亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

這個項目的目標是開發一個框架,在這個框架中,不同的認知技能和行為可以被結合起來,產生智能和安全的機器人行為。美國防部自主性委員會最近發現了自主性和人工智能研究中的一個問題;即正在產生的大多數人工智能行為基本上是獨立工作的,如果沒有重大的研究和開發努力,就無法與其他行為或技能相結合。

為了說明這一點,請考慮一個機器人,它的工作是在一個安全設施周圍巡邏,只需完成幾個簡單的任務:確保它看到的每個人都被授權在那里,并掃描大樓以確保實驗室和辦公室的門在沒有人的時候總是關閉和安全。現在,假設該設施的主管來到機器人身邊,與它并肩而行,要求它報告其一天的工作情況。機器人應該怎么做?機器人可以獲得相關的行為和知識(它知道如何巡邏,它知道如何和人類一起走過走廊,它的各個行為都知道它們當天做了什么),但它沒有被明確設計為一起做這些事情。

完全處理這種情況需要機器人超越執行孤立的、獨立的行為的模式,在任務執行和知識方面結合其組成行為。例如,它對做什么的推理,要求機器人考慮與主管交談或繼續執行其巡邏期限的相對效用。例如,最高效用的行動方案是同時追求兩個潛在的目標,在繼續沿著走廊巡邏時與主任交談;但這種交錯的行為引起了潛在的安全問題,在制定行動計劃時需要加以考慮(例如在轉身看門口時要確保不碰到人類)。它向主管報告當天的情況時,需要機器人將當天執行的行為的知識匯總到一個全面的知識庫中,以便提供一個智能的、有意義的報告。隨著我們朝著合格的戰術機器人在戰場上工作的目標邁進,這些問題將更加需要解決,以確保機器人能夠安全和智能地協助作戰人員。

在這項工作中,我們的目標是開發一個框架,通過研究這兩個重要的問題,采取步驟將單個行為和技能結合起來:(1)我們如何選擇在任何特定時間執行和交錯的行為和技能,同時考慮實用性和安全性? 2)在執行不相關的技能和行為時,如何有意義地結合知識,以支持智能行為?

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

人工智能(AI)和統計機器學習(ML)與復雜系統的集成,給傳統的測試與評估(T&E)實踐帶來了各種挑戰。隨著更多不同級別的決策由人工智能系統(AIES)處理,我們需要測試與評估流程為確保系統的有效性、適用性和生存性奠定基礎。這涉及到評估 ML 模型和人工智能算法組件的方法,包括展示它們如何產生可重復和可解釋的決策的能力,以及對任何故障模式和故障緩解技術的了解。此外,還需要人工智能保證,以證明人工智能算法按預期運行,不存在因設計缺陷或惡意插入數據或算法代碼而產生的漏洞。T&E 需要新的流程來鑒定 ML 模型的訓練數據是否充足、算法和模型性能、系統性能以及運行能力。弗里曼(Freeman,2020 年)概述了當前復雜軟件支持系統的測試與評價方法所面臨的挑戰、嵌入式人工智能所加劇的關鍵挑戰,以及針對 AIES 的測試與評價需要如何改變的 10 個主題[1]。

為了充分測試 AIES,測試與評估界需要應對以下挑戰:

  • 當狀態空間的大小導致測試所有情況不可行,或開放世界問題導致無法枚舉所有情況時,確定測試要求;
  • 解決這些突發系統可以分解這一可能無效的假設;以及
  • 處理動態變化的系統,這些系統在部署過程中可能永遠不會處于 "最終 "狀態[1]。

圖 1 總結了加強測試與評估的 10 個不同主題,以應對充分測試和評估 AIES 所面臨的挑戰。在過去的一年中,弗吉尼亞理工大學致力于測試和評估各種 AIES。本最佳實踐指南對圖 1 中的主題進行了進一步的完善和補充。本文所包含的最佳實踐將這些主題轉化為可執行的測試與評估實踐。在編寫本指南的過程中,我們充分利用了我們在人工智能系統開發和與更廣泛的人工智能社區合作方面的 T&E 工作經驗。這里所包含的最佳實踐反映了我們為使人工智能系統的測試與評估具有可操作性所做的初步嘗試。這些實踐需要在各種人工智能系統中進行測試,以確保它們是真正的最佳實踐。貫穿許多最佳實踐的一個亮點是數據的重要作用。數據不再僅僅是 T&E 的產物。現在,它已成為人工智能系統開發本身的輸入。這一顯著變化推動了對人工智能系統的技術與評估提出新的要求和實踐。此外,這份清單還遠遠不夠完整,應被視為一份活生生的實踐文檔。隨著越來越多的人工智能系統可供測試,新的實踐將不斷發展,本清單也需要不斷更新。不過,本文件中的每種做法都已證明在美國防部 AIES 測試中非常有用。

付費5元查看完整內容

這項工作使用來自建設性模擬的可靠數據,比較了有監督的機器學習方法,以估計空戰中發射導彈的最有效時刻。我們采用了重采樣技術來改進預測模型,分析了準確度、精確度、召回率和f1-score。事實上,我們可以發現基于決策樹的模型性能卓越,而其他算法對重采樣技術非常敏感。在未使用重采樣技術和使用重采樣技術的情況下,最佳f1-score模型的值分別為0.378和0.463,提高了22.49%。因此,如果需要,重采樣技術可以提高模型的召回率和f1-score,但準確率和精確度會略有下降。此外,通過創建基于機器學習模型的決策支持工具,有可能提高飛行員在空戰中的表現,這有助于提高攻擊任務命中特定目標的有效性。

付費5元查看完整內容

關鍵點

  • 將越來越多的自主無人機與有人駕駛飛機組合在一起,對于發展具有在同行沖突中競爭和獲勝所需的復原力、能力和殺傷力的未來空軍至關重要。
  • 國防戰略家、政策制定者和作戰人員對自主性、人工智能及其目前的技術準備水平缺乏深入了解。這可能會滋生對采用這些關鍵技術的不信任和阻力。
  • 需要一個框架來幫助美國國防界更好地了解不同的自主功能,然后定義和開發具有MUM-T行動所需的適當自主水平的系統。
  • 需要一個由自主性的 "作戰人員觀點 "和 "工程師觀點 "組成的兩部分框架來指導該企業。"作戰人員觀點 "定義了無人機執行功能所需的不同自主水平,然后航空航天工程界--工程師觀--可以用來定義和開發必要的技術和系統。
  • 這個框架將幫助空軍和國防部調整規模,加快下一代自主無人機隊友的開發和投入使用,以保持對美國戰略競爭對手的技術優勢。

摘要

在過去十年中,美國空軍發布的幾乎所有愿景、戰略和飛行計劃都將下一代無人駕駛飛機、自主性和人工智能作為確保在未來戰區獲得決定性戰斗優勢的關鍵技術。空軍目前正在開發新的作戰概念,將有人駕駛的戰斗機和轟炸機與自主無人駕駛飛行器(UAV)組成團隊--稱為有人-無人編隊(MUM-T)--以執行打擊、反空、電子戰和其他任務。鑒于作戰人員和工程師之間經常存在的脫節,開發這種能力具有挑戰性。

目前,作戰人員沒有充分理解無人機需要什么樣的自主權和多少自主權來實現預期行為。另一方面,工程師們往往不完全了解如何分解作戰人員的操作性能要求,以使他們能夠快速部署有效的系統。最重要的是,期望的作戰效果和實現這些效果的技術途徑之間的聯系并不明確。因此,與之相關的愿景、戰略、飛行計劃、作戰概念、計劃以及自主飛行器(ATA)的無數研究和開發工作都沒有以一種清晰和一致的方式結合起來。

一個代表作戰人員和工程師觀點的框架將為這兩個群體在創建自主系統時提供一個結構和共同理解。"作戰人員觀點 "代表了作戰人員如何在戰斗空間中組織思維任務,可以整合不同層次的自主性。然后,"工程師觀點 "可以利用這些任務來開發必要的具體算法、技術和系統,以提供滿足作戰人員需求和期望的自主團隊飛機。本文提出了一個框架,以幫助空軍作戰人員、戰略家和政策制定者更好地理解自主技術,并幫助指導企業走向未來人工智能賦能的美國行動。

圖1. 一個由兩部分組成的框架概述,以提高作戰人員對自主性的理解,并將他們的要求傳達給開發和采購部門。

一個擬議的無人駕駛飛機自主性框架

擬議的自主性框架中的 "作戰人員觀點 "有三個主要類別,每個類別又被細分為五個自主性級別。核心類、任務類和團隊類反映了飛行員的認知任務,旨在為作戰人員提供直觀的信息,幫助他們表達對自主系統應如何執行的要求。核心自主性類別包括飛行控制輸入和導航功能,這是飛機在沒有人類直接控制的情況下飛行所必需的。任務類包括完成與任務有關的任務所必需的功能,如管理傳感器操作、向目標釋放武器和執行其他戰術。協作類包括自主無人機與其他飛機(包括有人和無人)進行協作行動所必需的功能和特點。這三大類中的每一類又被細分為五個自主等級。第1級代表在執行任務時幾乎沒有自動化,第5級包括無人機完全自主執行的行動。

該框架的第二部分是工程師觀點。工程師視圖代表了作戰人員視圖的功能分解,將定義的類別和級別分解為功能、技術和數據。這種清晰的重點使工程師能夠將他們的開發工作與所需的車輛屬性和行為進行映射和優先排序。作戰人員關注的是宏觀層面的任務執行、操作行為和人類在行動中的作用,而工程師關注的是建立一個滿足作戰人員需求的自主系統所必需的基本功能、硬件、軟件和數據。換句話說,工程師觀點使航空航天工程師和技術專家能夠將作戰人員的要求解構為基礎技術和基本的自主要素。

這兩種觀點共同充當了作戰人員和工程師之間的連接組織和翻譯。值得注意的是,這個框架并不打算成為一個規范或標準。這類似于SAE的自動駕駛框架,它說該框架的預期目標是 "描述性和信息性,而不是規范性"。本著這一精神,擬議的雙視角自動駕駛框架的主要目的是使作戰人員和航空航天工程師能夠以結構化和一致的方式明確溝通和交流自主無人駕駛飛機的想法和要求。

圖6.作戰人員觀點:自主性類別和等級在作戰人員視圖中一起使用,形成一個描述無人駕駛飛機的操作行為和屬性的評分標準。

圖8. 工程師視圖從作戰人員視圖中獲取每個自主性類別所需的自主性水平,并提供一種結構化的方式,將自主性能力分解為必要的功能、技術和數據。在這個例子中,作戰人員視圖為核心飛行和導航類別分配了4級自主權,同時為任務分配了2級,為團隊分配了1級。

付費5元查看完整內容

在軍隊越來越多地使用基于機器學習(ML)的技術的背景下,我們的文章呼吁對ML平臺進行分析,以了解ML如何在軍隊中擴散以及產生什么影響。我們采用了新媒體研究中關于平臺的物質技術視角,并將這一文獻帶到了批判性安全研究中,我們認為需要關注平臺和它們所做的技術工作,以了解數字技術是如何出現和塑造安全實踐的。通過對谷歌開源ML平臺TensorFlow的詳細研究,以及對美國國防部算法戰爭跨職能團隊,即Project Maven的討論,我們做出了兩個更廣泛的貢獻。首先,我們確定了軍隊更廣泛的 "平臺化",我們指的是(技術材料)ML平臺的日益參與和滲透,它是使整個軍隊的分散和實驗性算法開發的新做法得以實現的基礎設施。其次,我們得出這種平臺化是如何伴隨著軍隊和企業領域的行為者之間的新的糾葛,特別是在這種情況下發揮關鍵作用的大科技公司,以及圍繞這些平臺組織的開源社區。

在軍隊越來越多地使用機器學習(ML)技術的背景下,我們的論文使用ML平臺的分析視角來理解ML是如何在軍隊中擴散的,并產生了什么影響。我們采用了新媒體研究中發展起來的關于平臺的物質/技術視角,將這一文獻與批判性安全研究結合起來,并認為關注平臺和它們所做的技術工作對于理解數字技術如何出現和塑造安全實踐是必要的。我們借鑒了對谷歌開源ML平臺TensorFlow的詳細研究,以及對美國國防部多功能算法戰爭團隊,即Project Maven的討論,并做出了兩個更廣泛的貢獻。我們首先確定了軍隊更廣泛的 "平臺化",我們指的是ML "硬件技術 "平臺的日益參與和滲透,作為軍隊中實驗性和分散性算法開發的新實踐的基礎設施。然后,我們繼續說明這種平臺化是如何伴隨著軍隊和企業行為者之間的新的糾葛,特別是GAFAMs,它們在這種情況下發揮著關鍵作用,而且圍繞這些平臺組織的開源社區也是如此。

在武裝部隊越來越多地使用自動學習技術(機器學習,ML)的背景下,在我們的文章中,我們描述了關于ML平臺的一個分析視角,目的是理解ML在武裝部隊中的發展以及其影響。采用一種關于平臺的物質和技術觀點,就像在關于新的通信媒體的研究中所開發的那樣,并在安全問題的研究中提及這一信息、 我們認為,有必要集中研究平臺和技術工作,以了解數字技術的發展和安全實踐的結構。通過對谷歌開放的ML平臺TensorFlow的詳細研究,以及美國國防部的交互式戰斗機設備的辯論,美國國防部的Proyectamento de Defensa,即美國國防部。美國的Proyecto Maven,實現了兩個更廣泛的貢獻。首先,我們確定了一個更廣泛的武裝部隊 "平臺",其中我們指的是ML平臺(技術/材料)的不斷參與和滲透,作為一種基礎設施,允許在武裝部隊中進行新的分散的算法開發和實驗實踐。第二,我們注意到這一平臺正伴隨著武裝部隊和公司統治者之間的新沖突,特別是那些在這一背景下發揮重要作用的大型科技公司,以及在這一平臺上組織起來的無國籍社區。

付費5元查看完整內容

美國陸軍志在利用和處理數據以推動決策的能力方面超過對手。決策為導向,將更有能力確定正確的數據,無論是數量還是質量。即,需要做出的決策應該用來確定作戰人員的數據需求,而不是相反。數據專業人員是陸軍的財富,應該得到一切可以利用的機會來了解梯隊的能力、限制和挑戰。如果數據專業人員以前沒有軍事經驗,這就變得特別重要。

雖然之前的軍事經驗并不是數據專業人員提供數據科學相關專業知識的先決條件,但如果數據專業人員能夠獲得對多個梯隊軍事決策過程的理解,他們將變得更有優勢。如果數據專業人員只能通過作戰部隊以外的概念和論壇來了解他們對作戰人員的貢獻,他們可能會發現很難在戰術和作戰梯隊中整合反饋和建議。經驗性的機會提供了對作戰人員在行動中使用數據/信息/知識的洞察力。

同步多域作戰(MDO)將需要采集大量有關作戰環境的數據。梯隊的數據管理和訪問權限所面臨的獨特挑戰,很可能決定了多域作戰在哪級梯隊融合。如果由于行動或任務變化,重要的數據處理和利用能力在梯隊中不可能或無法獲得,那么實現融合的能力或使用來自多個領域的能力,將從更高梯隊獲得,能夠處理同步MDO所需數據。

由于對現有記錄程序(PORs)存在限制,人們越來越依賴商業現成(COTS)解決方案來滿足數據管理和可視化需求。這些COTS解決方案給美國陸軍部隊和統一作戰伙伴(UAPs)帶來了內部和互操作性挑戰,因為它們不可避免地導致在數據標準、交換機制和由于成本原因采納特定COTS方面,存在管理挑戰。在滿足作戰人員對數據管理和可視化的作戰需求方面,PORs的局限性需要被記錄下來并加以協調。

如果沒有一個協調的學習、戰略和訓練運動,那么將數據視為“數量大于質量”的風險就會很高。在對陸軍的數據文化進行有意義的改變之前,陸軍必須首先了解為什么這些改變是必要的。可以說,陸軍一直在運用數據科學和數據分析;指揮官和參謀部一直在接收數據,將其加工成信息,將信息分析成知識,并運用判斷力將其轉化為見解。數據分析有巨大的潛力,可以優化歷史上漫長的手工過程,在時間上獲得效率。然而,對于AI/ML解決方案提供和處理大量數據的能力和限制,必須有共同的理解。雖然進行分析的人類也有可能在判斷上出錯,但圍繞著依賴AI/ML解決方案來實現決策,存在著道德上的擔憂。可能總是需要一個人在環路(HITL)來驗證AI/ML解決方案的輸出,但HITL評估和分析現有數據和信息的能力,不能因為對技術的依賴而減弱或忽視。如果人員不繼續參與驗證和核實數據分析的持續過程,那人員進行分析和評估的能力將迅速減弱。數據分析的發展決不能成為損害指揮官決策能力的同義詞;AI/ML解決方案不能被誤解為具有權威性,或替代指揮官運用戰爭藝術和科學的能力。

付費5元查看完整內容

圖4. 人工智能對目標定位的增強:人工智能可以通過搜索目標并在發現后發出警報來增強動態目標定位周期。

開發和使用新的軍事技術是一個軍事專業人員工作的一部分。事實上,軍事歷史在很大程度上是一個技術革新的故事,士兵需要學習如何操作新系統。因此,關于整合人工智能的很多東西并不新鮮。就像坦克、飛機甚至弩一樣,隨著時間的推移,士兵們學會了使用和運用技術,工業界學會了以足夠的數量和質量生產技術,高級領導人學會了運用技術來實現戰略效果。如前所述,人工智能技術與它們的顛覆性“前輩”之間的區別在于,前者有能力改善廣泛的軍事武器、系統和應用。由于這種潛在的普遍性,幾乎所有的士兵都必須在某種程度上變得熟練,才能有效地和道德地運用AI技術。隨著這項技術在應用上的擴展,戰爭將像管理暴力一樣管理數據。

這種普遍性也提出了關于人類發展和人才管理的問題。盡管培訓計劃最終會培養出更多的知識型士兵,人事系統也會提高管理士兵的能力,但軍警人員能夠獲得知識和技能的限制仍然存在,特別是在作戰層面。盡管討論的目的不是要建立嚴格的指導方針,但討論確定了士兵需要獲得的許多知識。例如,士兵將需要知道如何策劃和培訓數據庫,而該數據庫對他們正在執行的任務有著重要作用。這樣做需要確保數據的準確、完整、一致和及時。使用這些數據需要熟練應用推薦模型卡中描述的條件,而熟練的操作有助于確保算法以有效和道德的方式執行。

當然,信任不能僅靠政策和程序來保證。指揮官、參謀員和操作員需要知道他們被信任做什么,以及他們信任系統做什么。指揮官、參謀員和操作員信任人工智能系統來識別合法目標,并避免識別非法目標。參與這一過程的人必須在使用這些信息時,既需要擊敗敵人,又必須避免友軍和非戰斗人員的傷亡。要找到這種平衡,就需要判斷人應該承擔多大的風險。

只要參與流程的人類能夠與系統進行有效的互動,由人工智能賦能的系統就能促進找到這種平衡。在將人類控制整合到機器流程中時,人們經常被迫在控制和速度之間做出選擇:強加的人類控制越多,系統的運行速度就越慢。但本研究發現這種兩難的局面是錯誤的。盡管在某些情況下,在人的控制和速度之間進行平衡可能是必要的,但如果系統要最佳地運作,人的輸入是必要的。

實現最佳性能首先要求指揮官確保參謀和操作人員了解模型能力,理解數據質量的重要性,以及洞悉模型在作戰環境中的表現。盡管它可能不會使系統更加精確或準確,但實現這些任務可使系統能夠更好地對輸出進行概率分配。第二,指揮官需要確定對任務、友軍戰斗人員和敵方非戰斗人員的風險有多大才合適。這一決定很復雜,其中關鍵任務可能是需要容忍更多的友軍和非戰斗人員傷亡。同樣,如果非戰斗人員的密度較低,即使任務不那么緊急,也可以容忍較高的風險。尋找這種平衡將是人類的工作。

但在前面描述的模糊邏輯控制器的幫助下,指揮官可以更好地確定什么時候可以信任一個人工智能系統在沒有人類監督的情況下執行一些目標定位步驟。此外,可以通過構建交互的邏輯,以找到多種不同的人機互動配置,確保系統的最佳使用,同時避免不必要的傷害。在LSCO期間,讓指揮官在需要時選擇智能和負責任地加快目標定位過程將是至關重要的,本報告中提出的設計實現了這一目標。這一成就在未來尤其重要,因為為了保護部隊并實現任務目標,指揮官將面臨大量時間敏感目標,及面臨承擔更多風險的操作條件。

在培養具有正確技能的足夠數量士兵以充分利用人工智能技術方面,仍有大量的工作。目前的人才管理計劃尚未達到管理這一挑戰的要求,盡管多個有前途的計劃準備最終滿足需求。然而,在大多數情況下,這些計劃都是為了滿足機構層面的要求,在機構層面上做出全軍采買人工智能和相關技術的決策。但是,這些技能將如何滲透到作戰陸軍,尚不清楚。

盡管人工智能在目標定位中的使用并不違反當前的戰爭法,但它確實引起了一些道德倫理問題。在所討論的目標定位系統背景下,這些倫理問題中最主要的是問責制差距和自動化偏見。第一個問題對于回答核心問題至關重要,“指揮官在什么基礎上可以信任人工智能系統,從而使指揮官可以對這些系統的使用負責?”自動化偏見和數據衛生與問責制差距有關,因為當這些問題存在時,它們會破壞指揮官可能希望實施的有意義的人類控制措施。指揮官可以通過以下方式縮小問責差距:首先,確保人員受到適當的教育、技能和培訓,以整理相關數據;其次,確保指揮官允許的風險,準確地反映完成任務與保護友軍士兵和非戰斗人員之間的平衡需求。指揮官還可以通過在機器需要更多監督時向參與該過程的人類發出信號來減少自動化偏見的機會及其潛在影響。

作為一個專業人員,不僅僅意味著要提供服務,還要在出問題時承擔責任。專業人員還必須了解各種利益相關者,包括公眾和政府及私營部門實體,如何與本行業互動和競爭。鑒于這些技術的潛力,軍事專業人員必須首先學會在技術及其應用的發展中管理預期。由于這種演變影響到專業工作的特點,軍事專業人員還必須注意專業以外的人如何重視、獎勵和支持這項工作。因此,隨著美軍繼續將人工智能和數據技術整合到各種行動中,對其專業性的考驗將在于擁有專業知識的能力,以及建立能夠繼續發展、維護和認證這種專業知識的機構,這些機構既能滿足美國人民的國防需求,又能反映他們的價值觀。

付費5元查看完整內容

近幾十年來,國防系統的規劃已經演變成基于能力的規劃(CBP)過程。本文試圖回答兩個問題:首先,如何表達一個復雜的、真實世界的能力需求;其次,如何評估一個具有交互元素的系統是否滿足這一需求。我們建議用一套一致的模型以可追蹤的方式來表達能力需求和滿足該需求的解決方案。這些模型將目前的能力模型,具體到規劃級別和能力觀點,與系統思維方法相結合。我們的概念模型定義了環境中的防御系統,數據模型定義并組織了CBP術語,類圖定義了CBP規劃元素。通過給出一個能力參數化的例子來說明這個方法,并將其與DODAF能力觀點和通用CBP過程進行比較。我們的數據模型描述了能力在行動中是如何退化的,并將該方法擴展到能力動態。定量能力定義的目的是支持解決現實世界中相互作用的子系統,這些子系統共同實現所需的能力。

能力規劃問題的定義

在本節中,能力被定義為執行任務的效果或功能并作為系統時,我們討論CBP;在1.2小節中進一步討論Anteroinen的分類中的第三和第五類。為了專注于軍事系統或軍事單位的結構定義和未來的數學建模,只考慮系統的物理組成部分,即人員和物資,以及他們與能力的關系。環境的影響--天氣條件、地形、周圍的基礎設施和其他軍事單位--被省略,以關注兩種力量之間的相互作用;盡管在實踐中,環境和其他更廣泛的系統問題顯然是相關的。通常情況下,CBP過程定義了環境的相關方面和軍事行動的類型,為能力需求定義、能力評估和解決方案選擇制定了可能的規劃情況集合。

一個軍事單位或一個組織由其人員和物資組成。經過組織和訓練的人員配備了適當的物資,代表、擁有或產生能力。當兩個軍事單位相互作戰時,他們會啟動自己的能力,以造成敵人的物資和人員的退化。為了定義能力需求并計劃如何作為軍事單位或系統來實施,需要解決的問題是:在與敵人的互動過程中,能力將如何演變,而敵人的能力卻鮮為人知?圖1說明了在敵人能力的作用下,自己的軍事作戰和維持能力的動態互動。我們的能力削弱了敵方的人員和物資,對敵方的能力產生了影響;而敵方的能力削弱了我們的人員和物資,對我們的能力產生了影響。外部資源,也就是供應和維持能力,維持著被削弱的人員和物資。如因果循環圖所示,敵方的能力可以與我方的能力對稱地表示。第3節的進一步建模集中在我們自己的能力上,由圖1中的虛線表示,以便更純粹地表示。

對我們自己的能力的定義說明,由人員和物資提供,表明了復雜的結構和與能力有關的功能和元素之間的相互作用。此外,真正的軍事單位,通常由較小的編隊組成,有幾種能力,由大量不同的物資和人員組成,并與環境互動。

現有的能力模型

  • 軍事能力是外交政策的工具
  • 作為軍事單位戰斗力的能力
  • 作為執行任務效果和功能的能力
  • 作為武器系統或平臺的能力
  • 作為系統的能力

軍事背景下能力規劃的概念模型架構描述

架構被定義為 "一個系統在其環境中的基本概念或屬性,體現在其元素、關系以及設計和進化的原則中"。因此,架構描述是一種表達架構的工作產品。架構框架是在一些應用領域或社區應用架構描述的基礎。架構框架為網絡系統的復雜性管理提供了結構化的方法,使利益相關者之間能夠進行溝通,并支持未來和現有系統的系統分析和設計。企業架構的Zachman框架是這類通用框架的一個例子。DoDAF、MODAF和NAF是用于國防系統分析和定義的架構框架,特別是用于指揮、控制、通信、計算機、情報、監視和偵察系統(C4ISR)。這些架構框架由觀點組成,定義了代表特定系統關注點的一組架構視圖的規則。架構視圖由一個或多個模型組成。架構框架基礎的元模型定義了不同視點中元素之間的關系。DoDAF元模型DM2有一個概念數據模型圖(DIV-1),用來向管理者和執行者傳達架構描述的高層數據構造的概念。MODAF元模型詳細定義了每個架構視圖的數據模型。

利益相關者需要適當的支持,以促進他們彼此之間以及與規劃專家團體的溝通,從而從CBP方法中獲益。軍事專家的作用不是參與復雜的工具和方法,而是為規劃過程提供重要的領域專業知識。架構框架是一個很好的工具,可以定義當前的防御系統,確定能力需求,并描述系統解決方案。不幸的是,架構框架和相關元模型的精確但復雜的機制與復雜的符號并不一定能以明顯的方式解釋能力觀點和要素之間的關系。因此,架構觀點和典型的CBP流程并沒有明顯的聯系。因此,參與能力規劃的軍事專家和決策者很少能夠加深理解,或者在沒有專門掌握這些工具和方法的人員的情況下,通過應用架構框架確定解決方案。需要對能力進行更簡單的定義,與流程兼容。

能力模型框架

圖2提出了一個高層次的數據模型,它代表了能力定義問題的抽象。數據模型描述了能力模型類型及其關系,作為能力和防御系統建模的框架。符號的選擇是為了保持信息量,但對更多的人來說是可讀的,因此它不遵循任何特定的方法,但與SODA的認知圖譜有一些共同點。

能力的現實世界實例在圖的左邊,而概念模型類型在右邊。該模型的第一個版本已經被Koivisto和Tuukkanen應用于一個基于研發的自下而上的過程和概念性的未來系統,即認知無線電。原始模型描述,系統模型定義了物資、戰斗力和功能能力。實際上,這是一種雙向的關系:在所需能力和所需資源的驅動下建立系統模型,然后用系統模型來預測特定環境和實例中的結果。

防御系統和能力——上下文模型

防御系統由系統、系統要素及其相互作用組成,其突發屬性由系統、系統要素和它們的相互作用界定。圖3中的模型代表了系統層次結構中的防御系統層次。防御系統可以被看作是SoS,但我們應用一般的系統術語來保持模型的可擴展性,并為防御系統層次結構的較低層次提供合適的術語。在國防系統層次結構的任何一級,系統代表一個由系統元素組成的軍事單位:人員和物資。

圖3 國防系統在其背景下的概念系統模型。防御系統,即利益系統(SOI),被環境和其他行為者的系統所包圍。這些系統包括相互作用的系統要素人員(P)和物資(M)。子系統和系統元素之間的聯系是示范性的。

能力模型類型和術語——高級數據模型

除了系統元素和它們的組織之外,還要定義功能和相應的輸出,以獲得更全面的系統定義。我們將能力定義為執行任務的效果或功能,是一種功能能力。在CBP過程中,功能能力定義了一些當前或計劃中的軍事單位或由物資和人員組成的系統的能力潛力。最終,能力發展過程必須以現實世界的軍事單位來定義系統的實施。力量要素的概念定義了最終的系統結構,也就是要生產的現實世界的軍事單位的組織。在我們的數據模型中,功能能力被安排在SOI內部,以代表系統的涌現屬性。當這種潛力或涌現被計劃為引起某種效果時,系統,具體來說是其功能能力,在計劃過程中被分配到一個任務中。此外,當軍事單位執行任務時,效果就會產生。高層數據模型的作用,如圖4,是將關鍵的術語及其關系可視化。

圖 4 基于能力的規劃中術語及其關系的高級數據模型表示

基于能力的規劃元素——UML類圖

圖5中的類圖將圖3所示的概念系統模型中確定的國防系統規劃要素與圖4中的能力模型類型結合起來。由于我們關注的是國防系統,國家權力和軍事力量的要素被認為是其環境的一部分,不在圖中。然而,我們建議,國家權力也可以通過效應來表示。

圖 5 基于能力的規劃元素的統一建模語言 (UML) 類圖表示

付費5元查看完整內容

在過去的幾年里,人工智能(AI)系統的能力急劇增加,同時帶來了新的風險和潛在利益。在軍事方面,這些被討論為新一代 "自主"武器系統的助推器以及未來 "超戰爭 "的相關概念。特別是在德國,這些想法在社會和政治中面臨著有爭議的討論。由于人工智能在世界范圍內越來越多地應用于一些敏感領域,如國防領域,因此在這個問題上的國際禁令或具有法律約束力的文書是不現實的。

在決定具體政策之前,必須對這項技術的風險和好處有一個共同的理解,包括重申基本的道德和原則。致命力量的應用必須由人指揮和控制,因為只有人可以負責任。德國聯邦國防軍意識到需要應對這些發展,以便能夠履行其憲法規定的使命,即在未來的所有情況下保衛國家,并對抗采用這種系統的對手,按照其發展計劃行事。因此,迫切需要制定概念和具有法律約束力的法規,以便在獲得利益的同時控制風險。

本立場文件解釋了弗勞恩霍夫VVS對當前技術狀況的看法,探討了利益和風險,并提出了一個可解釋和可控制的人工智能的框架概念。確定并討論了實施所提出的概念所需的部分研究課題,概述了通往可信賴的人工智能和未來負責任地使用這些系統的途徑。遵循參考架構的概念和規定的實施是基于人工智能的武器系統可接受性的關鍵推動因素,是接受的前提條件。

付費5元查看完整內容

軍事網絡戰的前景正在發生變化,這是因為數據生成和可訪問性的發展、持續的技術進步及其(公共)可用性、技術和人類(相互)聯系的增加,以及參與其規劃、執行和評估階段的專家活力、需求、不同性質、觀點和技能。這種行動每天都在進行,最近被人工智能賦予了更多能力,以達到或保護他們的目標,并處理產生的意外影響。然而,這些行動受到不同的不確定性水平制約和包圍,例如,預期效果的預測,有效替代方案的考慮,以及對可能的(戰略)未來新層面的理解。因此,應確保這些行動的合法性和道德性;特別是在攻擊性軍事網絡戰(OMCO)中,參與其設計/部署的智能體應考慮、開發和提出適當的(智能)措施/方法。這種機制可以通過像數字孿生這樣的新型系統,在硬件、軟件和通信數據以及專家知識的基礎上嵌入智能技術。雖然數字孿生在軍事、網絡和人工智能的學術研究和討論中處于起步階段,但它們已經開始在不同的行業應用中展示其建模和仿真潛力以及有效的實時決策支持。然而,本研究旨在(i)理解數字孿生在OMCO背景下的意義,同時嵌入可解釋人工智能和負責任人工智能的觀點,以及(ii)捕捉其發展的挑戰和益處。因此,通過對相關領域的廣泛審查,考慮采取多學科的立場,將其包裝在一個設計框架中,以協助參與其開發和部署的智能體。

在攻擊性軍事網絡戰中定義數字孿生

盡管數字孿生被認為是在工業4.0的數字化轉型過程中引入的一項關鍵技術,但它們有二十年的歷史,甚至更早的基礎。其起源是Michael Grieves的鏡像空間模型,以及他與John Vickers在NASA宇航和航空航天領域項目中的進一步研究(Grieves & Vickers,2017),將數字孿生定義為 "物理產品的虛擬代表",融合了物理和虛擬世界的優勢,它包含三個組成部分:物理產品、物理產品的虛擬代表,以及從物理產品到虛擬代表的雙向數據連接,以及從虛擬代表到物理產品的信息和流程(Jones等人,2020)。

對數字孿生概念的理解有不同的角度和方式,其含義可以根據應用領域進行調整(Vielberth等人,2021)。考慮到與數字模型或數字影子等相關主題存在誤解和混淆,以及數字孿生不存在一致的定義(Hribernik等人,2021;Fuller等人,2020),為了確保其在攻擊性軍事網絡戰(OMCO)中的正確設計、開發和部署,采用了系統性觀點,并提出以下定義:

攻擊性軍事網絡戰(OMCO)中的數字孿生子 = 一個技術系統,在其現實環境中嵌入物理系統,及物理系統的網絡抽象、表示和鏡像,以及它們在OMCO中的相應數據和通信流

這個定義的要素是:

  • 技術系統:包含其物理、網絡以及數據和通信元素的整個實體。
  • 網絡抽象化、表示和鏡像:系統的網絡/虛擬/數字組件。
  • 物理系統:系統的物理元素包含和虛擬化。
  • 數據和通信流:網絡和物理組件之間傳輸的數據,以及它們相應的通信基礎設施。

換句話說,OMCO中的數字孿生是一個先進的(智能)系統,它嵌入了OMCO系統/實體的虛擬、物理以及數據和通信元素。鑒于此,在圖2中提出了以下對訓練、演習和實際行動有用的OMCO數字孿生架構,其中連續的箭頭描述了行動中目標階段之間的信息和結果交流,帶點的箭頭描述了集成部件和其他部件之間的信息和結果。該架構應該是模塊化和可配置的(Silvera等人,2020),并包含兩個組件:

  • 數字孿生層,即三個數字孿生模塊和一個集成模塊或四個獨立的數字孿生模塊,其中集成DT與其他三個獨立的數字孿生模塊通信并獲取結果。

  • 數字孿生層,即整個數字孿生或四個集成數字孿生的物理、數據和通信以及網絡組件。

此外,認識到系統將具有分析、預測或模擬功能,以支持不同的軍事網絡決策過程,軍事指揮官及其團隊有責任如何解釋和使用數字孿生所呈現的結果,因此,有必要從設計階段就將XAI和RAI方法嵌入其中。RAI必須尊重并納入社會道德規范和價值觀,XAI在整個過程中以及在呈現最終結果時,必須尊重軍事技術和社會法律道德要求、規范和價值觀(Arrieta等人,2009, 2020;Agarwal和Mishra,2021;Maathuis,2022a;Maathuis,2022b)。這些措施保證了負責任的OMCO發展和部署。

為了進行示范,OMCO的開發、部署和評估是在架構左側所示的階段進行的,其中集成DT的最終結果可以作為經驗教訓或對未來行動、網絡或其他行動的投入而進一步使用。例如,在設計和開發階段,選擇目標,確定其核心弱點,并進一步在智能網絡武器中建立一個漏洞,可以預測(非)預期效果的水平和概率,并對目標交戰進行負責任和可解釋的比例評估;此外,效果評估與定義的目標和依賴性有關。在這里,一個原型將通過定義和部署系統的多個實例來實現,這些實例將被匯總,同時考慮到要求以及與物理和網絡環境的相互作用(Grieves, M., & Vickers; Jones等人,2020)。

在攻擊性軍事網絡戰中建立數字孿生時面臨的挑戰和機遇

作為數字化轉型過程的一部分,并與若干數字和智能技術緊密相連,與其他類型的技術一樣,數字孿生帶來了挑戰和機遇。

挑戰

  • 考慮多利益相關者視角的標準化、管理和監管(Talkhestani等人,2019年;Singh等人,2021年;Flamigni等人,2021年):由于這些系統是在多利益相關者參與開發和部署的,在匹配所定義的目標和功能時應考慮適當的標準、管理和監管機制。

  • 數據和算法(Jones等人,2020;Qian等人,2022;Song等人,2022):這類系統對數據敏感,依賴于相關的高保真表示和數據添加到正確構建和部署的人工智能模型中,例如,相關數據應該被收集、分析、使用,并在系統的各個層面和層次之間共享。

  • 安全、安保、隱私和可靠性(Glaessgen & Stargel, 2012; Vielberth et al., 2021; Chockalingam & Maathuis, 2022)和可靠性問題:如果管理不當,并且通過其在數字孿生的設計階段就沒有整合到所有層面和層次,這些有可能通過改變系統的行為來打開意外和有意的網絡安全和安保事件的大門,產生大規模的影響。例如,這樣的行動可能無法區分軍事和民用目標,從而在民用方面產生大量的附帶損害,因此系統在行動中是不可靠的。

機遇

  • 認識和理解、決策支持和教育(Mendi, Erol & Dogan, 2021; Talkhestani et al., 2019):這些系統有利于理解系統的行為,支持具體的決策過程,并產生/增強不同的學習活動。例如,這些系統不僅可以對當前的行動產生情報,而且還可以通過對未來行動的評估產生情報。

  • 建模和仿真,例如現場生命周期測試、監測、優化(Steinmetz等人,2018;Jones等人,2020;Hribernik等人,2021):通過其性質,數字孿生對不同的系統和過程進行建模和仿真,例如,允許鏡像和測試雙重用途目標的行動執行,以避免預期產生的意外影響;或允許使用不同的優化技術對智能網絡武器實施的路徑和行動進行現場監測。

  • 可訪問性和成本降低(Barricelli, Casiraghi & Fogli, 2019;Jones等人,2020;Aheleroff等人,2021):通過其設計界面,此類系統可被用戶直接訪問,有利于普遍降低實施和部署的成本。

付費5元查看完整內容

本研究報告分析了當前利益相關者對軍事自主系統的人為輸入或控制的想法。作者首先定義了關鍵術語,如 "機器學習"、"自主系統"、"人在回路中"以及軍事背景下的 "有意義的人為控制",然后討論了當代利益相關者的文獻對無人駕駛軍事系統的人的輸入/控制的說明。然后,報告討論了各利益攸關方是否對進攻性和防御性系統中所需要或期望的人類控制水平達成了共識,以及是否因系統具有致命性和非致命性能力或西方和非西方國家之間的意見不同而有所不同。報告最后從政策和操作的角度闡述了利益相關者的想法對加拿大國防部/空軍的可能影響。

主要研究結果

  • 在與自主系統有關的關鍵術語的定義方面存在著相當多的爭論。

  • 在國家對自主武器應采取何種監管手段的問題上,各利益攸關方一直存在分歧。

  • 參加這些討論的締約國已就自主武器的一系列指導原則達成共識,包括 "必須保留人類對使用武器系統決定的責任"。

  • 在近30個表示支持禁止致命性自主武器系統(LAWS)的國家中,沒有一個是主要的軍事大國或機器人開發商,主要的軍事大國似乎都在對沖自己的賭注。

  • 許多民主國家認為,他們打算保留人類對使用武力的控制/判斷,不需要禁止,因為現有的國際人道主義法律(IHL)足以解決圍繞自主武器的問題。

  • 加拿大擁有重要的人工智能(AI)能力,該能力被用于民用而非軍事用途。

  • 如果在國防領域不接受至少某種程度的(人工智能支持的)自主性,可能會降低與盟國的互操作性,給加拿大武裝部隊(CAF)的行動帶來風險,并且隨著時間的推移,使CAF對國際和平與安全的貢獻失去意義。

付費5元查看完整內容
北京阿比特科技有限公司