亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

智能軟件具有改變我們社會的潛力。它正在成為現實世界中許多系統的基石。然而,盡管機器學習模型在基準測試上表現出色,像神經網絡這樣的最新方法在遇到現實情境時經常失敗。由于神經網絡通常學習相關性而不是根據正確的信號和知識進行推理,它們在面對分布變化、意外破壞和最壞情況時會失敗。由于神經網絡是黑盒模型,用戶無法解釋或信任它們。為了在最關鍵的應用和系統中自信和負責任地部署機器學習,我們需要構建魯棒的模型。 在這篇論文中,我介紹了我們的魯棒機器學習系統的進展,通過緊密將上下文整合到算法中。上下文有兩個方面:自然數據的內在結構和來自領域知識的外在結構。兩者都至關重要:通過利用自然數據的內在結構,我的工作表明,我們甚至可以在最壞情況下創建魯棒的機器學習系統,這也是一項強有力的實證收益。通過整合外部知識,如任務之間的關聯和因果結構,我的框架可以指導模型使用正確的信號進行推理,為可控和可解釋的模型開啟新的機會。 這篇論文分為三個部分。在第一部分中,我旨在涵蓋三個使用內在結構作為約束以實現魯棒推理的工作。我介紹了我們的框架,該框架執行測試時優化以尊重自然約束,這些約束由自監督任務捕獲。我闡述了測試時優化如何改善分布外泛化和對抗性魯棒性。除了推理算法,我還展示了通過離散表示來改善分布外魯棒性的內在結構。 在論文的第二部分中,我詳細介紹了使用外部領域知識的工作。我首先介紹了如何利用來自外部領域知識的因果結構來提高領域泛化魯棒性。然后,我展示了多個任務和正則化目標的關聯如何幫助提高魯棒性。 在這篇論文的最后部分,我展示了關于值得信賴和可靠的基礎模型的三個工作,這是許多人工智能應用的基礎模型。我展示了一個利用上下文來保護、解釋和控制基礎模型的框架。

付費5元查看完整內容

相關內容

博士論文是由攻讀博士學位的研究生所撰寫的學術論文。它要求作者在博士生導師的指導下,選擇自己能夠把握和駕馭的潛在的研究方向,開辟新的研究領域。由此可見,這就對作者提出了較高要求,它要求作者必須在本學科的專業領域具備大量的理論知識,并對所學專業的理論知識有相當深入的理解和思考,同時還要具有相當水平的獨立科學研究能力,能夠為在學科領域提出獨創性的見解和有價值的科研成果。因而,較之學士論文、碩士論文,博士論文具有更高的學術價值,對學科的發展具有重要的推動作用。

人工智能系統開發具備高級推理能力是一個持續存在且長期的研究問題。傳統上,解決這一挑戰的主要策略涉及采用符號方法,其中知識通過符號明確表示,并通過明確編程的規則來實現。然而,隨著機器學習的出現,系統向能夠自主從數據中學習、需要最小人類指導的方向發生了范式轉移。鑒于這一轉變,近年來,越來越多的興趣和努力被投入到賦予神經網絡推理能力上,以彌合數據驅動學習與邏輯推理之間的差距。在這一背景下,神經算法推理(NAR)作為一個有希望的研究領域脫穎而出,旨在將算法的結構化和基于規則的推理與神經網絡的自適應學習能力整合起來,通常通過讓神經模型模仿經典算法來實現。在這篇論文中,我們對這一研究領域提供了理論和實踐上的貢獻。我們探索了神經網絡與熱帶代數之間的聯系,推導出與算法執行對齊的強大架構。此外,我們討論并展示了這樣的神經推理器學習和操縱復雜的算法和組合優化概念的能力,如強對偶性原理。最后,在我們的實證努力中,我們驗證了NAR網絡在不同實際場景中的實際用途。這包括任務多樣化,如規劃問題、大規模邊緣分類任務以及學習NP-hard組合問題的多項式時間近似算法。通過這一探索,我們旨在展示在機器學習模型中整合算法推理潛力。

//arxiv.org/abs/2402.13744 本論文旨在探索神經算法推理器的潛力,特別是關于它們學習執行經典算法的能力以及使用訓練有素的算法推理器作為相關下游任務的歸納先驗的有效性。 本論文的主要貢獻旨在解決這兩個研究問題,特別是在圖的背景下,鑒于許多感興趣的經典算法是為結構化數據開發和設計的(Cormen et al., 2009)。此外,我們將尋求從理論和實證的視角提供前述問題的證據。 為了解決關于經典算法可學習性的問題,我們提出了一個理論框架,將圖、神經網絡和熱帶代數(Landolfi et al., 2023)之間的聯系繪制出來。在這個設置中,將建立算法(特別是動態規劃算法)與神經網絡之間的等價性。我們還將展示如何基于這種聯系派生出適合學習算法的強大神經網絡架構。 跳出動態規劃算法的背景,我們提議通過對偶性學習算法(Numeroso et al., 2023),有效地展示我們如何借鑒與算法相關的各個領域的概念,如組合優化,以增強將算法推理編碼到神經網絡中的程度。這一貢獻也作為使用算法作為歸納先驗可以幫助更準確地解決標準機器學習任務的第一個實際示例。 在此基礎上,我們提出了兩個更多的貢獻:一個學習規劃問題一致性啟發式函數的算法推理器(Numeroso et al., 2022);以及一個關于將算法知識轉移到NP-hard組合優化問題的有效性的廣泛研究(Georgiev et al., 2023)。 此外,作為一個附加目標,本論文還努力作為神經算法推理世界的入門指南,特別是通過其第三章,為那些不熟悉NAR的人量身定做。

付費5元查看完整內容

機器學習模型最終用于在現實世界中做出決策,其中的錯誤可能代價極高。我們對神經網絡及其訓練過程的理解仍然出奇地少,結果是,我們的模型脆弱,經常依賴于虛假特征,在微小的分布變化下泛化能力差。此外,這些模型往往無法忠實地表示其預測中的不確定性,進一步限制了它們的適用性。在這篇論文中,我展示了關于神經網絡損失表面、概率深度學習、不確定性估計以及對分布變化的魯棒性的研究成果。在這些工作中,我們旨在構建對模型、訓練程序及其局限性的基礎理解,并利用這種理解來開發實際有影響力、可解釋性強、魯棒性好且廣泛適用的方法和模型。

在過去幾年中,我們見證了深度學習多個領域的顯著進步。我們現在擁有可以超越人類水平下國際象棋的深度學習模型 [Silver et al. 2016],推進蛋白質折疊領域的神經網絡 [Jumper et al. 2021],能根據文本描述創建逼真圖像和視頻的生成模型 [Ramesh et al. 2021; Saharia et al. 2022],以及展現出通用智能跡象的語言模型 [OpenAI 2023; Bubeck et al. 2023]。不可避免地,我們也看到越來越多的深度學習模型應用于現實世界,如自動駕駛汽車、用于自動診斷的醫學成像模型,以及圍繞語言模型構建的個人助理和其他系統。

然而,這些系統仍存在重大局限性,使得它們的廣泛采用面臨挑戰。特別是,量化深度學習模型預測中的不確定性仍然具有挑戰性 [Guo et al. 2017; Kadavath et al. 2022; Minderer et al. 2021]。結果是,我們往往很難知道何時可以信任這些模型,何時應該依賴人類專家。另一個主要問題是,神經網絡經常依賴于捷徑特征,并在測試數據分布與訓練分布不同時泛化能力差 [Geirhos et al. 2018; Hendrycks and Dietterich 2019],這在大多數實際應用中都是如此。

到目前為止,我的大部分研究都是從高層次上理解深度學習。我相信,通過解構我們的模型和方法并理解各個部分,我們可以建立更好的直覺和機械性理解,了解它們是如何工作的。最終,這種理解通常會轉化為更好的模型、方法和訓練程序。在整篇論文中,我展示了幾個這種類型的工作示例。

本論文的其余部分安排如下。在第2章中,我介紹了神經網絡損失表面中最優解集合的結構。我還提出了基于對損失表面的觀察而激發的深度神經網絡改進訓練和快速集成的實用方法。在第3章中,我展示了貝葉斯神經網絡的廣泛闡述以及對泛化的概率視角。我還提出了改進深度神經網絡不確定性估計的實用方法。在第4章中,我報告了對貝葉斯神經網絡后驗分布的詳細科學研究結果,提出了許多挑戰傳統智慧的驚人觀察。特別是,我描述了導致貝葉斯神經網絡在分布偏移下表現不佳的確切機制,并提出了部分解決方案。在第5章中,我描述了我們在存在捷徑特征的情況下神經網絡的特征學習工作,以及減少對這些特征依賴的方法。最后,在第6章中我總結了這篇論文。

付費5元查看完整內容

現代機器學習技術在許多領域展現了出色的能力。盡管在實驗環境中超越人類的性能表現,但許多研究揭示了由于現實世界應用中基本假設的違反而導致機器學習模型的脆弱性。這些問題顯著阻礙了機器學習的適用性和可靠性。這激發了在自然誘導的數據損壞或改變下保持模型性能的需求,這被稱為“自然魯棒性”。為此,本論文首先研究了兩個自然發生的問題:標簽損壞和分布偏移。此后,我們繼續探索異常分布數據在機器學習魯棒性中的價值。

首先,訓練樣本的觀測標簽被假定為真實值。然而,從人類那里獲得的標簽往往可能受到標簽損壞,導致泛化性能不佳。這引發了對標簽損壞魯棒性的重要性,目標是在存在噪聲和錯誤標簽的情況下訓練出一個魯棒的分類器。我們首先研究多個網絡之間的多樣性如何影響樣本選擇和對標簽噪聲的過擬合。對于多個噪聲標簽的學習問題,我們設計了一個端到端的學習框架,以最大化聯合注釋信息的可能性,這不僅在理論上一致,而且在實驗上有效和高效。

其次,經典機器學習方法建立在獨立同分布(i.i.d.)假設的基礎上,即訓練和測試數據是獨立且相同分布的。然而,部署在開放世界中的神經網絡常常在異常分布輸入下掙扎,它們對內部和外部分布輸入都產生異常高的置信度。為了緩解這個問題,我們首先揭示為什么交叉熵損失鼓勵模型過度自信。然后,我們為交叉熵損失設計了一個簡單的修正,增強了許多現有的異常分布(OOD)檢測的后處理方法。使用提出的損失進行訓練,網絡傾向于給出保守的預測,并在內部和外部分布輸入之間的softmax置信度分數上實現了強分離性。 最后,傳統機器學習算法僅利用來自內部分布樣本的信息,這些樣本通常昂貴且難以收集。因此,探索幾乎免費的異常分布樣本的價值在理論和實踐上都非常重要。我們研究開放集噪聲標簽如何影響泛化和對內在噪聲標簽的魯棒性,如何從SGD噪聲的角度理論分析開放集噪聲標簽的影響,并設計了利用異常分布樣本改善標簽噪聲魯棒性的算法。此外,我們提供了首次利用異常分布數據重新平衡長尾數據集的類別先驗,并研究異常分布數據對長尾學習中學到的表示的影響。

我們在多個模擬和現實世界基準上評估了所有介紹方法的有效性和魯棒性。報告的結果表明,我們的方法在緩解相應問題方面優于許多最先進的方法。我們希望我們的努力能提供洞察力,激發針對這些魯棒問題的特別設計方法,并加速探索異常分布樣本以設計有效和魯棒的系統。

付費5元查看完整內容

現代機器學習主要受到黑盒模型的驅動,這些模型提供了卓越的性能,但對于如何進行預測的透明度有限。對于需要了解模型如何做出決策的應用,以及協助模型調試和數據驅動的知識發現,我們需要可以回答有關影響模型行為的問題的工具。這就是可解釋機器學習(XML)的目標,這是一個子領域,它開發了從多個角度理解復雜模型的工具,包括特征重要性、概念歸因和數據估值。本文提供了對XML領域的幾個貢獻,主要思想分為三部分:(i)一個框架,使得可以統一分析許多當前的方法,包括它們與信息論和模型魯棒性的聯系;(ii)一系列技術,用于加速Shapley值的計算,這是幾種流行算法的基礎;以及(iii)一系列用于深度學習模型的特征選擇的方法,例如,在無監督和自適應的設置中。這些思想中的許多都是受到計算生物學和醫學應用的啟發,但它們也代表了在各種領域中都有用的基本工具和觀點。

在模型透明度的辯論中,傳統的觀點是我們面臨解釋性與準確性之間的權衡。1有些人辯稱這種權衡并不存在,聲稱我們可以使用“天生可解釋”的模型達到近乎最優的性能(Rudin, 2019);這對于簡單的表格數據集往往是正確的,但對于像圖像和語言這樣的復雜數據模態則較為罕見。在這里,我們采取了更為寬容的立場:鑒于黑盒模型目前提供了最佳的性能并且已經廣泛部署,我們探討是否有可能從任何模型中獲得足夠的見解。在這樣做的過程中,我們開發了一套在很大程度上對模型的內部機制持中立態度,或者說是模型不可知的工具集,因此即使在今天的最高性能的黑盒模型中也能正常運行。 這一目標也被可解釋機器學習(XML)子領域的許多工作所共享,并且近年來已經取得了顯著的進展。目前,XML工具已被用于了解新疾病的風險因素(Razavian等人,2020;Snider等人,2021),加速數學猜想的發現(Davies等人,2021),在有限的訓練數據標簽下識別蛋白質結合位點(Gligorijevi?等人,2021),審計有缺陷的醫學診斷系統(DeGrave等人,2021)以及從功能系統中獲得新的見解(Ting等人,2017;Sundararajan等人,2017)。這些早期的成功表明了這些工具的潛力,但在這些方法的底層理論以及使它們在實踐中高效的計算程序方面仍有進展空間。這篇論文介紹了我在博士期間進行的幾項工作,旨在解決這些挑戰。

這篇論文包含了我在博士期間完成的大部分項目,所有這些項目都與透明機器學習的核心主題相關。我們首先在第2章建立符號和幾個初步的概念。接下來,每一章都基于一篇第一作者的出版物,其中在某些情況下與共同第一作者共享。為了使它們在一個文檔中更具連貫性,對各個作品進行了修改,但這里沒有提供新的信息,這些論文也可以單獨閱讀。這些作品被組織成三個部分,如下所述。

**第一部分:XML的基礎 **我們首先討論一個統一了大部分文獻的觀點:許多現有的方法都基于一個解釋原則,即通過移除或量化從模型中移除特征的影響。我們描述了一個框架,在這個框架中,這些方法基于三個實現選擇而有所不同,我們為26個現有的算法確定了這些選擇(第3章)。基于這個觀點,我們對這些方法進行了統一分析,并找到了與信息理論、博弈論和認知心理學的聯系。然后,我們探索這些方法的魯棒性特性,并得出了描述它們對輸入和模型擾動的魯棒性的新結果(第4章)。 第二部分:Shapley值計算 接下來,我們探討XML中最廣泛使用的工具之一:Shapley值,一種博弈論信用分配技術。這些是最受歡迎的特征歸因方法之一,SHAP(Lundberg和Lee,2017)的基礎,以及一個著名的數據估值技術(Ghorbani和Zou,2019),但它們是臭名昭著的難以計算。有一系列方法來加速它們的計算(Chen等人,2022),我們在這里討論兩個:基于加權線性回歸的近似(第5章),和基于深度學習的攤銷優化的近似(第6章,第7章)。 第三部分:深度學習的特征選擇 最后,特征選擇為提供透明度的同時也降低了特征獲取成本提供了另一個方向。由于多次訓練不同特征集的模型的高昂成本,似乎很難與深度學習一起實施,但我們探討了如何使用可微分的層來阻止特征信息進入網絡(第8章)。然后,我們討論如何在自適應設置中應用這些思想,其中我們根據當前可用的信息為每個預測單獨選擇特征(第9章,第10章)。

付費5元查看完整內容

近年來,機器學習在許多應用中證明了其極高的用途性。然而,這些成功故事很多都源于在與訓練數據非常相似的數據上評估算法。當應用于新的數據分布時,機器學習算法已被證明會失敗。鑒于現實世界數據的非平穩和異構性質,我們需要更好地掌握算法在分布外(out-of-distribution)的泛化能力,以便算法能被廣泛部署和信任我的論文提出了三個研究課題,旨在調查和發展分布外泛化的領域。這些研究努力的中心目標是產生新的工具,如算法、理論結果、實驗結果和數據集,以提高在數據分布發生變化時機器學習方法的理解和性能。貫穿這三個機器學習場景的高級思想是模塊性——由組合在一起形成一個整體的獨立部分的質量。模塊化方法被假設為引導機器學習方法遠離僵化的記憶示例,走向更靈活和“更智能”的支持泛化的學習。

在我的第一項貢獻中,我從多個訓練分布的學習角度來接近論文目標。對這一研究方向的貢獻有兩方面。首先,我呈現了一組新的標準化任務,用于評估和比較分布外泛化算法。其次,我陳述了一系列新的理論結果,填補了數據中心和算法方法之間在分布外泛化方面的現有差距。這些理論發現引導了一組關于如何采用算法方法的新的實用建議。

在第二項貢獻中,我處理了監督圖像識別中的泛化問題。在這一背景下,我首先調查了多級特征聚合對泛化的影響,并證明了使用其中一種考慮的方法進行增強可以持續提高性能。其次,我提出了一組簡單的圖像數據集,可作為評估和比較圖像分類方法在分布外泛化方面的墊腳石。最后,我深入研究了多個神經網絡通信以解決共享任務的學習場景。這項工作以兩種方式支持論文目標。首先,我提出了一個新的環境,圖引用游戲(graph referential games),并在數據表示和相應的數據表示學習方法對分布外泛化的影響上提出了結果。這些結果連接了之前不相連的圖表示學習和新興通信領域。其次,我解決了基于現實圖像的群體通信這一具有挑戰性的領域。這篇論文中的數據集、算法、定理和實驗結果代表了在機器學習中理解和改進分布外泛化方面的幾個步驟。它們為研究人員提供了旨在促進這一領域研究的新工具和結果,其中一些已被證明對研究社群有用。最后,這項工作提出了機器學習的多個分布學習、圖像分類和多代理通信子領域中重要的未來方向。

//www.repository.cam.ac.uk/items/8680585b-87ca-4196-987f-c4d379259092

記憶與學習是否相同?阿根廷作家豪爾赫·路易斯·博爾赫斯(Jorge Luis Borges)的短篇小說《記憶者富內斯》(Funes the Memorious,由James E. Irby翻譯成英文[71,第59–66頁])描述了一個名叫富內斯的男孩,在頭部受傷后獲得了完美的記憶。他開始詳細地記住他一生的每一個時刻。同時,他失去了泛化的能力:他的記憶彼此是孤立的。例如,他從不同的角度看到同一只狗,卻只把同一只狗的不同側面視為獨立的信息。他甚至不了解自己的身體是什么樣的(‘每次看到鏡中的自己的臉,看到自己的手,都讓他感到驚訝’),這導致了一個結論:‘思考就是忘記一個差異,進行泛化,進行抽象。在富內斯過于充實的世界里,只有細節。’""與富內斯相似,具有數百萬參數的現代神經網絡已被證明會記住訓練樣本,這可能導致一系列問題,例如:(1)對噪聲數據的高度敏感性[150, 221],(2)易受對抗性攻擊的影響[271, 87, 269, 287],(3)與人類學習相比樣本效率低[302, 303, 275],以及(4)對新數據的泛化能力差[62],即使新數據樣本直觀地與模型已經訓練過的數據有相似之處[61, 251]。這些問題可能出現在應用現代機器學習的任何領域。它們可能導致機器學習系統在使用過程中產生不透明的故障模式,從而導致對機器學習系統的信任度下降[297]。"

"標準機器學習方法中缺少對分布外泛化(Out-of-distribution generalisation)的能力。這些方法得到了統計學習理論[279]的支持,該理論證明了使用基于平均值的優化(經驗風險最小化[279])以及使用測試集估計泛化誤差的做法是合理的。然而,這一理論假設訓練(過去)和測試(未來)數據是獨立同分布的。在應用機器學習的許多實際領域中,這一假設是不正確的:現實世界的數據是異構的,其分布通常會隨時間變化。分布變化的實際來源包括機器學習系統用戶特性的變化,或一個有實體的代理(embodied agent)所處環境的變化。另一個常見的分布變化例子是由于語言(包括在線使用的語言)動態性而產生的。自然語言的不斷演變已被證明會改變語言模型的困惑度(perplexity),當這些模型在數月內多次應用時[164]。背景章節的第2.4節更多地涵蓋了分布變化的類型和相應的例子。由于這些變化,即使在常用的分布內測試集上達到接近100%的準確率也不總是能預示未來的性能,這一點已被眾多論文所證明[137, 15, 61, 235, 204, 62]。"

"在機器學習領域,關于分布外泛化(OOD generalisation)的主題實質上與機器學習本身一樣廣泛和復雜,并且在研究社群中同樣容易受到瞬息萬變的趨勢和不同觀點的影響。在我看來,面對分布變化提高泛化能力是必要的,原因如下: ? 工程原因 — 提高樣本效率,并在沒有數千個訓練樣本的低資源領域提高性能[110]; ? 科學原因 — 深入了解神經網絡是如何學習的,并可能讓機器學習更接近人類學習; ? 商業原因 — 在目前由人類執行的越來越復雜的任務中使用神經網絡; ? 社會原因 — 通過控制簡單性偏見[246]來消除機器學習系統的偏見。

利用數據中的‘捷徑’可能會導致不公平的解決方案(例如,這可以在招聘工具中利用性別信息時看到[59])。在我的博士研究期間,我一直在問自己:致力于分布外泛化的機器學習研究社群最需要什么樣的工具?這篇論文旨在以新數據集、新理論結果、新測試平臺、新實驗結果和新算法的形式提供這樣的工具。這些研究努力的具體成果總結在圖1.1中。"

導致這篇論文的研究工作涉及機器學習的三個子領域:多分布學習(第3章)、圖像分類(第4章)和多智能體通信(第5章)。這種廣泛的視角使我能夠收集更多證據來支持中心假設,并探討研究問題(第1.2節)。同時,本論文中介紹的工具旨在對我在博士研究期間有幸與之合作和學習的幾個機器學習社群有所用處:(1)不變學習和群體魯棒性社群(第3章),(2)視覺社群(第4章),以及(3)新興通信社群(第5章)。所有這些社群都在獨立地研究機器學習中的分布外泛化,正如我在背景章節(第2章)以及各自貢獻章節中所回顧的。本論文聯系了我在研究中涉足的之前是分離的社群,例如圖神經網絡[141]與新興通信[43](第5章),以及面向群體魯棒性的數據導向方法[36]與分布魯棒優化[21](第3章)。"

付費5元查看完整內容

隨著機器學習模型在各種應用中的部署越來越頻繁,我們越來越需要更好地理解、交互和調節它們的行為。解釋性機器學習是一個致力于這一需求的研究領域,其主要焦點最初在滿足有利于揭示有關模型預測的可能有用信息的算法屬性的方法論發展。然而,批評也強調了需要更為嚴謹地評估這些方法在不同用戶的具體任務中的應用。在這篇論文中,我們對該領域的方法論和應用方面做出了我們個人的貢獻。在方法論上,我們提出了一種有效的算法,通過影響力大的訓練數據點提供關于模型行為的重要信息。然后,我們提出了一種理論框架,以理解模型在性能和公平性指標上的權衡。接下來,從應用驅動的角度,我們討論了一個評估框架,測試現有的圖像顯著性方法是否適用于實際的假相關檢測任務。最后,受到學術同行評審中實際問題的啟發,我們展示了我們對新的和現有的方法在幫助人類用戶進行文檔匹配任務方面的效用的發現。

在計算機視覺和自然語言處理等實踐領域表現出色的復雜機器學習模型,越來越多地被用來協助人類進行高風險的決策,如醫療、金融、法律和社會應用。這種加速的采用使得人類用戶越來越需要更好地理解、調節和與這些模型交互。解釋性機器學習是一個致力于這一需求的廣泛研究領域。許多文獻中的工作側重于方法論的發展:開發新的滿足各種技術目標的方法,可以有效地從一個黑盒機器學習模型中引出重要和有用的信息。然而,這些方法使用的各種技術目標與引出的信息的實際“重要性”或“有用性”沒有明確的聯系,這本質上依賴于用戶使用信息進行某些下游任務。因此,基于具體應用對開發的方法進行評估,對于完全閉環開發具有實用價值的新方法至關重要。在這篇論文中,我們提出了對這個領域的方法論和應用重點方面的個人貢獻。

付費5元查看完整內容

機器學習被廣泛應用于各種不同的學科,以開發感興趣的變量的預測模型。然而,構建這樣的解決方案是一個耗時且具有挑戰性的學科,需要經過高度訓練的數據科學家和領域專家。作為回應,自動化機器學習(AutoML)領域旨在通過自動化減少人工工作量并加快開發周期。由于超參數在機器學習算法中無處不在,以及調優的超參數配置可以對預測性能產生影響,超參數優化是AutoML的一個核心問題。最近,深度學習的興起推動了神經架構搜索(NAS),這是一個專注于自動化神經網絡設計的超參數優化問題的專門實例。對于大規模調優問題,網格搜索和隨機搜索等簡單的超參數優化方法在計算上是難以處理的。因此,本文的重點是開發高效和有原則的超參數優化和NAS方法。

**在回答以下問題方面取得了進展,目的是開發更高效和有效的自動化機器學習算法。**1. 超參數優化(a)我們如何有效地使用早期停止來加速超參數優化?(b)如何利用并行計算來執行超參數優化,同時在順序設置中訓練單個模型所需的時間?(c)對于多階段機器學習管道,我們如何利用搜索空間的結構來減少總計算成本?

  1. 神經架構搜索(a)最先進的權重共享NAS方法和隨機搜索基線之間的性能差距是什么?(b)如何開發更有原則的權重共享方法,并證明收斂速度更快和改進的經驗性能?(c) NAS中常用的權重共享范式是否可應用于更一般的超參數優化問題?

鑒于這些問題,本文分為兩個部分。第一部分側重于通過解決1a, 1b和1c問題在高效超參數優化方面取得的進展。第二部分側重于通過解決問題2a, 2b和2c,在理解和改進神經架構搜索的權重共享方面取得的進展。

付費5元查看完整內容

機器學習在過去十年取得了重大進展。其最成功的范式是深度神經網絡,由連續表示層組成,其參數通過梯度下降在大規模數據集上進行優化。

深度神經網絡在許多任務上取得了卓越的性能,如物體識別、語言理解和自動駕駛。然而,他們仍然在推理任務中掙扎,這些任務通常需要操作符號并將多個步驟組合起來,例如,求解數學方程或編寫計算機程序。在這篇論文中,我們的目標是彌合這一差距,并教機器以精確、系統、可解釋和魯棒的方式進行推理,以應對現實環境中的模糊性。**本文采用神經符號方法,結合機器學習和符號推理的互補優勢。符號推理具有精確性和系統性。**但它已被限制在可嚴格形式化的領域。相比之下,主要的機器學習方法很靈活,但眾所周知難以解釋,需要大量數據,并且無法在訓練分布之外進行泛化。集成兩種方法的優勢對于構建具有精確和系統泛化能力的靈活推理機至關重要。具體而言,本文從兩個角度研究了神經符號推理。首先,將機器學習應用于與符號推理相關的任務,如自動定理證明(第2章)。其次,將符號推理啟發的歸納偏差引入機器學習模型,以提高其可解釋性、泛化性和數據效率(第3章和第4章)。結果強調了(1)神經符號模型架構,(2)在適當的抽象水平上進行推理,以及(3)明確的、推理的組合表示,如符號證明。 //dataspace.princeton.edu/handle/88435/dsp015q47rr958

付費5元查看完整內容

在過去的幾十年里,機器學習在眾多人工智能應用中取得了長足的進步。然而,它的成功主要依賴于在一個封閉的環境中使用大量的離線數據訓練模型,然后在類似的測試環境中對它們進行評估。這意味著大多數機器學習模型無法在很少的觀察下快速適應新環境并在線學習新知識。相比之下,我們的人類大腦可以從在線感官輸入流中學習新的表示、概念和技能。**本文旨在使具有幾個核心能力的機器能夠在開放世界中學習新概念,而無需訪問大量精心策劃的標記數據。**具體來說,它解決了幾個關鍵問題,如使用有限的標記數據、增量數據、無標記數據以及不平衡和噪聲數據進行學習。本文提出的算法可以自然地與任何深度神經網絡相結合,并且與網絡架構無關。它們可以為各種開放世界條件提供更大的靈活性和魯棒性,使基于學習的方法適合部署在一般的基于智能體的智能系統中。

1.引言

**機器學習是人工智能領域的核心課題之一。由于許多智能行為不能簡單地由標準程序定義,而不是依靠人工設計的規則,本文使用機器學習來獲得函數逼近,給定許多輸入和輸出觀測。**今天,在機器學習的幫助下,我們的計算機可以識別我們的聲音和筆跡,記住我們的臉,標記我們的照片,翻譯不同的語言,在下棋和圍棋中擊敗我們,并在道路上安全駕駛汽車。就像阿蘭·圖靈在20世紀50年代設想的那樣,今天的計算機使用機器學習來“模擬”兒童的思維,這是一張逐漸充滿各種各樣的知識和表示的白紙。然而,機器的學習過程與兒童的學習過程仍有很大的差距。也許機器學習和人類學習之間最顯著的區別之一是能夠學習自然世界中稀缺數據的任務。如今的機器學習往往依賴于在一個封閉的世界環境中訓練模型,并在大量經過整理的數據中進行評估,然后在類似或相同的測試環境中進行評估。這意味著,與人類不同,標準的機器學習算法無法在很少的觀察下快速適應新環境并在線學習新知識。在本文中,我們將這種期望的能力稱為開放世界學習。 我們如何彌合人類和機器之間的這種明顯差距?我的論文旨在尋求解決方案,使機器能夠在一個開放的世界中學習新概念,而不需要獲取大量的策劃標簽。具體來說,它解決了開放世界學習框架下的幾個關鍵問題,如使用有限的標記數據、增量數據、無標記數據、不平衡和噪聲數據、在線和流數據進行學習,所有這些都是今天典型的機器學習管道中沒有考慮的。這些問題的最終解決方案將對我們所有人產生深遠的影響。首先,它將允許未來的智能體在飛行中學習:你未來的家庭機器人將適應你的房子,識別新家具,并學習使用新設備;你的增強現實眼鏡將通過你對世界的視角來學習,這些視角是你過去從未經歷過的;您的個人AI助理將適應您的偏好,并在與您的對話中學習新技能。此外,它將在許多工業應用中節省數百萬小時的工程、標簽和數據管理工作。最后,通過將我們的學習過程投射到計算框架中,這也將是探索理解人類智能的一個里程碑。

本文概述

**本文提出的貢獻,使機器能夠用很少的標記示例獲得新概念,并使它們對許多自然主義和開放世界條件更魯棒。**在過去,有幾種機器學習范式,如小樣本學習、持續學習、自監督學習等,它們都是由使機器學習在開放世界中更加靈活和自適應的大愿景所驅動的。第二章概述了這些課題的背景文獻。具體來說,本文首先討論了各種學習范式,這些范式鼓勵在與訓練不同的環境中進行測試時的學習,例如小樣本學習和持續學習,然后討論了另一個相關研究的思路,旨在從無標簽的示例中學習,例如自監督學習。 然而,這些學習范式通常只專注于一個特定的屬性,如域偏移量或標記數據點的數量。有時,這些性質是正交的,它們的解可以組合在一起,但通常提出的解決方案依賴于一些額外的不現實的假設。例如,標準的半監督學習利用未標記的數據來提高學習模型的質量;然而,它假設未標記的數據與標記的數據來自相同的分布,并且也屬于預定義的類別之一。在另一個例子中,標準的少樣本學習旨在用很少的數據點來學習新類別,但它假設數據點平均分布于在訓練期間從未見過的幾個新類別。或者,類不平衡問題通常假設類標簽是正確的,因此高訓練成本意味著數據點來自少數類。在這些示例中,假設學習環境的其他屬性的解決方案在同時存在多個問題的開放世界中部署時可能會崩潰。因此,本文的核心主題是尋求新的解決方案,以同時解決開放世界的多種特性,如有限的標記數據學習、輸出空間的增量增長、無標記、不平衡和有噪聲的數據。為了實現這一目標,我們不僅需要開發新的學習算法,還需要重新思考定義問題的學習范式。因此,論文的一部分,如第4章和第6章的部分,也旨在定義具有額外自然屬性的新的學習范式或基準。

**用有限的標記數據進行學習的文獻被廣泛稱為少樣本學習。然而,標準的少樣本學習在測試時只處理少量的新類。**在第3章中,我們關注的是增量少樣本學習的問題,模型需要識別訓練時多次出現的舊類別和測試時剛剛引入的新類別。令人驚訝的是,許多只專注于解決新類別的經典少樣本學習方法,實際上在處理結合新舊類別的更現實問題時受到了影響,可能是因為新舊類別的表示彼此不兼容。與直接使用新類樣本的某些特征向量作為分類器權重的傳統方法不同,本文提出的方法是基于連續優化的,通過平衡新舊類帶來的目標來求解權重,并在測試時達到更好的優化解。在整個增量學習新類別的過程中,現實世界的智能體通常會遇到更多的未標記樣本。在第4章中,我們又向前邁進了一步,將未標記數據引入到小樣本學習問題中。本文提出一種半監督少樣本學習的新學習范式,除了在每個學習片段中標記的數據點很少的約束外,還考慮未標記的樣本。本文工作是第一個同時解決半監督學習和少樣本學習的工作。它不僅減少了訓練和測試任務中對標記數據量的依賴,而且解決了干擾因素的問題,即不屬于任何已知類別的類別,因為在經典的半監督學習中不考慮這一問題。本文提出新的少樣本學習模型,可以規避分干擾類的影響,同時仍然設法利用來自未標記數據的有用信息。

**盡管小樣本學習取得了廣泛的成功,但情節通常是從精心策劃的數據集中采樣,而不是從自然世界的噪聲長尾分布中采樣。**我們在第4章中介紹的干擾物例子也可以被認為是一種噪聲訓練數據。在第5章中,我們將研究在標準機器學習環境下的不平衡和噪聲類標簽學習問題。雖然這兩個問題在自然學習環境中普遍發生,但傳統上,它們被分開研究,采用相互矛盾的補救方法。為了解決這一沖突,本文提出了一種數據驅動的示例權重機制,可以在統一的框架下直接應用于這兩個問題。該算法利用干凈和平衡的驗證集來校準訓練樣本權重。該模型還強調了一種同時聯合更新內層和外層循環參數的高效學習方法。少樣本學習通常伴隨著僵化的情景設置,這使得對新概念的持續增量獲取進行建模變得不自然。第6章提出了一種新的在線情境化小樣本學習范式。雖然我們在第3章中研究了新舊類別的組合,但之前的方法主要關注情節的概念,但知識從未隨著時間順序和增量增長。雖然已經有一些努力使這些情節更有順序,就像設置增量類學習一樣,但訓練和測試階段的分離仍然使評估變得繁重。現實世界的智能體不依賴偶發的停止,而是執行在線持續學習,在序列的每個時間步中產生一些輸出預測,通過自上而下的上下文信息流進行調制。新范式包含了許多自然主義屬性,如在線、增量、上下文化、少樣本和半監督,還開發了一個基于室內家庭圖像的新基準,模仿現實世界智能體的視覺輸入流。提出了一種新的模型——上下文原型記憶(context Prototypical Memory, CPM),成功地解決了在有限標記數據下的在線上下文類學習問題。

最后,在第7章中,我們研究了在不使用任何類別標簽的情況下,通過在線視覺輸入流動態學習表示和類別。在前幾章中,學習仍然主要由帶標簽的示例驅動:例如,在第6章中,只有當環境告訴智能體它是一個新類時,新的類別簇才會創建。在本章中,我們將介紹一種算法,該算法允許智能體同時從未標記的數據流中學習表示和類別。這可以被視為發展過程中的一個前階段,因為智能體可以首先通過在沒有標記數據的情況下學習表示和類別來探索環境,然后在一些示例的監督下進行。所提出的模型,在線無監督原型網絡,將用于概念學習的原型網絡與基于聚類的自監督表示學習相結合,并與僅使用在線數據流進行訓練的最先進的自監督視覺表示學習方法相比較。此外,該算法對不均衡分布也具有較強的魯棒性。

目錄內容:

付費5元查看完整內容

近年來,深度學習已經將自己定位為機器學習最有前途的方向之一。然而,深度神經網絡在不確定性估計、模型選擇、先驗知識的整合等方面存在許多不足。幸運的是,所有這些問題都可以在貝葉斯深度學習框架內克服,使用貝葉斯神經網絡、變分自編碼器或深度神經網絡高斯過程等模型。不幸的是,這需要使用近似推理過程和先驗分布的規范。在這篇論文中,我們展示了這些模型中先驗規范不僅僅是一個麻煩,而是一個寶貴的機會,可以將領域知識和歸納偏見加入到學習算法中,從而提升全新應用的性能。為此,我們對相關文獻進行了全面的回顧,并進一步貢獻了不同的原創研究成果。

具體地說,我們證明了變分自編碼器中的高斯過程先驗可以改進時間序列的表示學習,并允許對缺失數據進行有效的插補,同時還可以提供校準的不確定性估計。我們還表明,通過使用變分高斯-馬爾可夫過程,這是可能的,在沒有顯著的額外計算成本。此外,我們表明,在變分自編碼器中使用自組織映射作為結構歸納偏差,可以提高學習表示的可解釋性,并使有效的潛在聚類。這些聚類表示可以作為潛在時間序列模型的輸入,從而準確地預測未來的狀態。在貝葉斯神經網絡中,我們證明了常用的各向同性高斯先驗不僅會導致次優性能,而且在某些情況下還會產生所謂的冷后驗效應,即經過緩和的后驗比真正的貝葉斯后驗表現更好。相反,我們提出了具有重尾性和空間相關性的備選先驗,可以提高性能,緩解冷后驗效應。最后,當沒有先驗知識可用時,我們表明先驗分布可以在元學習環境中從相關任務中學習。在深度神經網絡高斯過程的情況下,我們表明元學習的均值函數和核函數的先驗改進預測性能和不確定性估計。

我們希望本文將為貝葉斯深度學習框架奠定基礎,在該框架中,先驗分布的選擇將被視為建模任務的關鍵部分,手工設計和元學習的先驗將在任務之間自由共享,以實現貝葉斯深度學習。

//www.research-collection.ethz.ch/handle/20.500.11850/523269

付費5元查看完整內容
北京阿比特科技有限公司