亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

摘要: 隨著自然語言處理技術的飛速發展以及互聯網上對話語料的不斷積累,閑聊導向對話系統(簡稱聊天機器人)取得了令人矚目的進展,受到了學術界的廣泛關注,并在產業界進行了初步的嘗試。當前,聊天機器人分為檢索式聊天機器人和生成式聊天機器人,而檢索式聊天機器人由于其生成的回復流暢且計算資源消耗小,仍然是目前工業界聊天機器人的主要實現手段。文中首先簡要介紹了檢索式聊天機器人的研究背景、基本架構以及組成模塊,重點闡述了回復選擇模塊的約束要求和相關數據集;然后,針對檢索式聊天機器人中最為核心的回復選擇技術,進行了深入分析與詳細梳理。文中將近年來經典的回復選擇技術歸納為如下4類:基于統計模型的方法、基于表示的神經網絡模型的方法、基于交互的神經網絡模型的方法以及基于預訓練技術的方法,并指出了這4類方法的優點和不足。在此基礎上,分析了目前檢索式聊天機器人技術研究所面臨的問題,并對其未來的發展趨勢進行了展望。

//www.jsjkx.com/CN/10.11896/jsjkx.210900250

付費5元查看完整內容

相關內容

自然語言處理(NLP)是語言學,計算機科學,信息工程和人工智能的一個子領域,與計算機和人類(自然)語言之間的相互作用有關,尤其是如何對計算機進行編程以處理和分析大量自然語言數據 。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

知識圖譜問答是通過處理用戶提出的自然語言問題,基于知識圖譜的某種形式,從中獲取相關答案的過程。由于知識規模、計算能力及自然語言處理能力的制約,早期知識庫問答系統被應用于限定領域。近年來,隨著知識圖譜的發展,以及開放領域問答數據集的陸續提出,知識圖譜已用于開放領域問答研究與實踐。以技術發展為主線,對開放領域知識圖譜問答進行綜述。首先,介紹五種基于規則模板的開放領域知識圖譜問答方法:傳統語義解析、傳統信息檢索、三元組匹配、話語模板和查詢模板,這類方法主要依賴人工定義的規則模板完成問答工作。其次,描述五種基于深度學習的方法,這類方法采用神經網絡模型完成問答過程的各類子任務,包括知識圖譜嵌入、記憶網絡、基于神經網絡的語義解析、基于神經網絡的查詢圖、基于神經網絡的信息檢索。接著,介紹開放領域知識圖譜問答常用的4個通用領域知識圖譜和11個開放領域問答數據集。隨后,按照問題的難易程度選擇3個經典問答數據集比較各問答系統的性能指標,對比不同方法間的性能差異并進行分析。最后,展望開放領域知識圖譜問答的未來研究方向。

//fcst.ceaj.org/CN/abstract/abstract2909.shtml

付費5元查看完整內容

在目前已發表的自然語言處理預訓練技術綜述中,大多數文章僅介紹神經網絡預訓練技術或者極簡單介紹傳統預訓練技術,存在人為割裂自然語言預訓練發展歷程。為此,以自然語言預訓練發展歷程為主線,從以下四方面展開工作:首先,依據預訓練技術更新路線,介紹了傳統自然語言預訓練技術與神經網絡預訓練技術,并對相關技術特點進行分析、比較,從中歸納出自然語言處理技術的發展脈絡與趨勢;其次,主要從兩方面介紹了基于BERT改進的自然語言處理模型,并對這些模型從預訓練機制、優缺點、性能等方面進行總結;再者,對自然語言處理的主要應用領域發展進行了介紹,并闡述了自然語言處理目前面臨的挑戰與相應解決辦法;最后,總結工作,預測了自然語言處理的未來發展方向。旨在幫助科研工作者更全面地了解自然語言預訓練技術發展歷程,繼而為新模型、新預訓練方法的提出提供一定思路。

//fcst.ceaj.org/CN/abstract/abstract2823.shtml

付費5元查看完整內容

自然語言生成(NLG)技術利用人工智能和語言學的方法來自動地生成可理解的自然語言文本。NLG降低了人類和計算機之間溝通的難度,被廣泛應用于機器新聞寫作、聊天機器人等領域,已經成為人工智能的研究熱點之一。首先,列舉了當前主流的NLG的方法和模型,并詳細對比了這些方法和模型的優缺點;然后,分別針對文本到文本、數據到文本和圖像到文本等三種NLG技術,總結并分析了應用領域、存在的問題和當前的研究進展;進而,闡述了上述生成技術的常用評價方法及其適用范圍;最后,給出了當前NLG技術的發展趨勢和研究難點。

//www.joca.cn/CN/abstract/abstract24496.shtml

付費5元查看完整內容

對話系統作為人機交互的重要方式,有著廣泛的應用前景。現有的對話系統專注于解決語義一致性和內容豐富性等問題,對于提高人機交互以及產生人機共鳴方向的研究關注度不高。如何讓生成的語句在具有語義相關性的基礎上更自然地與用戶交流是當前對話系統面臨的主要問題之一。首先對對話系統進行了整體情況的概括。接著介紹了情感對話系統中的對話情緒感知和情感對話生成兩大任務,并分別調研歸納了相關方法。對話情緒感知任務大致分為基于上下文和基于用戶信息兩類方法。情感對話生成的方法包括規則匹配算法、指定情感回復的生成模型和不指定情感回復的生成模型,并從情緒數據類別和模型方法等方面進行了對比分析。然后總結整理了兩大任務下數據集的特點和鏈接便于后續的研究,并歸納了當前情感對話系統中不同的評估方法。最后對情感對話系統的工作進行了總結和展望。

//fcst.ceaj.org/CN/abstract/abstract2684.shtml

付費5元查看完整內容

近年來,隨著人工智能技術的發展,更多數據被利用,數據驅動的端到端閑聊機器人技術得到快速發展,受到了學術界和工業界的廣泛關注。但是對于閑聊機器人的評價,現在沒有標準的自動評價方法,而自動評價方法對于閑聊機器人對話效果的評估及閑聊機器人的快速迭代是十分重要的。該文綜述了基于生成模型的閑聊機器人的自動評價方法。首先介紹了自動評價方法的研究背景及研究現狀,然后介紹了對閑聊機器人的基本能力—生成合理的回復進行評價的自動評價方法,并指出了每類方法的優缺點及進一步發展的方向,其次對評價閑聊機器人的擴展能力的自動評價方法進行了介紹,擴展能力包括生成多樣的回復、對話具有特定的個性、對話具有情感和對話主題具有深度和廣度等。隨后闡述了評價閑聊機器人綜合能力的評價方法,并討論了發展綜合自動評價方法的方向,同時還介紹了如何評價自動評價方法。最后進行了分析與總結,指出研究自動評價方法的困難與挑戰,并對未來發展進行了展望。

//jcip.cipsc.org.cn/CN/abstract/abstract3097.shtml

付費5元查看完整內容

摘要 在線社交網絡中的消息流行度預測研究,對推薦、廣告、檢索等應用場景都具有非常重要的作用。近年來,深度學習的蓬勃發展和消息傳播數據的積累,為基于深度學習的流行度預測研究提供了堅實的發展基礎。現有的流行度預測研究綜述,主要是圍繞傳統的流行度預測方法展開的,而基于深度學習的流行度預測方法目前仍未得到系統性地歸納和梳理,不利于流行度預測領域的持續發展。鑒于此,該文重點論述和分析現有的基于深度學習的流行度預測相關研究,對近年來基于深度學習的流行度預測研究進行了歸納梳理,將其分為基于深度表示和基于深度融合的流行度預測方法,并對該研究方向的發展現狀和未來趨勢進行了分析展望。

//jcip.cipsc.org.cn/CN/abstract/abstract3082.shtml

付費5元查看完整內容

摘要: 基于視覺和語言的跨媒體問答與推理是人工智能領域的研究熱點之一,其目的是基于給定的視覺內容和相關問題,模型能夠返回正確的答案。隨著深度學習的飛速發展及其在計算機視覺和自然語言處理領域的廣泛應用,基于視覺和語言的跨媒體問答與推理也取得了較快的發展。文中首先系統地梳理了當前基于視覺和語言的跨媒體問答與推理的相關工作,具體介紹了基于圖像的視覺問答與推理、基于視頻的視覺問答與推理以及基于視覺常識推理模型與算法的研究進展,并將基于圖像的視覺問答與推理細分為基于多模態融合、基于注意力機制和基于推理3類,將基于視覺常識推理細分為基于推理和基于預訓練2類;然后總結了目前常用的問答與推理數據集,以及代表性的問答與推理模型在這些數據集上的實驗結果;最后展望了基于視覺和語言的跨媒體問答與推理的未來發展方向。

//www.jsjkx.com/CN/10.11896/jsjkx.201100176

付費5元查看完整內容

摘要: 當前,以網絡數據為代表的跨媒體數據呈現爆炸式增長的趨勢,呈現出了跨模態、跨數據源的復雜關聯及動態演化特性,跨媒體分析與推理技術針對多模態信息理解、交互、內容管理等需求,通過構建跨模態、跨平臺的語義貫通與統一表征機制,進一步實現分析和推理以及對復雜認知目標的不斷逼近,建立語義層級的邏輯推理機制,最終實現跨媒體類人智能推理。文中對跨媒體分析推理技術的研究背景和發展歷史進行概述,歸納總結視覺-語言關聯等任務的關鍵技術,并對研究應用進行舉例。基于已有結論,分析目前跨媒體分析領域所面臨的關鍵問題,最后探討未來的發展趨勢。

//www.jsjkx.com/CN/10.11896/jsjkx.210200086

付費5元查看完整內容

題目: A Survey of Deep Learning Techniques for Neural Machine Translation

摘要: 近年來,隨著深度學習技術的發展,自然語言處理(NLP)得到了很大的發展。在機器翻譯領域,出現了一種新的方法——神經機器翻譯(NMT),引起了學術界和工業界的廣泛關注。然而,在過去的幾年里提出的大量的研究,很少有人研究這一新技術趨勢的發展過程。本文回顧了神經機器翻譯的起源和主要發展歷程,描述了神經機器翻譯的重要分支,劃分了不同的研究方向,并討論了未來該領域的一些研究趨勢。

付費5元查看完整內容

人機對話系統能夠讓機器通過人類語言與人進行交互,是人工智能領域的一項重要工作。因其在虛擬助手和社交聊天機器人等領域的商業價值而廣受工業界和學術界的關注。近年來,互聯網社交數據快速增長促進了數據驅動的開放領域對話系統研究,尤其是將深度學習技術應用到其中取得了突破性進展。基于深度學習的開放領域對話系統使用海量社交對話數據,通過檢索或者生成的方法建立對話模型學習對話模式。將深度學習融入檢索式系統中研究提高對話匹配模型的效果,將深度學習融入生成式系統中構建更高質量的生成模型,成為了基于深度學習的開放領域對話系統的主要任務。本文對近幾年基于深度學習的開放領域對話系統研究進展進行綜述,梳理、比較和分析主要方法,整理其中的關鍵問題和已有解決方案,總結評測指標,展望未來研究趨勢。

付費5元查看完整內容
北京阿比特科技有限公司