遵循預定義的內存使用預算的同時,在超參數化模型中識別高性能緊湊的子網絡。這是通過將顯著性指標與每個神經元相關聯來實現的,然后用于驅動參數激活,類似于門控機制,同時學習參數。因此,深度神經網絡訓練和推理過程中的計算和內存負擔都顯著減少。最后,提出一種深度概率模型,用于學習動態圖中的無監督節點和社區嵌入。基于網絡固有的社團結構,引入了關于邊形成機制的結構歸納偏差。此外,我還假設節點和社區都是平滑的時間演化,其靈感來自于數據中缺乏破壞性事件。本文提出一種該方法的參數高效實現,在各種動態預測任務上優于最先進的圖卷積網絡。

付費5元查看完整內容

機器學習在過去十年取得了重大進展。其最成功的范式是深度神經網絡,由連續表示層組成,其參數通過梯度下降在大規模數據集上進行優化。

深度神經網絡在許多任務上取得了卓越的性能,如物體識別、語言理解和自動駕駛。然而,他們仍然在推理任務中掙扎,這些任務通常需要操作符號并將多個步驟組合起來,例如,求解數學方程或編寫計算機程序。在這篇論文中,我們的目標是彌合這一差距,并教機器以精確、系統、可解釋和魯棒的方式進行推理,以應對現實環境中的模糊性。**本文采用神經符號方法,結合機器學習和符號推理的互補優勢。符號推理具有精確性和系統性。**但它已被限制在可嚴格形式化的領域。相比之下,主要的機器學習方法很靈活,但眾所周知難以解釋,需要大量數據,并且無法在訓練分布之外進行泛化。集成兩種方法的優勢對于構建具有精確和系統泛化能力的靈活推理機至關重要。具體而言,本文從兩個角度研究了神經符號推理。首先,將機器學習應用于與符號推理相關的任務,如自動定理證明(第2章)。其次,將符號推理啟發的歸納偏差引入機器學習模型,以提高其可解釋性、泛化性和數據效率(第3章和第4章)。結果強調了(1)神經符號模型架構,(2)在適當的抽象水平上進行推理,以及(3)明確的、推理的組合表示,如符號證明。 //dataspace.princeton.edu/handle/88435/dsp015q47rr958

付費5元查看完整內容

在過去的幾十年里,機器學習在眾多人工智能應用中取得了長足的進步。然而,它的成功主要依賴于在一個封閉的環境中使用大量的離線數據訓練模型,然后在類似的測試環境中對它們進行評估。這意味著大多數機器學習模型無法在很少的觀察下快速適應新環境并在線學習新知識。相比之下,我們的人類大腦可以從在線感官輸入流中學習新的表示、概念和技能。**本文旨在使具有幾個核心能力的機器能夠在開放世界中學習新概念,而無需訪問大量精心策劃的標記數據。**具體來說,它解決了幾個關鍵問題,如使用有限的標記數據、增量數據、無標記數據以及不平衡和噪聲數據進行學習。本文提出的算法可以自然地與任何深度神經網絡相結合,并且與網絡架構無關。它們可以為各種開放世界條件提供更大的靈活性和魯棒性,使基于學習的方法適合部署在一般的基于智能體的智能系統中。

1.引言

**機器學習是人工智能領域的核心課題之一。由于許多智能行為不能簡單地由標準程序定義,而不是依靠人工設計的規則,本文使用機器學習來獲得函數逼近,給定許多輸入和輸出觀測。**今天,在機器學習的幫助下,我們的計算機可以識別我們的聲音和筆跡,記住我們的臉,標記我們的照片,翻譯不同的語言,在下棋和圍棋中擊敗我們,并在道路上安全駕駛汽車。就像阿蘭·圖靈在20世紀50年代設想的那樣,今天的計算機使用機器學習來“模擬”兒童的思維,這是一張逐漸充滿各種各樣的知識和表示的白紙。然而,機器的學習過程與兒童的學習過程仍有很大的差距。也許機器學習和人類學習之間最顯著的區別之一是能夠學習自然世界中稀缺數據的任務。如今的機器學習往往依賴于在一個封閉的世界環境中訓練模型,并在大量經過整理的數據中進行評估,然后在類似或相同的測試環境中進行評估。這意味著,與人類不同,標準的機器學習算法無法在很少的觀察下快速適應新環境并在線學習新知識。在本文中,我們將這種期望的能力稱為開放世界學習。 我們如何彌合人類和機器之間的這種明顯差距?我的論文旨在尋求解決方案,使機器能夠在一個開放的世界中學習新概念,而不需要獲取大量的策劃標簽。具體來說,它解決了開放世界學習框架下的幾個關鍵問題,如使用有限的標記數據、增量數據、無標記數據、不平衡和噪聲數據、在線和流數據進行學習,所有這些都是今天典型的機器學習管道中沒有考慮的。這些問題的最終解決方案將對我們所有人產生深遠的影響。首先,它將允許未來的智能體在飛行中學習:你未來的家庭機器人將適應你的房子,識別新家具,并學習使用新設備;你的增強現實眼鏡將通過你對世界的視角來學習,這些視角是你過去從未經歷過的;您的個人AI助理將適應您的偏好,并在與您的對話中學習新技能。此外,它將在許多工業應用中節省數百萬小時的工程、標簽和數據管理工作。最后,通過將我們的學習過程投射到計算框架中,這也將是探索理解人類智能的一個里程碑。

本文概述

**本文提出的貢獻,使機器能夠用很少的標記示例獲得新概念,并使它們對許多自然主義和開放世界條件更魯棒。**在過去,有幾種機器學習范式,如小樣本學習、持續學習、自監督學習等,它們都是由使機器學習在開放世界中更加靈活和自適應的大愿景所驅動的。第二章概述了這些課題的背景文獻。具體來說,本文首先討論了各種學習范式,這些范式鼓勵在與訓練不同的環境中進行測試時的學習,例如小樣本學習和持續學習,然后討論了另一個相關研究的思路,旨在從無標簽的示例中學習,例如自監督學習。 然而,這些學習范式通常只專注于一個特定的屬性,如域偏移量或標記數據點的數量。有時,這些性質是正交的,它們的解可以組合在一起,但通常提出的解決方案依賴于一些額外的不現實的假設。例如,標準的半監督學習利用未標記的數據來提高學習模型的質量;然而,它假設未標記的數據與標記的數據來自相同的分布,并且也屬于預定義的類別之一。在另一個例子中,標準的少樣本學習旨在用很少的數據點來學習新類別,但它假設數據點平均分布于在訓練期間從未見過的幾個新類別。或者,類不平衡問題通常假設類標簽是正確的,因此高訓練成本意味著數據點來自少數類。在這些示例中,假設學習環境的其他屬性的解決方案在同時存在多個問題的開放世界中部署時可能會崩潰。因此,本文的核心主題是尋求新的解決方案,以同時解決開放世界的多種特性,如有限的標記數據學習、輸出空間的增量增長、無標記、不平衡和有噪聲的數據。為了實現這一目標,我們不僅需要開發新的學習算法,還需要重新思考定義問題的學習范式。因此,論文的一部分,如第4章和第6章的部分,也旨在定義具有額外自然屬性的新的學習范式或基準。

**用有限的標記數據進行學習的文獻被廣泛稱為少樣本學習。然而,標準的少樣本學習在測試時只處理少量的新類。**在第3章中,我們關注的是增量少樣本學習的問題,模型需要識別訓練時多次出現的舊類別和測試時剛剛引入的新類別。令人驚訝的是,許多只專注于解決新類別的經典少樣本學習方法,實際上在處理結合新舊類別的更現實問題時受到了影響,可能是因為新舊類別的表示彼此不兼容。與直接使用新類樣本的某些特征向量作為分類器權重的傳統方法不同,本文提出的方法是基于連續優化的,通過平衡新舊類帶來的目標來求解權重,并在測試時達到更好的優化解。在整個增量學習新類別的過程中,現實世界的智能體通常會遇到更多的未標記樣本。在第4章中,我們又向前邁進了一步,將未標記數據引入到小樣本學習問題中。本文提出一種半監督少樣本學習的新學習范式,除了在每個學習片段中標記的數據點很少的約束外,還考慮未標記的樣本。本文工作是第一個同時解決半監督學習和少樣本學習的工作。它不僅減少了訓練和測試任務中對標記數據量的依賴,而且解決了干擾因素的問題,即不屬于任何已知類別的類別,因為在經典的半監督學習中不考慮這一問題。本文提出新的少樣本學習模型,可以規避分干擾類的影響,同時仍然設法利用來自未標記數據的有用信息。

**盡管小樣本學習取得了廣泛的成功,但情節通常是從精心策劃的數據集中采樣,而不是從自然世界的噪聲長尾分布中采樣。**我們在第4章中介紹的干擾物例子也可以被認為是一種噪聲訓練數據。在第5章中,我們將研究在標準機器學習環境下的不平衡和噪聲類標簽學習問題。雖然這兩個問題在自然學習環境中普遍發生,但傳統上,它們被分開研究,采用相互矛盾的補救方法。為了解決這一沖突,本文提出了一種數據驅動的示例權重機制,可以在統一的框架下直接應用于這兩個問題。該算法利用干凈和平衡的驗證集來校準訓練樣本權重。該模型還強調了一種同時聯合更新內層和外層循環參數的高效學習方法。少樣本學習通常伴隨著僵化的情景設置,這使得對新概念的持續增量獲取進行建模變得不自然。第6章提出了一種新的在線情境化小樣本學習范式。雖然我們在第3章中研究了新舊類別的組合,但之前的方法主要關注情節的概念,但知識從未隨著時間順序和增量增長。雖然已經有一些努力使這些情節更有順序,就像設置增量類學習一樣,但訓練和測試階段的分離仍然使評估變得繁重。現實世界的智能體不依賴偶發的停止,而是執行在線持續學習,在序列的每個時間步中產生一些輸出預測,通過自上而下的上下文信息流進行調制。新范式包含了許多自然主義屬性,如在線、增量、上下文化、少樣本和半監督,還開發了一個基于室內家庭圖像的新基準,模仿現實世界智能體的視覺輸入流。提出了一種新的模型——上下文原型記憶(context Prototypical Memory, CPM),成功地解決了在有限標記數據下的在線上下文類學習問題。

最后,在第7章中,我們研究了在不使用任何類別標簽的情況下,通過在線視覺輸入流動態學習表示和類別。在前幾章中,學習仍然主要由帶標簽的示例驅動:例如,在第6章中,只有當環境告訴智能體它是一個新類時,新的類別簇才會創建。在本章中,我們將介紹一種算法,該算法允許智能體同時從未標記的數據流中學習表示和類別。這可以被視為發展過程中的一個前階段,因為智能體可以首先通過在沒有標記數據的情況下學習表示和類別來探索環境,然后在一些示例的監督下進行。所提出的模型,在線無監督原型網絡,將用于概念學習的原型網絡與基于聚類的自監督表示學習相結合,并與僅使用在線數據流進行訓練的最先進的自監督視覺表示學習方法相比較。此外,該算法對不均衡分布也具有較強的魯棒性。

目錄內容:

付費5元查看完整內容

深度學習在多個領域都取得了突破性進展,從圖像、語言和視頻理解等核心機器學習任務,到醫療、自動駕駛和農業等現實行業。它的成功是通過為神經網絡提供人工監督,從大型標記數據集(如ImageNet)自動學習分層數據表示。然而,獲取大規模的標簽數據通常是一個非常耗時和昂貴的過程。為應對這一挑戰,本文挑戰多模態視頻數據的自監督極限。視頻數據通常包含多種形式,如圖像、音頻、轉錄語音和可免費獲得的文本標題。這些模態通常共享冗余語義信息,因此可以作為偽標簽來監督彼此進行表示學習,而不需要使用人工標簽。在不依賴標簽數據的情況下,我們能夠在從互聯網收集的數百萬個視頻剪輯的非常大規模的視頻數據上訓練這些深度表示。通過在各種領域建立新的最先進的性能,展示了多模態自監督的可擴展性好處:視頻動作識別、文本到視頻檢索、文本到圖像檢索和音頻分類。我們還引入了數據轉換、模型架構和損失函數方面的其他技術創新,以使用多模態自監督進一步改進對這些深度視頻表示的學習。本文的第二個貢獻是改進深度表示的可解釋性的新工具,因為要破譯這些深度表示中編碼的關鍵特征是非常困難的。對于圖像,我們展示了如何使用攝動分析來分析網絡的中間表示。對于視頻,我們提出了一種新的聚類方法,使用Sinkhorn-Knopp算法將深度視頻表示映射到人類可解釋的語義偽標簽。本論文的研究成果為進一步提高深度視頻表示學習的可擴展性和可解釋性做出了貢獻。

//ora.ox.ac.uk/objects/uuid:3a0721a0-025e-423c-b441-2d7af5d960da

付費5元查看完整內容

近年來,深度學習已經將自己定位為機器學習最有前途的方向之一。然而,深度神經網絡在不確定性估計、模型選擇、先驗知識的整合等方面存在許多不足。幸運的是,所有這些問題都可以在貝葉斯深度學習框架內克服,使用貝葉斯神經網絡、變分自編碼器或深度神經網絡高斯過程等模型。不幸的是,這需要使用近似推理過程和先驗分布的規范。在這篇論文中,我們展示了這些模型中先驗規范不僅僅是一個麻煩,而是一個寶貴的機會,可以將領域知識和歸納偏見加入到學習算法中,從而提升全新應用的性能。為此,我們對相關文獻進行了全面的回顧,并進一步貢獻了不同的原創研究成果。

具體地說,我們證明了變分自編碼器中的高斯過程先驗可以改進時間序列的表示學習,并允許對缺失數據進行有效的插補,同時還可以提供校準的不確定性估計。我們還表明,通過使用變分高斯-馬爾可夫過程,這是可能的,在沒有顯著的額外計算成本。此外,我們表明,在變分自編碼器中使用自組織映射作為結構歸納偏差,可以提高學習表示的可解釋性,并使有效的潛在聚類。這些聚類表示可以作為潛在時間序列模型的輸入,從而準確地預測未來的狀態。在貝葉斯神經網絡中,我們證明了常用的各向同性高斯先驗不僅會導致次優性能,而且在某些情況下還會產生所謂的冷后驗效應,即經過緩和的后驗比真正的貝葉斯后驗表現更好。相反,我們提出了具有重尾性和空間相關性的備選先驗,可以提高性能,緩解冷后驗效應。最后,當沒有先驗知識可用時,我們表明先驗分布可以在元學習環境中從相關任務中學習。在深度神經網絡高斯過程的情況下,我們表明元學習的均值函數和核函數的先驗改進預測性能和不確定性估計。

我們希望本文將為貝葉斯深度學習框架奠定基礎,在該框架中,先驗分布的選擇將被視為建模任務的關鍵部分,手工設計和元學習的先驗將在任務之間自由共享,以實現貝葉斯深度學習。

//www.research-collection.ethz.ch/handle/20.500.11850/523269

付費5元查看完整內容

近年來,人工智能研究取得了驚人的發展和進步。這些進步主要是在三個方面取得的:計算機視覺、自然語言處理和機器人技術。例如,圖像識別被廣泛認為是計算機視覺的圣杯,而語言建模和翻譯一直是自然語言處理的基本任務。然而,許多實際應用程序和任務需要解決的不僅僅是這些特定于領域的問題,而是需要解決涉及所有三個領域的問題。一個自主系統不僅需要能夠識別圖像中的物體,而且還需要解釋自然語言的描述或命令,并理解它們如何與它所感知的視覺觀察相關聯。此外,機器人需要利用這些信息進行決策,并決定為了完成任務而采取哪些物理行動。在本文的第一部分,我提出了一種學習如何將自然語言與三維形狀聯系起來的方法,使系統能夠將文本描述中描述的“圓”等詞與三維物體中的圓的幾何屬性進行連接。為了將這兩種模式聯系起來,我們依賴一個跨模態嵌入空間來進行多模態推理,并在沒有細粒度、屬性級分類注釋的情況下學習這個空間。通過學習如何將這兩種模態聯系起來,我們可以執行諸如文本到形狀的檢索和形狀操作等任務,還可以實現新的任務,如文本到形狀的生成。在本論文的第二部分,我們允許主體被具體化,并探索一個依賴于所有三個領域(計算機視覺、自然語言和機器人)的任務:機器人導航通過遵循自然語言指令。不再依賴于固定的圖像或3D對象數據集,代理程序現在位于一個物理環境中,并使用機載相機捕捉自己對空間的視覺觀察。為了在視覺、語言和機器人物理狀態之間建立聯系,我們提出了一個使用拓撲圖執行規劃和控制的系統。這種基本的抽象允許主體將語言指令的部分與環境的相關空間區域聯系起來,并將一系列視覺觀察與物理動作和行動聯系起來。

//searchworks.stanford.edu/view/13876455

付費5元查看完整內容
北京阿比特科技有限公司