亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

美國國防部和合作組織正在開發先進的機器系統,這些系統將與人類合作完成任務。鑒于這些人機團隊(HMT)從未經歷過測試與評估(T&E),本簡報有助于指導評估人員應對 HMT 帶來的新挑戰。它定義了人機協作,描述了評估 HMT 所面臨的挑戰,并提供了對 HMT 的測試與評估非常重要的指標分類框架。

人機協作比個體系統完成任務的簡單行為更為廣泛。它涉及人與系統之間的廣泛互動,因為他們要共同努力實現一個集體目標。鑒于人機協作的高度協作性,僅僅衡量機器和人是不夠的。我們還需要衡量團隊本身,而且這些衡量標準必須與任務相關、定量且客觀。

在評估 HMT 時會遇到一些獨特的挑戰,包括如何處理不透明的心智模式,以及機器指揮通信、自我任務或人類任務的情況。例如,考慮一個人機搜救小組,在這個小組中,一架自主無人機在空中飛行,尋找倒塌建筑中的幸存者,當發現幸存者時,它會向地面上的機器人發出警報。然后,機器人將幸存者從廢墟中拉出,送到人類醫護人員那里接受治療。如何評估無人機決定搜索地點的過程?或者如何與機器人溝通?機器人對這些通信的反應又如何?醫護人員決定如何治療幸存者以及治療順序如何?無人機、機器人和醫護人員如何合作并優先救治傷勢最嚴重的幸存者?它們如何協調其他工作?他們如何應對不斷變化的環境所固有的困難?顯而易見,團隊成員之間的互動是關鍵。

該框架概述了 HMT 評估的主要類別,包括能力(團隊具備哪些能力?)、互動(團隊如何合作和協調行動以實現目標?它強調團隊的衡量標準以及人與機器之間衡量標準的協調。因此,如果要評估人類的認知能力(即注意力和判斷力),就需要同時評估機器的認知能力(即信息處理架構和決策算法)。

該框架還提供了一種結構,用于確定和選擇評估團隊效率的適當指標。所有這些衡量標準都來自于先前的科學研究。

首先,考察人和機器的能力,因為其中任何一項能力都可能是團隊合作失敗的原因。對人的培訓和經驗、心理特征、體能、態度、認知資源、腦力勞動負荷或疲勞等進行評估。考慮與機器的認知結構和硬件組件相關的因素,如程序化任務知識、操作系統和其他軟件,以及物理傳感器和平臺。

其次,檢查可能導致交互失敗的關鍵領域。其中包括機器的態勢感知、資源分配和不同情況下的資源使用。例如,機器在使用傳感器尋找新的幸存者時需要多少電力,會影響到機器是否可以協助滿足團隊的其他需求。這些關鍵領域還包括人類的視角和決策過程。例如,人類對情況的理解會影響他們在這種情況下的行為,以及他們是否信任與之合作的機器。

最后,考慮潛在的漏洞。哪些威脅可能會阻礙團隊完成目標?如果團隊失敗會有什么后果?失敗可能會引發哪些其他問題?重要的是要找出任何問題,以便在今后的工作中加以緩解或解決。

最后,本簡報為 T&E 界提供了兩個重要啟示:

  • 評估 HMT 所面臨的挑戰與評估使用工具或系統的人類所面臨的挑戰不同。團隊中的人類和機器(稱為智能體)必須追求相同的目標,影響當前的問題狀態,并相互協調行動;這些互動因素使團隊面臨新的漏洞和更多的故障點。
  • 不能僅憑任務結果來識別潛在的系統漏洞。智能體之間的互動增加了評估的問題空間。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

無人機(UAVs)在軍事和民用領域發揮著至關重要的作用。本論文的研究有助于智能控制系統(ICS)領域,特別是實現旋轉翼無人飛行器(RUAV)可靠、便捷的自主控制。特別是,本論文解決了如何適應未建模動態和干擾(如在空中改變有效載荷)的難題

無人機可以攜帶額外的重量,如傳感器、貨物,甚至被稱為有效載荷的懸掛物。已經開發了許多策略來穩定不斷變化的有效載荷,但這些策略都假定有效載荷是剛性的,重心(CoG)是靜態和已知的。有效載荷質量及其類型在飛行過程中的變化會極大地影響無人機的動態性能,這就要求控制器進行調整,以保持令人滿意的閉環性能。此外,還沒有探索過在半空中從一架較大的飛機(如氣象氣球)上發射一組具有隨機姿態的送貨無人機的情況。最后,未建模的動力學和陣風等不確定因素給飛行操作帶來了挑戰,因此綜合控制系統對于處理這些不確定因素至關重要,但對非基于模型的綜合控制系統的設計和開發關注不夠。

受這些研究空白的啟發,本論文探討了如何處理有效載荷在空中的 CoG 變化和姿態獨立發射的控制問題。為解決這些問題并實現理想的軌跡跟蹤控制,本文提出了一種新型非基于模型的綜合控制系統,稱為雙向模糊腦情感學習(BFBEL)控制系統。所提出的控制系統融合了模糊推理、神經網絡和基于強化學習的新型雙向腦情感學習(BBEL)算法。所提出的 BFBEL 控制器能夠從零開始快速適應,可用于控制 RUAV 的所有六自由度 (6DOF)。為擴大擬議控制器的適用性,開發了單輸入-單輸出(SISO)和多輸入-多輸出(MIMO)架構。本研究考慮的兩種無人駕駛飛行器模型是四旋翼無人駕駛飛行器(QUAV)和直升機無人駕駛飛行器(HUAV)。SISO 版本的 BFBEL 控制系統被應用于 QUAV,以解決處理 CoG 和重量不同的外部有效載荷的問題。BFBEL 控制系統的 MIMO 版本應用于 HUAV,以解決在空中獨立發射姿勢的問題。對這兩種系統都進行了模擬評估,并通過實驗驗證了如何處理 CoG 不確定的外部有效載荷問題。最后,在相同的控制情況下,將飛行能力和控制性能與傳統的比例積分微分(PID)控制器方案進行了比較。

付費5元查看完整內容

美國空軍部對人工智能(AI)徹底改變作戰各個方面的潛力越來越感興趣。在這個項目中,美國空軍要求蘭德公司的 "空軍項目"(Project AIR FORCE)廣泛考慮人工智能無法做到的事情,以了解人工智能在作戰應用中的局限性。本報告討論了人工智能系統在執行兩種常見網絡安全任務(檢測網絡入侵和識別惡意軟件)中的應用,以及分布轉移對這些任務的影響,這種現象會極大地限制人工智能的有效性。當人工智能系統在部署后遇到的數據與經過訓練和測試的數據有明顯差異時,就會發生分布偏移。

本報告闡述了分布偏移的重要性,它如何并確實顯著限制了人工智能在檢測網絡入侵和識別惡意軟件方面的有效性,如何測試和量化其影響,以及如何減輕這些影響。這項工作主要針對大型組織,如總部設施,它們有足夠的帶寬和計算能力來實施人工智能網絡安全系統并定期更新系統。

本報告是五卷系列報告中的第二卷,論述了如何利用人工智能在網絡安全、預測性維護、兵棋推演和任務規劃四個不同領域為作戰人員提供幫助。本卷面向技術讀者;整個系列面向對作戰和人工智能應用感興趣的讀者。

研究問題

  • 網絡安全數據集是否受到分布漂移的影響?
  • 如何在網絡安全數據集中檢測和描述分布漂移?
  • 用于檢測分布漂移的數據集的質量和周期有多重要,這些因素如何影響人工智能的性能?

主要發現

  • 網絡安全數據集存在分布偏移問題,尤其是在標準網絡入侵檢測和惡意軟件分類方面。
  • 分布偏移有多種表現形式,檢測的難易程度取決于數據集。
  • 雖然數據質量對訓練機器學習算法很重要,但數據的新舊程度也很重要。
  • 在某些情況下,數據必須是近期的才有用,這就限制了可用于訓練的數據,反過來又限制了人工智能的性能。

建議

  • 任何基于人工智能的網絡安全系統都應進行數據集分割測試,以評估隨時間推移的分布變化對性能的可能影響。這些測試可用于估算數據衰減率,而數據衰減率又可用于估算人工智能系統在必須完全重新訓練之前可能的保質期。
  • 此外,我們還建議對數據集進行著名的統計檢驗,如 Kolmogorov-Smirnov 檢驗,作為檢測或確認分布偏移的額外措施。
付費5元查看完整內容

伊卡洛斯團隊創建了一個基于無人潛航器(UUV)的數字工程案例研究,通過執行 MagicGrid 架構開發方法,提供了使用 Cameo Systems Modeler 開發架構的強大視圖。案例研究包括通過中間件軟件(ModelCenter MBSE)連接該架構模型,以直接驅動多個工程分析工具(Excel、MATLAB/Simulink、計算機輔助設計工具)。通過實驗設計對設計進行改進,并通過軟件工具(ModelCenter Explore)實現可視化。本案例研究提供給海軍水面作戰中心-胡內姆港分部(NSWC PHD),作為系統工程師和系統后勤人員培訓的補充,以填補現有培訓的空白。

近年來,數字工程(DE)和基于模型的系統工程(MBSE)已成為美國國防部(DOD)和海軍部(DON)的行業標準。數字工程被定義為 "一種綜合的數字方法,它使用權威的系統數據源和模型作為跨學科的連續體,以支持從概念到處置的生命周期活動"(Shepard 和 Scherb,2020 年)。許多海軍組織已經適應了數字工程方法,并開始提供培訓計劃,重點關注數字工程的各個組成部分以及有助于支持這些流程的工具。

其中一些培訓項目嚴格專注于數字工程流程的一個特定組成部分。雖然許多培訓項目都深入關注某一特定組成部分,但它們只是對數字工程或架構開發方法進行了有限的分割。不同組成部分之間缺乏流動性,這暴露了數字工程教學的不足。所提供的培訓課程并沒有展示建筑開發和工程分析工具之間是如何相互作用的,也沒有展示它們是如何協同工作以實現成功的數字工程流程的。因此,學生在構思整個建筑開發方法和探索優化建筑設計的數字工程技術時受到限制。

本文的主要目標是利用 MBSE 和數字工程實施對理論上的無人潛航器 (UUV) 進行案例研究,以補充當前的培訓和教育。這將通過三項成果來完成:理論無人潛航器數字系統架構示例、MagicGrid 架構開發方法(包括工程分析軟件工具的使用)的書面和可視化教程,以及關于整個案例研究的最終報告。

理論UUV 是一個系統概念,將使用 Cameo Systems Modeler 將其轉化為數字架構模型。利用 MagicGrid 架構開發方法,除了 Model Center MBSE 外,UUV 架構模型還可通過不同的工程分析工具 [即 Excel 和 MATLAB/Simulink(計算機輔助設計工具)] 進行連接和分析。為了說明開發過程,在架構的同時還完成了基于文本和視頻的教程。最后,在架構模型上進行實驗設計,以測試系統能力并完善設計。

這些教程包括一個模型模板,作為當前培訓和教育的補充,提供更深入的 MBSE 和數字工程工具、技術和流程。這滿足了利益相關者的目標和要求,最終成果還可用于重新評估當前基于模型的程序執行流程。

付費5元查看完整內容

美國國家科學、工程和數學研究院為空軍研究實驗室編寫了一份共識報告,其中記錄了各軍種對支持人-人工智能(Al)團隊合作的普遍和日益增長的愿望。Sonalysts 已經開始了一項內部計劃,探索人類-人工智能團隊的培訓。這項工作的第一步是開發一個能夠促進人-人工智能團隊研究的合成任務環境(STE)。決定將 "聯合全域指揮與控制"(Joint Al-Domain Command and Control,JADC2)作為開發 STE 的重點,因為 JADC2 概念中的大量傳感器輸入和決策選項可能需要使用輔助系統才能及時做出決策。有鑒于此,我們聘請了多位具有指揮與控制經驗的主題專家(SMEs),以深入了解如何開發能體現與 JADC2 相關的團隊挑戰的 STE。本報告記錄了我們與這些利益相關方的初步接觸。我們制作了一份包含兩類問題的調查問卷。第一類問題要求受訪者報告他們是否同意我們預計在以 JADC2 為重點的測試平臺中可能非常重要的 STE 功能。第二類問題要求主題專家回答開放式問題,探討任務域、性能評估方法、通信方法和自主隊友的特征等測試平臺特征。研究小組確定了 13 名具有軍事背景和指揮與控制經驗的 Sonalysts 員工(內部稱其為合作伙伴),并邀請他們參與調查。12 名受訪者完成了調查。然后,研究小組對他們的回答進行了分析,以確定出現的主題和需要進一步分析的話題。結果表明,我們的主題專家可以接受使用與軍事環境中類似的任務進行研究,只要這些任務要求團隊處理大量數據以做出復雜決策。主題專家認為,測試平臺應支持代表矩陣式組織的 "體系團隊",并應支持口語、基于文本和面對面通信的強大陣列。

背景

2021 年,美國空軍研究實驗室(AFRL)人類性能單元(Human Performance Wing)要求美國國家科學、工程和醫學院(NASEM)編寫一份共識報告,以審查人工智能(Al)的軍事作用,特別是作為人機團隊的一部分。這項工作的目標是使美國空軍后勤部能夠更好地支持未來系統的設計,在這些系統中,人類與智能體聯手實現任務目標。

NASEM報告在更廣泛的人機協作領域確定了九個重點領域:

1.訓練人機團隊

2 人工智能的透明度和可解釋性

3 人機團隊互動

4 信任人工智能隊友

5 人-AI團隊合作過程與成效

6 人機協作方法與模式

7 人-AI團隊中的態勢感知

8 人類-人工智能團隊中偏見的識別與緩解

9 人機系統集成流程與人機團隊協作和績效的衡量標準

Sonalysts 已開始在內部探索人-AI團隊中的第一個領域--人AI團隊培訓。表 1 轉載了 NASEM 報告的部分內容,其中作者將六項研究需求分為三個階段。

研究計劃的第一步是開發合成任務環境 (STE),為人機團隊提供一個經過驗證的研究環境。為了提出一套能夠最大限度地提高我們的研究適用性的要求,Sonalysts 正在與該領域的主要搜索人員和分部門專家(SMEs)進行接觸。本報告總結了與軍方 SME 進行的首次外聯工作的結果。

概述

雖然各軍種多層次都對人機協同感興趣,但新出現的聯合全域指揮與控制(ADC2)概念提供了一個聚焦視角。JADC2 概念設想將所有軍種和所有領域(如空中、海上、陸地、太空、網絡空間)的傳感器連接成一個龐大的網絡,以便快速使用這些軍種和領域的資產來實現任務效果。為了加快行動速度,同時考慮更多的數據和潛在行動方案(COA),人類決策者很可能要比過去更廣泛地與 AI 隊友合作。此外,我們認為這將是真正的 "團隊合作"。我們的研究將假定,智能體最終將能夠作為同伴/隊友而不僅僅是工具與人類合作。為了實現這一目標,我們設想人類-AI團隊將包括使用AI或類似技術在指定領域內做出決策和/或采取行動的自主系統,這些系統將能夠應對新的性能挑戰,同時與隊友協調和合作。當達到這些里程碑時,我們就可以開始將該系統視為自主隊友,它不僅能夠獨立行動,還能相互依賴。

付費5元查看完整內容

艦船集成項目辦公室(PMW760)對其權限范圍內所有無人系統都能使用的統一、有凝聚力的通信協議的前景很感興趣。數據分發服務(DDS)是使用點對點鏈路進行這種內聚通信的主要候選協議。本論文的目的是評估 DDS 在符合海軍用例標準的網絡架構中的性能。提出了一個包含衛星通信(SATCOM)和無線保真(WiFi)鏈路的網絡架構,以測試 DDS 在場景設置的限制下在網絡節點之間執行內聚通信的能力。使用網絡模擬器 Mininet 來設置網絡參數,并研究各個點對點鏈接在不同數據樣本大小下的吞吐量和延遲性能。使用實時創新 Perftest 軟件工具進行模擬,測量不同網絡配置(理想、抖動和多流)下的吞吐量和延遲。在理想配置和抖動配置下,對可靠通信和最佳努力通信以及實施和未實施 DDS 安全性進行了模擬。還對多流量配置進行了模擬,以評估同時多流量數據(在網絡節點內并行運行的流量數據)如何爭奪網絡資源并影響性能。

建議的網絡架構如圖 7 所示。任務指揮官駐扎在總部,對由現場指揮官、支援艇、拖車和兩架無人機組成的任務單元實施指揮和控制。場景設置如下:

  • 任務指揮官位于總部,通過總部 WiFi 與網絡其他部分連接。他還控制任務地點的黑色無人機。
  • 支援艇位于海上,通過 SATCOM 直接與衛星連接。
  • 拖車位于任務現場,與衛星連接,為現場的任務單元提供 WiFi。
  • 現場指揮官位于任務現場,與拖車 WiFi 接入點 (AP) 連接。他轉發拖車 WiFi 信號,為無人機提供通信。現場指揮官還控制白色無人機。
  • 黑色和白色無人機連接到現場指揮官轉發的無人機通信 WiFi 接入點。
  • 任務指揮官、輔助飛行器和現場指揮官可以通過語音通信進行對話。
  • 任務指揮官和現場指揮官分別從黑色無人機和白色無人機接收視頻數據。支援艇也與任務指揮官和現場指揮官共享視頻數據。
付費5元查看完整內容

本報告介紹了用于基于事件的視覺慣性里程測量的機載事件傳感器的性能和結果,項目名稱為 Have T-Rex。測試由俄亥俄州賴特-帕特森空軍基地空軍技術研究所自主導航技術中心(AFIT/ANT)要求進行。開發測試的牽頭機構是加利福尼亞州愛德華茲空軍基地的空軍測試中心。執行測試機構是第 412 測試聯隊。測試由美國空軍試飛員學校 20A 班在加利福尼亞州愛德華茲空軍基地進行,是學生測試管理項目的一部分。測試于 2020 年 9 月 8 日至 2020 年 9 月 21 日進行,包括駕駛編號為 87-0377 的 F-16 進行 21.4 個小時(13 架次)的飛行測試,以及駕駛 T-38C 作為空中目標進行 2.2 個小時(2 架次)的飛行測試支持。

全球定位系統(GPS)是軍事和商業定位、導航和定時應用的關鍵。全球定位系統的導航性能取決于能否可靠、無障礙地接收低功率衛星信號。這些信號很容易受到干擾或欺騙。AFIT 自主與導航技術中心已投資于各種替代導航解決方案,以降低這種風險。基于事件傳感器的視覺慣性測距(EVIO)導航就是其中一個研究領域。視覺里程計使用安裝在車輛上的攝像頭,通過識別和跟蹤圖像特征來估計車輛的運動。運動估算的準確性受到攝像機性能的限制,因為每秒低幀捕獲率會錯過幀間的關鍵信息,尤其是在快速運動時。另外,捕獲率極高的相機需要更強的處理能力。

測試中的系統(SUT)包括基于事件的傳感器(EBS)和慣性測量單元(IMU),安裝在 F-16D 上的可重構機載傳感器、通信和激光(RASCAL)吊艙中,以提高目視測距性能。EBS 通過硬件實現強度變化檢測。這種操作理念提高了時間分辨率和動態范圍,而且功耗低,有利于快速運動和低/變化的環境照明條件。SUT 的導航算法通過卡爾曼濾波器處理 EBS 圖像來識別特征運動,并輔以 IMU 數據來預測飛機的位置、速度和姿態。SUT 算法尚未用于飛行中的導航估計;所有導航估計都是在飛行后進行的。

總體測試目標是確定 EVIO 算法的準確性,并收集數據以支持正在進行的目標探測和跟蹤算法開發。具體的測試目標有四個:展示 SUT 生成導航解決方案的功能,確定不同飛行條件下導航解決方案的準確性,收集具有操作代表性的飛行剖面數據,以及收集目標跟蹤數據用于未來研究。

數據是在不同高度(200 英尺到 20,000 英尺地面高度)和不同地面速度(250 節到 520 節)、不同地形(灌木叢沙漠、城市、山區、湖床)和環境照明條件(白天、黎明/黃昏和夜晚)下收集的。此外,還執行了俯仰和滾轉機動,以確定動態機動的影響。最后,還針對空中和地面移動目標收集了數據。

所收集的數據顯示,SUT 的精確度在視線率、環境照明條件、地形或動態機動方面沒有明顯的變化趨勢。持續存在的極大解算誤差阻礙了對這些因素如何影響 SUT 性能的適當調查。研究小組建議在繼續進行飛行測試之前,調查并糾正 EVIO 算法精度方面的缺陷。結果表明,在測試的配置中,被測系統無法產生可靠或有用的導航解決方案。結果還顯示,該系統能夠探測空中和地面移動目標;但是,還需要進一步分析,以開發目標跟蹤算法。

付費5元查看完整內容

該項目為與使用無人系統支持分布式海戰(DMO)有關的作戰概念和系統設計決策提供信息。研究通過系統地改變仿真模型中的系統設計特征和作戰活動,支持對無人系統(UVC)進行能力級分析。分析結果表明,UVC 可提高各種無人系統的作戰可用性(Ao)和使用時間(TOS),因為它可隨時進入維護、加油和重新武裝設施,而無需長時間前往岸基設施或分布式支援艦艇。在比較使用 UVC 的配置與在自適應兵力包 (AFP) 中分配無人系統支持的配置時,單個無人系統的 Ao 提高了 6% 到 31%。仿真模型分析確定了 UVC 架構,其中包括至少 8 個無人機發射回收站、至少 3 個船舷托架和至少 5 個甲板井托架,以最大限度地提高 Ao。

在支持分布式海上作戰(DMO)時,無人系統有可能發揮兵力倍增器的作用,在提高殺傷力的同時降低有人系統的風險。然而,無人系統到岸基維護、加油和重新武裝設施的轉運時間減少了可用于支持執行 DMO 的自適應兵力包(AFP)的總體駐扎時間(TOS)。本項目研究了無人水面艦艇 (USV)、無人水下航行器 (UUV) 和無人機 (UAV) 在美國海軍現有艦艇上的集成問題,該艦艇已被重新改裝為無人載具 (UVC)。在本報告中,"UxV "一詞用于描述無人系統這一類別。

如 Van Bossuyt 等人(2019 年)所述,項目團隊采用了系統定義、系統建模和系統分析的通用系統工程流程序列。在系統定義過程中,項目團隊重點開發了作戰概念(CONOPS),并定義了 UVC 的系統要求。系統建模活動的重點是構建 UVC 的離散事件仿真模型。在系統分析階段,團隊利用所開發的模型來評估 UVC 的各種設計參數對每種無人系統類型的運行可用性(Ao)的影響。

A. 系統定義

在系統定義階段,從自上而下和自下而上的角度開發和考慮了 UVC 要求。從自上而下的角度來看,團隊分析并確定了滿足總體任務有效性目標所需的能力,而與任何現有的候選平臺無關。從自下而上的角度來看,團隊評估了一艘登陸直升機船塢(LHD)艦,以確定該平臺可實現的最大 UVC 能力。通過查閱文獻和分析利益相關者的需求,項目團隊確定了 UVC 的以下關鍵能力:指揮與控制 (C2)、UxV 發射、UxV 維護和 UxV 回收。根據設想,UVC 將包括著陸甲板無人機發射和回收站、無人機維護/布防/燃料艙、用于大型 USV/UUV 操作的船舷艙或站,以及用于小型 USV/UUV 操作的井甲板艙。

B. 系統建模

項目構想將 UVC 視為針對地面和岸上敵對兵力實施 DMO 的 AFP 的一部分。UVC 的作用是支持 UxV 對敵方岸基導彈基地進行偵察和打擊。在打擊階段之前、期間和之后,UxV 提供全天候的情報、監視和偵察(ISR)、目標定位和戰損評估服務。UVC 的總體目標是通過消除到岸基支持設施的較長運輸時間來增加 UxV 的全時服務時間。為實現這一總體目標,研究小組選擇 "航程 "和 "持續停留時間 "作為性能指標(MOP),并選擇 "UxV 任務時間"、"UxV 停機時間 "和 "維護灣利用率 "作為效果指標(MOE)。

設計并開發了一個離散事件仿真模型,用于分析 UVC 設計參數對 MOP 和 MOE 的影響。該模型是通過 ExtendSim10 建模程序開發的。該模型包括 UxV 發射和回收、UxV 維護活動以及 UxV 重新武裝和加油活動。UxV 的發射時間表和總模擬運行時間是根據擬議的 UVC CONOPS 制定的。目前,該模型并未考慮 UxV 的損失或故障;這是未來可能開展工作的一個領域。模型的主要輸出是每種 UxV 的 Ao。

C. 系統分析

為了廣泛探索實驗空間,同時減少試驗總數和模型運行時間,我們專門設計了一個填充空間的拉丁超立方設計。每次試驗重復模擬 30 次并收集結果。合并所得的 Ao 值,得出每個試驗的統計平均值。

分析結果表明,UVC 可隨時提供維護、加油和重新武裝設施,而無需在岸基設施或分布式支援艦艇之間進行長時間的轉運,從而改善了每種 UxV 的 Ao 值和 TOS 值。對于任何特定的 UxV,通過增加 UVC 發射、回收和維護站的數量,從而消除或減少這些服務的排隊時間,可獲得最大的 Ao。分析表明,UVC 在設計時應至少配備 8 個無人機發射/回收站、至少 3 個船舷托架和至少 5 個焊接甲板托架。這些參數沒有確定上限,這也是未來研究的一個潛在領域。

有趣的是,雖然 UVC 的存在改善了大型無人水面艦艇(LUSV)的航速,但 UVC 的實際設計似乎對 LUSV 的航速沒有影響。這可能是由于 LUSV 的假定任務持續時間長,假定維護間隔長,因此不可能出現任何排隊現象。單個船側停泊區似乎足以為多艘 LUSV 提供服務,但即使是單個船側停泊區,也可通過消除到岸基設施的轉運時間來改善 Ao。

付費5元查看完整內容

人工智能和增強認知(AI;包含兩者)已經為美國空軍(USAF)的重要職能提供了指導。到 2030 年,人工智能將滲透到空軍的所有任務領域。正如美國空軍明確指出的,對美國空軍科學至關重要的是,"未來不會自己發明自己"。據此,本報告的目標是幫助設想和指導美國空軍發明未來的人工智能。因此,需要的是充分利用人工智能并推動其發展的研發工作,以及如何提升空軍在所有任務領域保護國家的能力。

美國空軍豐富的技術歷史可追溯到幾十年前(如 McCulloch & Pitts,1943 年;Rosenblatt,1958 年;Rummelhart 等人,1985 年;Hopfield,1988 年),但隨著計算能力的進步,許多技術已迅速發展(LeCun 等人,1998 年;Hassabis 等人,2017 年),它們已經或即將在作戰環境中無處不在。2030 年,它們很可能成為美國空軍武器裝備的核心。從自主無人機到人類可穿戴設備,智能機器及其與人類的接口正在接近徹底改變我國空軍兵力作戰環境的臨界點。我們將這一最新趨勢稱為 人工智能加速。

必須認識到的是,美國不一定在所有相關技術方面都處于領先地位。這是一個重大弱點,也是一個需要克服的差距。我們的對手和盟友都注意到了人工智能加速的趨勢。例如,俄羅斯總統弗拉基米爾-普京曾指出,"誰成為這一領域的領導者,誰就將成為世界的統治者"。(美國有線電視新聞網,2017 年 9 月 2 日)。法國總統埃馬紐埃爾-馬克龍(Emmanuel Macron)承諾法國將進行新的重大投資,"為......人工智能研究提供資金"(Rabesandratana,2018 年)。在中國,人工智能研發得到了精心培育,與此同時,中國對外國企業轉讓科學數據制定了逐步限制性措施(Ding,2018 年)。國家主席習近平說 "我們要加快把中國建設成為先進制造業強國,推動實體經濟同互聯網、大數據、人工智能等先進技術深度融合"。(路透社,2017 年 10 月 18 日)。

為了彌補這一差距,100 多位頂尖的學術界、工業界和政府科學家為這項研究做出了貢獻,強調了'人工智能加速'可能如何塑造 2030 年的美國空軍。這些專家在 2018 年第二季度以 "NSF Ideas Lab "的形式進行了在線討論,其中一部分專家(本報告的作者)還進行了面對面的討論,這種形式由 Knowinnovation(KI)促成,該組織在通過面對面和虛擬互動促進創新和跨學科科學進步方面擁有豐富的經驗。

本報告整合了這些跨學科互動中產生的想法,并以美國空軍及其作戰人員為背景,重點關注三個關鍵領域:機器、人機和人類。下面我們將對這些術語進行操作性定義,并在圖 1(第 16 頁)中加以說明。

圖 1:各層次人機交互示意圖(報告的概念性組織結構)

機器

顯然,我們需要開發能夠自主運行、降低風險、與人類并肩作戰,并能在空中和太空極端環境中長期運行的機器和算法。機器將取代并在某些情況下改變現有的能力。為了應對快速發展、高度動態的賽博空間可能帶來的范式轉變破壞,美國空軍需要采取積極主動的姿態,包括在政府和私營部門研究投資的基礎上,不斷螺旋式發展新系統。專家們一致認為,變化不會沿著現有的趨勢線發生。賽博空間正在迅速發展,因此高度動態的環境和快速變化很可能會打破人們的預期。專家們一致認為,關鍵是要投資研究,開發適應性強、靈活、穩健、使用安全和不受威脅的系統,并評估哪些系統對于在美國采購至關重要。

人機

在 2030 年的地平線上,美國空軍在人工智能加速組織結構突變的精心領導下,有可能實現人機協同的變革性增強,從而大幅提高作戰人員的認知和協作能力,包括但不限于態勢感知、決策速度、作戰和組織靈活性。這將包括盡早采用先進的人機和腦機接口;普遍集成可穿戴、微型和納米電子傳感器,用于生理、心理和神經監測、反饋和閉環實時干預,這些傳感器將與特定機器或更廣泛的指揮系統相連接,在極端環境中尤為寶貴; 人類與信息或機器人機器之間的團隊合作一體化;創建映射網絡空間的虛擬世界,允許人類以空間和信息直觀的方式進行部署;以及與專家數字助理、云連接信息系統的日常互動,這些系統具有自然語言處理能力,大大縮短了人類與他們業務所需信息之間的距離。在這些主題中,大家對人機協作的幾大主題達成了共識。

I) 人機融合提高個人績效:這一領域提出了提高人類績效的新興技術,包括認知、行為和健康。

II) 人機協同:這一領域指出了人機混合團隊協同工作的新興模式。

III) 對人機協作性能的全系統監控:這一領域強調了對這些新技術進行仔細、持續和動態監督的重要性。

人類

專家組一致認為,人類特工是美國空軍所有任務領域取得成功不可或缺的組成部分。到 2030 年,在美國空軍的所有行動中,從后勤到維護或控制作戰機器,人類都將理所當然地與人工智能互動。此外,將有大量空軍兵力人員在神經技術進步帶來的增強認知模式下履行職責。人工智能的加速發展無疑將塑造未來的勞動力隊伍。鑒于作戰環境的快速演變,專家組重點關注的是,2030 年所需要的軍官屬性可能與 20 世紀所看重的屬性大不相同。

大家一致認為,必須建立對如何在開發和采用人工智能加速技術方面培訓和培養當前和下一代空軍兵力的認識。這需要系統層面的整合,以及現役人員與研發和采購界之間的互動。例如,通過讓現役人員參與人工智能系統的設計,可以在一定程度上實現有效采用。空軍人員應征入伍后,必須接受相關技能培訓,以應對未來美國兵力的挑戰。因此,了解如何在人工智能滲透的作戰環境中提高和保持人的性能,如耐力、巔峰認知、保持任務狀態等,對于為 2030 年的作戰做好準備至關重要。

橫切問題

該小組確定了許多貫穿各領域的關鍵問題。這些問題包括美國空軍面臨的戰略突襲、道德、法律、社會和能源挑戰。就戰略出其不意而言,本報告的挑戰范圍僅限于可以預見到對手會出現的人工智能技術進步。在倫理、法律和社會問題方面,人們明確認識到,美國空軍自愿采取的限制措施很可能不會成為其他國家的限制。最后,大家一致認為,能源供應和 "質量 "可能是人工智能進步的一個重大制約因素,特別是在美國空軍必須在動態和偏遠環境中工作的情況下。

建議

美國空軍應與其他聯邦科學機構(如國家科學基金會)以及美國國防部和情報部門的其他部門協調其在人工智能加速領域的研發投資。

美國空軍應在全球范圍內掃描研發投資,以深入了解可能代表未來作戰挑戰的外國政府計劃和能力。

美國空軍應組織一個由來自學術界和工業界的頂尖研究人員組成的人工智能加速咨詢委員會,隨著科學基礎各學科的不斷進步,為美國空軍領導層提供信息和建議。

美國空軍應通過構建平臺技術、數據架構、算法和集成能力,為解決方案搭建支架,為人工智能應用奠定基礎。

美國空軍應設立執行數據架構師職位,以監督人工智能的整合,以及從設備到后勤和人力資產的集中信息資源的收集和安全化。

結論

人工智能加速將塑造美國空軍(USAF)2030 年的戰備態勢。專家組達成的共識是,空軍應加快開發和采購計算與神經技術方面的系統系列,從而在整個相關作戰環境中實現指揮、控制、通信、計算機和情報(C4I)方面的巨大進步。這一系列系統分為三個方面: 1)追趕現有的商業技術(采用);2)對最相關的技術突破(如人工智能)進行核心投資;3)對填補前者突出所留下的空白的技術(如量子計算)進行外圍投資。

這樣的未來美國空軍將需要能夠卸載或放大人類性能的機器、人機和人機界面。這不僅包括意圖,還包括對來自傳感器流的反饋做出響應的能力,即使是在高級別作戰環境所產生的極端條件下。整個人工智能生態系統將需要為無人機和代理(包括蜂群)提供真正的自主操作,其操作領域既包括美國空軍熟悉的領域,也包括迄今為止美國空軍從未經歷過的領域。這不僅包括大氣層,還包括 "內部空間"(即網絡領域),更重要的是,甚至包括更高層次的大氣層以及低地軌道和深空。此外,還需要應對這些環境中隨之而來的能源限制。最后,這個系統之系統需要具備足夠的防御能力(也許是生物啟發),以抵御同行競爭對手的退化和攻擊。

美國空軍能否在 2030 年的軍事環境中取得成功,不僅取決于人工智能的加速,還取決于指揮和控制能否靈活應對戰略突襲。這種臨界點可能出現在空間技術領域(如太空電梯),也可能出現在人工智能領域的顛覆性發展。例如,"通用人工智能"(定義為能夠對任何智力任務進行人類水平認知的人工智能)的成功開發和實施掌握在國內同行競爭者手中,將使美國空軍處于明顯的劣勢。這種進步的軍事抵消將取決于美國空軍對技術前景的持續認識--不僅在航空航天領域,而且在認知與計算的交叉領域,因為它適用于人工智能。

付費5元查看完整內容

本報告描述了Draper團隊作為DARPA能力感知機器學習(CAML)項目的一部分,根據HR0011-20-C-0032號合同所開展的研究。Draper與分包商UT Austin、ASU和CU Boulder合作,開發了ALPACA(能力感知的概率和抽象自主學習),這是一個能力感知自主智能體的一般框架,特別是那些基于強化學習(RL)的智能體。ALPACA提供了對RL智能體能力的洞察力,并使用戶能夠檢查和約束智能體行為,促進與人類隊友建立信任,并極大地提高現實世界應用的安全性。

一個支持ALPACA的自主智能體可以:

  • 用自然語言交流其任務策略和預期性能
  • 識別影響其行為的(可觀察和隱藏的)條件
  • 評估其在特定情況下的行為和任務結果
  • 量化其信心,包括對其任務表現和能力評估的信心
  • 當它的能力發生變化或可能突破能力界限時,更新用戶。
  • 調整其行為以更好地保持性能并符合用戶期望

ALPACA通過兩種方式進行能力交流:

1.一般能力聲明描述了以前觀察到的智能體的策略、性能和行為狀況。

2.具體的能力評估預測智能體在特定場景下的策略和表現,包括任務前和在線的情況。這些評估對用戶的興趣有反應,可以解決新的場景,并且可以在線更新。

為了實現DARPA CAML計劃的目標,Draper ALPACA團隊開發了以下關鍵技術進展:

  • 通過對程序生成的人類可理解的特征(包括直接觀察到的和隱藏的)進行決策樹學習,進行條件識別。實現了DARPA的覆蓋要求。
  • 基于在抽象和分割的軌跡數據上推斷的時間邏輯的結構化語言策略。達到DARPA的正確性要求。
  • 基于遞歸深度生成模型的概率世界模型(PWMs),能夠準確預測長時間范圍內的代理狀態,同時量化無誤差和認識性不確定性。實現了DARPA的保真度要求。
  • 事件觸發的在線結果評估,利用PWM來實時評估和重新評估智能體在特定場景中的能力。實現了DARPA的可靠性要求。

Draper ALPACA團隊在兩個基于模擬的RL應用系統上研究、演示和評估了這些進展:推土機機器人操縱任務和多變天氣下的無人機飛行任務。內部和第三方的核查和驗證表明,該團隊能夠實現DARPA為CAML項目制定的所有目標指標。

付費5元查看完整內容

由于多種因素的影響,自動機器學習(AutoML)這些年一直在快速發展,數據科學家需要創建機器學習管道原型來決定如何進行解決,并為非專業人士提供解決方案。已經創建了一些AutoML框架,但它們受到能解決的問題類型、機器學習原語的數量、管道表示語言和嚴格數據描述的限制。這些限制大多是由相當大的工程量造成的。D3M項目旨在擴大AutoML的范圍,提供創建AutoML系統所需的工具,使其能夠解決超出大部分框架的問題類型,并為用戶提供工具,使機器學習工具不需要太多的專業知識。此外,該項目還致力于實現AutoML組件的標準化,以便對不同的框架進行公平的比較,并通過開源共享該項目期間創建的基礎設施來幫助研發界改善該領域。

本文在D3M上的工作主要集中在兩個方面:在D3M小組內創建標準化AutoML工具,以及創建具有不同目的的AutoML系統和框架。在這份報告中,將介紹對該項目的主要貢獻以及AutoML系統的演變。在該項目中,創建了評估AutoML系統的工具,開發了三個AutoML系統,開發了被多個系統廣泛使用的原型,設計了測試原型的自動化框架,并通過創建AutoKeras對AutoML研發界產生了巨大影響。

付費5元查看完整內容
北京阿比特科技有限公司