亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

減少機器學習的時間成本可以縮短模型訓練的等待時間,加快模型更新周期。分布式機器學習使機器學習實踐者能夠將模型訓練和推理時間縮短幾個數量級。在本實用指南的幫助下,您將能夠將您的Python開發知識應用到分布式機器學習的實現中,包括多節點機器學習系統。首先,您將探索分布式系統如何在機器學習領域工作,以及分布式機器學習如何應用于最先進的深度學習模型。隨著學習的深入,您將看到如何使用分布式系統來增強機器學習模型訓練和服務速度。在優化本地集群或云環境中的并行模型訓練和服務管道之前,您還將掌握應用數據并行和模型并行方法。讀完這本書,您將獲得構建和部署高效數據處理管道所需的知識和技能,用于以分布式方式進行機器學習模型訓練和推理。

//www.packtpub.com/product/distributed-machine-learning-with-python/9781801815697

讀者

這本書是為數據科學家,機器學習工程師,和機器學習從業者在學術界和工業界。本文假設您基本了解機器學習概念和Python編程的工作知識。有使用TensorFlow或PyTorch實現機器學習/深度學習模型的經驗者優先。如果你對使用分布式系統來提高機器學習模型訓練和服務速度感興趣,你會發現這本書很有用。

內容目錄:

第1章,分割輸入數據,展示了如何將機器學習訓練或服務負載分配到輸入數據維上,稱為數據并行。第2章Parameter Server和All-Reduce描述了數據并行訓練過程中常用的兩種模型同步方案。第3章,構建數據并行訓練和服務管道,闡述了如何實現數據并行訓練和服務流程。第4章,瓶頸和解決方案,描述了如何使用一些高級技術來提高數據并行性能,例如更高效的通信協議,減少內存占用。第5章,模型分割,介紹了一般的模型并行方法。第6章,管道輸入和層拆分,展示了如何利用管道并行提高系統效率。第7章,實現模型并行培訓和服務流程,詳細討論了如何實現模型并行培訓和服務流程。第8章,實現更高的吞吐量和更低的延遲,涵蓋了在模型并行中減少計算和內存消耗的高級方案。第9章,數據和模型并行的混合,將數據和模型并行結合在一起作為一種高級的并行模型訓練/服務方案。第10章,聯邦學習和邊緣設備,討論了聯邦學習和邊緣設備如何參與這個過程。第11章,彈性模型訓練和服務,描述了一個更有效的方案,可以改變在飛行中使用的加速器的數量。第12章,進一步加速的高級技術,總結了幾個有用的工具,如性能調試工具,工作多路復用,和異構模型訓練。

付費5元查看完整內容

相關內容

分布式機器學習研究將具有大規模數據量和計算量的任務分布式地部署到多臺機器上,其核心思想在于“分而治之”,有效提高了大規模數據計算的速度并節省了開銷。

自然語言處理實戰教你如何創建實用的NLP應用,而不陷入復雜的語言理論和深度學習的數學。在這本引人入勝的書中,您將探索構建大量強大的NLP應用所需的核心工具和技術,包括聊天機器人、語言檢測器和文本分類器。

真實世界的自然語言處理不是典型的自然語言處理教科書。我們專注于構建真實世界的NLP應用。這里真實世界的意義有兩個方面:首先,我們關注構建真實世界的NLP應用需要什么。作為讀者,您不僅將學習如何訓練NLP模型,還將學習如何設計、開發、部署和監控它們。在此過程中,您還將學習現代NLP模型的基本構建模塊,以及對構建NLP應用有用的NLP領域的最新開發。其次,與大多數介紹性書籍不同,我們采用自上而下的教學方法。我們不采用自下而上的方法,一頁頁地展示神經網絡理論和數學公式,而是專注于快速構建“正常工作”的NLP應用程序。然后我們深入研究組成NLP應用的各個概念和模型。您還將學習如何使用這些基本構建塊構建端到端定制NLP應用,以滿足您的需求。

這本書由三個部分組成,共11章。第1部分介紹了NLP的基礎知識,其中我們學習了如何使用AllenNLP 快速構建一個NLP應用,以完成情感分析和序列標記等基本任務。

第1章首先介紹了NLP的“什么”和“為什么”——什么是NLP,什么不是NLP,如何使用NLP技術,以及NLP如何與人工智能的其他領域相關聯。

第2章演示了如何構建第一個NLP應用程序,一個情感分析器,并介紹了現代NLP模型的基礎知識——單詞嵌入和遞歸神經網絡(RNN)。

第3章介紹了自然語言處理應用的兩個重要組成部分,單詞和句子的嵌入,并演示了如何使用和訓練它們。

第4章討論了最簡單但最重要的NLP任務之一,句子分類,以及如何在這個任務中使用RNN。

第5章介紹了序列標注任務,如詞性標注和命名實體提取。它還涉及到一個相關的技術,語言建模。

第2部分介紹高級NLP主題,包括序列到序列模型、Transformer以及如何利用遷移學習和預先訓練過的語言模型來構建強大的NLP應用。

第6章介紹了序列到序列的模型,它將一個序列轉換為另一個序列。我們在一個小時內構建了一個簡單的機器翻譯系統和一個聊天機器人。

第7章討論了另一種流行的神經網絡結構,卷積神經網絡(CNN)。

第8章深入介紹了Transformer,它是當今最重要NLP模型之一。我們將演示如何使用Transformer構建改進的機器翻譯系統和拼寫檢查器。

第9章在前一章的基礎上,討論了遷移學習,這是現代NLP中的一種流行的技術,使用預先訓練過的語言模型,如BERT。

第3部分將討論與開發NLP應用程序相關的主題,這些應用程序對真實數據具有健壯性,并部署和服務它們。

第10章詳細介紹了開發NLP應用程序時的最佳實踐,包括批處理和填充、正則化和超參數優化。

第11章總結了如何部署和服務NLP模型。它還涵蓋了如何解釋和解釋ML模型。

付費5元查看完整內容

如果你對機器學習很好奇,但不知道從哪里開始,這就是你一直在等待的書。它專注于被稱為深度學習的機器學習子領域,解釋了核心概念,并為您提供了開始構建自己的模型所需的基礎。而不是簡單地概述使用現有工具包的教程,實用深度學習教你為什么使用深度學習,并將激勵你進一步探索。

你所需要的是對計算機編程和高中數學的基本熟悉——這本書將涵蓋其余的內容。在介紹Python之后,您將瀏覽關鍵主題,如如何構建良好的訓練數據集,使用scikit-learn和Keras庫,并評估您的模型的性能。

您還將了解:

如何使用經典的機器學習模型,如k-最近鄰,隨機森林,和支持向量機 神經網絡是如何工作的,又是如何訓練的 如何使用卷積神經網絡 如何從零開始開發一個成功的深度學習模型 您將在此過程中進行實驗,構建最終的案例研究,其中包含您所學到的所有內容。 您將使用的所有代碼都可以在這里獲得: //github.com/rkneusel9/PracticalDeepLearningPython/

這是對這個動態的,不斷擴大的領域的完美介紹,實用深度學習將給你的技能和信心潛入自己的機器學習項目。

付費5元查看完整內容

自然語言處理(Natural Language Processing,NLP)是計算機科學領域與人工智能領域中的一個重要方向。它研究能夠實現人與電腦之間用自然語言進行有效通信的各種理論和方法,涉及所有用計算機對自然語言進行的操作。

//www.datascienceassn.org/sites/default/files/Natural%20Language%20Processing%20with%20Python.pdf

伯德、克萊恩、洛佩爾編著的這本《Python自然語言處理》是自然語言處理領域的一本實用入門指南,旨在幫助讀者學習如何編寫程序來分析書面語言。《Python自然語言處理》基于Python編程語言以及一個名為NLTK的自然語言工具包的開源庫,但并不要求讀者有Python編程的經驗。全書共11章,按照難易程度順序編排。第1章到第3章介紹了語言處理的基礎,講述如何使用小的Python程序分析感興趣的文本信息。第4章討論結構化程序設計,以鞏固前面幾章中介紹的編程要點。第5章到第7章介紹語言處理的基本原理,包括標注、分類和信息提取等。第8章到第10章介紹了句子解析、句法結構識別和句意表達方法。第11章介紹了如何有效管理語言數據。后記部分簡要討論了NLP領域的過去和未來。



《Python自然語言處理》的實踐性很強,包括上百個實際可用的例子和分級練習。《Python自然語言處理》可供讀者用于自學,也可以作為自然語言處理或計算語言學課程的教科書,還可以作為人工智能、文本挖掘、語料庫語言學等課程的補充讀物。
付費5元查看完整內容

學習使用Python分析數據和預測結果的更簡單和更有效的方法

Python機器學習教程展示了通過關注兩個核心機器學習算法家族來成功分析數據,本書能夠提供工作機制的完整描述,以及使用特定的、可破解的代碼來說明機制的示例。算法用簡單的術語解釋,沒有復雜的數學,并使用Python應用,指導算法選擇,數據準備,并在實踐中使用訓練過的模型。您將學習一套核心的Python編程技術,各種構建預測模型的方法,以及如何測量每個模型的性能,以確保使用正確的模型。關于線性回歸和集成方法的章節深入研究了每種算法,你可以使用書中的示例代碼來開發你自己的數據分析解決方案。

機器學習算法是數據分析和可視化的核心。在過去,這些方法需要深厚的數學和統計學背景,通常需要結合專門的R編程語言。這本書演示了機器學習可以如何實現使用更廣泛的使用和可訪問的Python編程語言。

使用線性和集成算法族預測結果

建立可以解決一系列簡單和復雜問題的預測模型

使用Python應用核心機器學習算法

直接使用示例代碼構建自定義解決方案

機器學習不需要復雜和高度專業化。Python使用了更簡單、有效和經過良好測試的方法,使這項技術更容易為更廣泛的受眾所接受。Python中的機器學習將向您展示如何做到這一點,而不需要廣泛的數學或統計背景。

付費5元查看完整內容

利用實用的、循序漸進的方法運用計算機視覺和機器學習概念開發商業和工業應用。

這本書包括四個主要部分,從設置編程環境開始。第1節介紹了圖像和視頻處理的基礎知識,并提供了如何操作和從圖像中提取有用信息的代碼示例。您將主要使用OpenCV和Python來處理本節中的示例。

第2節描述機器學習和神經網絡的概念應用于計算機視覺。你將學習神經網絡的不同算法,比如convolutional neural network (CNN), region-based convolutional neural network (R-CNN), YOLO。在本節中,您還將學習如何訓練、調整和管理計算機視覺的神經網絡。第3節提供了逐步發展商業和工業應用的例子,如視頻監控中的面部識別和制造中的表面缺陷檢測。

最后一部分是關于在云基礎設施(如Amazon AWS、谷歌云平臺和Microsoft Azure)上訓練大量圖像的神經網絡。它引導您完成在基于gpu的云基礎設施上為計算機視覺訓練分布式神經網絡的過程。當您讀完《使用人工神經網絡構建計算機視覺應用程序》并完成代碼示例時,您將開發出一些使用深度學習的計算機視覺的真實使用案例。

你將學到什么

  • 運用圖像處理、操作和特征提取技術
  • 處理計算機視覺的各種深度學習算法
  • 訓練、管理和調優CNNs和對象檢測模型的超參數,如R-CNN、SSD、YOLO
  • 使用Keras和TensorFlow建立神經網絡模型
  • 發現在商業和工業中實施計算機視覺應用的最佳實踐
  • 在基于gpu的云基礎設施上訓練分布式模型

這本書是給誰的

  • 具有Python編程知識的數據科學家、分析師、機器學習和軟件工程專業人員。
付費5元查看完整內容

考慮到當今使用的各種大數據應用程序的復雜性,cpu密集型的數據處理任務已經變得至關重要。降低每個進程的CPU利用率對于提高應用程序的總體速度非常重要。

這本書將教你如何執行計算的并行執行,將它們分布在一臺機器的多個處理器上,從而提高大數據處理任務的整體性能。我們將討論同步和異步模型、共享內存和文件系統、各種進程之間的通信、同步等等。

你會學到什么

  • 介紹并行計算和分布式計算
  • 同步和異步編程
  • 探索Python中的并行性
  • 分布式應用
  • 云中的Python
  • 在HPC集群上的Python
  • 測試和調試分布式應用程序
付費5元查看完整內容

獲得高級數據分析概念的廣泛基礎,并發現數據庫中的最新革命,如Neo4j、Elasticsearch和MongoDB。這本書討論了如何實現ETL技術,包括主題爬行,這是應用在諸如高頻算法交易和面向目標的對話系統等領域。您還將看到機器學習概念的示例,如半監督學習、深度學習和NLP。使用Python的高級數據分析還包括時間序列和主成分分析等重要的傳統數據分析技術。

讀完這本書,你將對分析項目的每個技術方面都有了經驗。您將了解使用Python代碼的概念,并提供在您自己的項目中使用的示例。

你會學到什么

  • 使用數據分析技術,如分類、聚類、回歸和預測
  • 處理結構化和非結構化數據、ETL技術以及不同類型的數據庫,如Neo4j、Elasticsearch、MongoDB和M- ySQL
  • 考察不同的大數據框架,包括Hadoop和Spark
  • 發現先進的機器學習概念,如半監督學習,深度學習,和NLP

這本書是給誰看的

對數據分析領域感興趣的數據科學家和軟件開發人員。

付費5元查看完整內容

這本書在對算法工作原理的高層次理解和對優化模型的具體細節的了解之間找到一個平衡點。這本書將給你的信心和技能時,開發所有主要的機器學習模型。在這本Pro機器學習算法中,您將首先在Excel中開發算法,以便在用Python/R實現模型之前,實際了解可以在模型中調優的所有細節。

你將涵蓋所有主要的算法:監督和非監督學習,其中包括線性/邏輯回歸;k - means聚類;主成分分析;推薦系統;決策樹;隨機森林;“GBM”;和神經網絡。您還將通過CNNs、RNNs和word2vec等文本挖掘工具了解最新的深度學習。你不僅要學習算法,還要學習特征工程的概念來最大化模型的性能。您將看到該理論與案例研究,如情緒分類,欺詐檢測,推薦系統,和圖像識別,以便您得到最佳的理論和實踐為工業中使用的絕大多數機器學習算法。在學習算法的同時,您還將接觸到在所有主要云服務提供商上運行的機器學習模型。

你會學到什么?

  • 深入了解所有主要的機器學習和深度學習算法
  • 充分理解在構建模型時要避免的陷阱
  • 在云中實現機器學習算法
  • 通過對每種算法的案例研究,采用動手實踐的方法
  • 學習集成學習的技巧,建立更精確的模型
  • 了解R/Python編程的基礎知識和Keras深度學習框架

這本書是給誰看的

希望轉換到數據科學角色的業務分析師/ IT專業人員。想要鞏固機器學習知識的數據科學家。

付費5元查看完整內容
北京阿比特科技有限公司