亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

摘要: 以深度學習為主要代表的人工智能技術正在悄然改變人們的生產生活方式,但深度學習模型的部署也帶來了一定的安全隱患.研究針對深度學習模型的攻防分析基礎理論與關鍵技術,對深刻理解模型內在脆弱性、全面保障智能系統安全性、廣泛部署人工智能應用具有重要意義. 擬從對抗的角度出發,探討針對深度學習模型的攻擊與防御技術進展和未來挑戰. 首先介紹了深度學習生命周期不同階段所面臨的安全威脅.然后從對抗性攻擊生成機理分析、對抗性攻擊生成、對抗攻擊的防御策略設計、對抗性攻擊與防御框架構建4個方面對現有工作進行系統的總結和歸納. 還討論了現有研究的局限性并提出了針對深度學習模型攻防的基本框架.最后討論了針對深度學習模型的對抗性攻擊與防御未來的研究方向和面臨的技術挑戰.

//crad.ict.ac.cn/CN/10.7544/issn1000-1239.2021.20200920

付費5元查看完整內容

相關內容

人工智能安全風險指的是指安全威脅利用人工智能資產的脆弱性,引發人工智能安全事件或對相關方造成影響。

生成對抗網絡(GAN)已經在計算機視覺、自然語言處理等領域推廣了各種應用,因為它的生成模型能夠從現有的樣本分布中合理地生成真實的例子。GAN不僅在基于數據生成的任務上提供了令人印象深刻的性能,而且由于其博弈優化策略,也為面向隱私和安全的研究提供了有利條件。遺憾的是,目前并沒有對GAN在隱私和安全方面進行全面的綜述,這也促使了本文對這些最新的研究成果進行系統的總結。現有的作品根據隱私和安全功能進行適當的分類,并對其優缺點進行綜合分析。鑒于GAN在隱私和安全方面仍處于非常初級的階段,并提出了有待解決的獨特挑戰,本文還闡述了GAN在隱私和安全方面的一些潛在應用,并闡述了未來的一些研究方向。

生成對抗網絡(Generative Adversarial Networks, GAN)帶來的技術突破迅速對機器學習及其相關領域產生了革命性的影響,這種影響已經蔓延到各個研究領域和應用領域。作為一種強大的生成框架,GAN顯著促進了許多復雜任務的應用,如圖像生成、超分辨率、文本數據操作等。最近,利用GAN為嚴重的隱私和安全問題制定優雅的解決方案,由于其博弈優化策略,在學術界和業界都變得越來越流行。本綜述的目的是提供一個關于GAN的全面的回顧和深入總結的最新技術,并討論了一些GAN在隱私和安全領域有前途的未來研究方向。我們以對GAN的簡要介紹開始我們的綜述。

付費5元查看完整內容

隨著數據越來越多地存儲在不同的筒倉中,社會越來越關注數據隱私問題,傳統的人工智能(AI)模型集中訓練正面臨效率和隱私方面的挑戰。最近,聯邦學習(FL)作為一種替代解決方案出現,并在這種新的現實中繼續蓬勃發展。現有的FL協議設計已經被證明對系統內外的對抗是脆弱的,危及數據隱私和系統的魯棒性。除了訓練強大的全局模型外,最重要的是設計具有隱私保障和抵抗不同類型對手的FL系統。在本文中,我們對這一問題進行了第一次全面的綜述。通過對FL概念的簡明介紹,和一個獨特的分類涵蓋:1) 威脅模型; 2) 中毒攻擊與魯棒性防御; 3) 對隱私的推理攻擊和防御,我們提供了這一重要主題的可訪問的回顧。我們強調了各種攻擊和防御所采用的直覺、關鍵技術和基本假設。最后,我們對魯棒性和隱私保護聯合學習的未來研究方向進行了討論。

//www.zhuanzhi.ai/paper/678e6e386bbefa8076e699ebd9fd8c2a

引言

隨著計算設備變得越來越普遍,人們在日常使用中產生了大量的數據。將這樣的數據收集到集中的存儲設施中既昂貴又耗時。傳統的集中式機器學習(ML)方法不能支持這種普遍存在的部署和應用,這是由于基礎設施的缺點,如有限的通信帶寬、間歇性的網絡連接和嚴格的延遲約束[1]。另一個關鍵問題是數據隱私和用戶機密性,因為使用數據通常包含敏感信息[2]。面部圖像、基于位置的服務或健康信息等敏感數據可用于有針對性的社交廣告和推薦,造成即時或潛在的隱私風險。因此,私人數據不應該在沒有任何隱私考慮的情況下直接共享。隨著社會對隱私保護意識的增強,《通用數據保護條例》(GDPR)等法律限制正在出現,這使得數據聚合實踐變得不那么可行。

在這種情況下,聯邦學習(FL)(也被稱為協作學習)將模型訓練分發到數據來源的設備上,作為一種有前景的ML范式[4]出現了。FL使多個參與者能夠構建一個聯合ML模型,而不暴露他們的私人訓練數據[4],[5]。它還可以處理不平衡、非獨立和同分布(非i.i.d)數據,這些數據自然出現在真實的[6]世界中。近年來,FL獲得了廣泛的應用,如下一個單詞預測[6]、[7]、安全視覺目標檢測[8]、實體解析[9]等。

根據參與者之間數據特征和數據樣本的分布,聯邦學習一般可以分為水平聯邦學習(HFL)、垂直聯邦學習(VFL)和聯邦遷移學習(FTL)[10]。

具有同構體系結構的FL: 共享模型更新通常僅限于同構的FL體系結構,也就是說,相同的模型被所有參與者共享。參與者的目標是共同學習一個更準確的模型。具有異構架構的FL: 最近的努力擴展了FL,以協同訓練具有異構架構的模型[15],[16]。

FL提供了一個關注隱私的模型訓練的范式,它不需要數據共享,并且允許參與者自由地加入和離開聯盟。然而,最近的研究表明,FL可能并不總是提供足夠的隱私和健壯性保證。現有的FL協議設計容易受到以下攻擊: (1)惡意服務器試圖從個人更新中推斷敏感信息,篡改訓練過程或控制參與者對全局參數的看法;或者(2)一個敵對的參與者推斷其他參與者的敏感信息,篡改全局參數聚合或破壞全局模型。

在隱私泄露方面,在整個訓練過程中,通信模型的更新會泄露敏感信息[18]、[19],并導致深度泄露[20],無論是對第三方服務器還是中央服務器[7]、[21]。例如,如[22]所示,即使是很小一部分的梯度也可以揭示相當數量的有關本地數據的敏感信息。最近的研究表明,通過簡單地觀察梯度,惡意攻擊者可以在[20],[23]幾次迭代內竊取訓練數據。

在魯棒性方面,FL系統容易受到[24]、[25]和[26]、[27]、[28]、[29]的模型中毒攻擊。惡意參與者可以攻擊全局模型的收斂性,或者通過故意改變其本地數據(數據中毒)或梯度上傳(模型中毒)將后門觸發器植入全局模型。模型投毒攻擊可以進一步分為:(1)Byzantine 攻擊,攻擊者的目標是破壞全局模型[13]、[30]的收斂性和性能;(2)后門攻擊,對手的目標是在全局模型中植入一個后門觸發器,以欺騙模型不斷預測子任務上的敵對類,同時在主要任務[26],[27]上保持良好的性能。需要注意的是,后門模型投毒攻擊通常利用數據投毒來獲取有毒的參數更新[24]、[26]、[27]。

這些隱私和魯棒性攻擊對FL構成了重大威脅。在集中學習中,服務器控制參與者的隱私和模型魯棒性。然而,在FL中,任何參與者都可以攻擊服務器并監視其他參與者,有時甚至不涉及服務器。因此,理解這些隱私性和健壯性攻擊背后的原理是很重要的。

目前對FL的研究主要集中在系統/協議設計[10]、[31]、[32]。聯邦學習的隱私和穩健性威脅還沒有得到很好的探討。在本文中,我們調研了FL的隱私和魯棒性威脅及其防御方面的最新進展。特別地,我們關注由FL系統內部者發起的兩種特定威脅:1) 試圖阻止學習全局模型的中毒攻擊,或控制全局模型行為的植入觸發器;2) 試圖泄露其他參與者隱私信息的推理攻擊。表2總結了這些攻擊的特性。

付費5元查看完整內容

深度學習模型被證明存在脆弱性并容易遭到對抗樣本的攻擊,但目前對于對抗樣本的研究主要集中在計算機視覺領域而忽略了自然語言處理模型的安全問題.針對自然語言處理領域同樣面臨對抗樣本的風險,在闡明對抗樣本相關概念的基礎上,文中首先對基于深度學習的自然語言處理模型的復雜結構、難以探知的訓練過程和樸素的基本原理等脆弱性成因進行分析,進一步闡述了文本對抗樣本的特點、分類和評價指標,并對該領域對抗技術涉及到的典型任務和數據集進行了闡述;然后按照擾動級別對主流的字、詞、句和多級擾動組合的文本對抗樣本生成技術進行了梳理,并對相關防御方法進行了歸納總結;最后對目前自然語言處理對抗樣本領域攻防雙方存在的痛點問題進行了進一步的討論和展望.

//www.jsjkx.com/CN/10.11896/jsjkx.200500078

付費5元查看完整內容

深度學習作為人工智能技術的重要組成部分,被廣泛應用于計算機視覺和自然語言處理等領域。盡管深度學習在圖像分類和目標檢測等任務中取得了較好性能,但是對抗攻擊的存在對深度學習模型的安全應用構成了潛在威脅,進而影響了模型的安全性。在簡述對抗樣本的概念及其產生原因的基礎上,分析對抗攻擊的主要攻擊方式及目標,研究具有代表性的經典對抗樣本生成方法。描述對抗樣本的檢測與防御方法,并闡述對抗樣本在不同領域的應用實例。通過對對抗樣本攻擊與防御方法的分析與總結,展望對抗攻擊與防御領域未來的研究方向。

//www.ecice06.com/CN/10.19678/j.issn.1000-3428.0059156

付費5元查看完整內容

深度學習是當前機器學習和人工智能興起的核心。隨著深度學習在自動駕駛、門禁安檢、人臉支付等嚴苛的安全領域中廣泛應用,深度學習模型的安全問題逐漸成為新的研究熱點。深度模型的攻擊根據攻擊階段可分為中毒攻擊和對抗攻擊,其區別在于前者的攻擊發生在訓練階段,后者的攻擊發生在測試階段。本文首次綜述了深度學習中的中毒攻擊方法,回顧深度學習中的中毒攻擊,分析了此類攻擊存在的可能性,并研究了現有的針對這些攻擊的防御措施。最后,對未來中毒攻擊的研究發展方向進行了探討。

//jcs.iie.ac.cn/xxaqxb/ch/reader/view_abstract.aspx?file_no=20200403&flag=1

付費5元查看完整內容

摘要: 深度學習作為人工智能技術的重要組成部分,被廣泛應用在計算機視覺、自然語言處理等領域。盡管深 度學習在圖像分類和目標檢測等方向上取得了較好性能,但研究表明,對抗攻擊的存在對深度學習模型的安全應 用造成了潛在威脅,進而影響模型的安全性。本文在簡述對抗樣本的概念及其產生原因的基礎上,分析對抗攻擊 的主要思路,研究具有代表性的經典對抗樣本生成方法。描述對抗樣本的檢測方法與防御方法,并從應用角度闡 述對抗樣本在不同領域的應用實例。通過對對抗樣本攻擊與防御方法的分析與總結,預測未來對抗攻擊與防御的 研究方向。

//www.ecice06.com/CN/10.19678/j.issn.1000-3428.0059156

付費5元查看完整內容

隨著人工智能和物聯網的快速發展與融合, 智能物聯網AIoT 正成長為一個極具前景的新興前 沿領域, 其中深度學習模型的終端運行是其主要特征之一. 針對智能物聯網應用場景動態多樣, 以及物聯網終端 (智能手機、可穿戴及其他嵌入式設備等) 計算和存儲資源受限等問題, 深度學習模型環境自適應正成為一種新的模型演化方式. 其旨在確保適當性能的條件下, 能自適應地根據環境變化動態調 整模型, 從而降低資源消耗、提高運算效率. 具體來說, 它需要主動感知環境、任務性能需求和平臺資源約束等動態需求, 進而通過終端模型的自適應壓縮、云邊端模型分割、領域自適應等方法, 實現深度學習模型對終端環境的動態自適應和持續演化. 本文圍繞深度學習模型自適應問題, 從其概念、系統架構、研究挑戰與關鍵技術等不同方面進行闡述和討論, 并介紹我們在這方面的研究實踐.

//scis.scichina.com/cn/2020/SSI-2020-0067.pdf

付費5元查看完整內容

在大數據時代下,深度學習、強化學習以及分布式學習等理論和技術取得的突破性進展,為機器學習提供了數據和算法層面的強有力支撐,同時促進了機器學習的規模化和產業化發展.然而,盡管機器學習模型在現實應用中有著出色的表現,但其本身仍然面臨著諸多的安全威脅.機器學習在數據層、模型層以及應用層面臨的安全和隱私威脅呈現出多樣性、隱蔽性和動態演化的特點.機器學習的安全和隱私問題吸引了學術界和工業界的廣泛關注,一大批學者分別從攻擊和防御的角度對模型的安全和隱私問題進行了深入的研究,并且提出了一系列的攻防方法. 在本綜述中,我們回顧了機器學習的安全和隱私問題,并對現有的研究工作進行了系統的總結和科學的歸納,同時明確了當前研究的優勢和不足. 最后,我們探討了機器學習模型安全與隱私保護研究當前所面臨的挑戰以及未來潛在的研究方向,旨在為后續學者進一步推動機器學習模型安全與隱私保護研究的發展和應用提供指導.

//www.jos.org.cn/jos/ch/reader/view_abstract.aspx?file_no=6131&flag=1

付費5元查看完整內容

深度學習算法已經在圖像分類方面取得了最先進的性能,甚至被用于安全關鍵應用,如生物識別系統和自動駕駛汽車。最近的研究表明,這些算法甚至可以超越人類的能力,很容易受到對抗性例子的攻擊。在計算機視覺中,與之相對的例子是惡意優化算法為欺騙分類器而產生的含有細微擾動的圖像。為了緩解這些漏洞,文獻中不斷提出了許多對策。然而,設計一種有效的防御機制已被證明是一項困難的任務,因為許多方法已經證明對自適應攻擊者無效。因此,這篇自包含的論文旨在為所有的讀者提供一篇關于圖像分類中對抗性機器學習的最新研究進展的綜述。本文介紹了新的對抗性攻擊和防御的分類方法,并討論了對抗性實例的存在性。此外,與現有的調查相比,它還提供了相關的指導,研究人員在設計和評估防御時應該考慮到這些指導。最后,在文獻綜述的基礎上,對未來的研究方向進行了展望。

//www.zhuanzhi.ai/paper/396e587564dc2922d222cd3ac7b84288

付費5元查看完整內容

隨著高計算設備的發展,深度神經網絡(DNNs)近年來在人工智能(AI)領域得到了廣泛的應用。然而,之前的研究表明,DNN在經過策略性修改的樣本(稱為對抗性樣本)面前是脆弱的。這些樣本是由一些不易察覺的擾動產生的,但可以欺騙DNN做出錯誤的預測。受圖像DNNs中生成對抗性示例的流行啟發,近年來出現了針對文本應用的攻擊DNNs的研究工作。然而,現有的圖像擾動方法不能直接應用于文本,因為文本數據是離散的。在這篇文章中,我們回顧了針對這一差異的研究工作,并產生了關于DNN的電子對抗實例。我們對這些作品進行了全面的收集、選擇、總結、討論和分析,涵蓋了所有相關的信息,使文章自成一體。最后,在文獻回顧的基礎上,我們提出了進一步的討論和建議。

付費5元查看完整內容
北京阿比特科技有限公司