一旦相關信息以某種方式組織起來,許多困難的問題就可以很容易地解決。這篇文章的目的是教你如何組織信息在某些情況下,特定的數學結構是存在的。一般來說,線性代數就是研究這些結構的。也就是說,線性代數是關于向量和線性函數的研究。廣義上說,向量是可以相加的線性函數是向量的函數,考慮向量相加。這本書的目的是教你如何組織向量空間的信息,使涉及許多變量的線性函數的問題變得容易。為了了解信息組織、向量和線性函數的一般概念,本章對每一種都有簡要的章節。我們從這里開始,希望能讓學生們在接下來的奧德賽之旅中擁有正確的心態; 后幾章以較慢的速度介紹同樣的材料。請準備好改變你對一些熟悉的數學對象的思考方式,并隨身攜帶一支鉛筆和一張紙。
地址: //www.math.ucdavis.edu/~linear/
目錄內容:
Chapter 1: What is Linear Algebra? Chapter 2: Systems of Linear Equations Chapter 3: The Simplex Method Chapter 4: Vectors in Space, n-Vectors Chapter 5: Vector Spaces Chapter 6: Linear Transformations Chapter 7: Matrices Chapter 8: Determinants Chapter 9: Subspaces and Spanning Sets Chapter 10: Linear Independence Chapter 11: Basis and Dimension Chapter 12: Eigenvalues and Eigenvectors Chapter 13: Diagonalization Chapter 14: Orthonormal Bases and Complements Chapter 15: Diagonalizing Symmetric Matrices Chapter 16: Kernel, Range, Nullity, Rank Chapter 17: Least Squares and Singular Values Appendices: Symbols, Fields, Sample Exams, Online Resources, Movie Scripts Index
應用離散結構設計用于大學課程離散數學跨越兩個學期。它最初的設計是為了給計算機科學專業的學生介紹在計算機科學中有用的數學主題。它也可以為數學專業的學生提供同樣的目的,提供了對許多基本主題的第一次接觸。
應用離散結構,是一個兩個學期的本科文本在離散數學,側重于結構性質的數學對象。這些包括矩陣、函數、圖、樹、格和代數結構。所討論的代數結構是單體、群、環、場和向量空間。網站://discretemath.org應用離散結構已經被美國數學研究所批準作為其開放教科書計劃的一部分。更多關于開放教科書的信息,請訪問//www.aimath.org/textbooks/。這個版本使用Mathbook XML ()創建。Al Doerr是馬薩諸塞大學洛厄爾分校數學科學榮譽教授。他的興趣包括抽象代數和離散數學。Ken levasserur是馬薩諸塞大學洛厄爾分校數學科學教授。他的興趣包括離散數學和抽象代數,以及它們在計算機代數系統中的實現。
這本書調研了大約20世紀90年代末機器學習的許多重要課題。我的意圖是在理論和實踐之間尋求一個中間橋梁帶。筆記集中在機器學習的重要思想上——它既不是一本實踐手冊,也不是一個理論證明的概要。我的目標是為讀者提供充分的準備,使一些關于機器學習的廣泛文獻易于理解。草稿只有200多頁(包括扉頁)。
這本書集中在機器學習的重要思想上。對于我所陳述的許多定理,我并沒有給出證明,但對于形式的證明,我確實給出了可信的論據和引用。而且,我沒有討論許多在應用中具有實際重要性的問題;這本書不是機器學習實踐手冊。相反,我的目標是為讀者提供充分的準備,使大量關于機器學習的文獻易于理解。
學習,就像智力一樣,涵蓋了如此廣泛的過程,很難精確定義。詞典的定義包括這樣的短語:“通過學習、指導或經驗獲得知識、或理解、或技能”和“通過經驗改變行為傾向”。動物學家和心理學家研究動物和人類的學習。在這本書中,我們關注的是機器學習。動物和機器學習之間有一些相似之處。當然,機器學習的許多技術都來自心理學家的努力,他們通過計算模型使動物和人類學習的理論更加精確。機器學習研究人員正在探索的概念和技術似乎也可能闡明生物學習的某些方面。
本書是信息論領域中一本簡明易懂的教材。主要內容包括:熵、信源、信道容量、率失真、數據壓縮與編碼理論和復雜度理論等方面的介紹。
本書還對網絡信息論和假設檢驗等進行了介紹,并且以賽馬模型為出發點,將對證券市場研究納入了信息論的框架,從新的視角給投資組合的研究帶來了全新的投資理念和研究技巧。
本書適合作為電子工程、統計學以及電信方面的高年級本科生和研究生的信息論基礎教程教材,也可供研究人員和專業人士參考。
本書是一本簡明易懂的信息論教材。正如愛因斯坦所說:“凡事應該盡可能使其簡單到不能再簡單為止。''雖然我們沒有深人考證過該引語的來源(據說最初是在幸運蛋卷中發現的),但我們自始至終都將這種觀點貫穿到本書的寫作中。信息論中的確有這樣一些關鍵的思想和技巧,一旦掌握了它們、不僅使信息論的主題簡明,而且在處理新問題時提供重要的直覺。本書來自使用了十多年的信息論講義,原講義是信息論課程的高年級本科生和一年級研究生兩學期用的教材。本書打算作為通信理論.計算機科學和統計學專業學生學習信息論的教材。
信息論中有兩個簡明要點。第一,熵與互信息這樣的特殊量是為了解答基本問題而產生的。例如,熵是隨機變量的最小描述復雜度,互信息是度量在噪聲背景下的通信速率。另外,我們在以后還會提到,互信息相當于已知邊信息條件下財富雙倍的增長。第二,回答信息理論問邀的答案具有自然的代數結構。例如,熵具有鏈式法則,因而,謫和互信息也是相關的。因此,數據壓縮和通信中的問題得到廣泛的解釋。我們都有這樣的感受,當研究某個問題時,往往歷經大量的代數運算推理得到了結果,但此時沒有真正了解問題的全莪,最終是通過反復觀察結果,才對整個問題有完整、明確的認識。所以,對一個問題的全面理解,不是靠推理,而是靠對結果的觀察。要更具體地說明這一點,物理學中的牛頓三大定律和薛定諤波動方程也許是最合適的例子。誰曾預見過薛定諤波動方程后來會有如此令人敬畏的哲學解釋呢?
在本書中,我們常會在著眼于問題之前,先了解一下答案的性質。比如第2章中,我們定義熵、相對熵和互信息,研究它們之間的關系,再對這些關系作一點解釋·由此揭示如何融會貫通地使用各式各樣的方法解決實際問題。同理,我們順便探討熱力學第二定律的含義。熵總是增加嗎?答案既肯定也否定。這種結果會令專家感興趣,但初學者或i午認為這是必然的而不會深人考慮。
在實際教學中.教師往往會加人一自己的見解。事實上,尋找無人知道的證明或者有所創新的結果是一件很愉快的事情。如果有人將新的思想和已經證明的內容在課堂上講解給學生,那么不僅學生會積極反饋“對,對,對六而且會大大地提升教授該課程的樂崆我們正是這樣從研究本教材的許多新想法中獲得樂趣的。
本書加人的新素材實例包括信息論與博弈之間的關系,馬爾可夫鏈背景下熱力學第二定律的普遍性問題,信道容量定理的聯合典型性證明,赫夫曼碼的競爭最優性,以及關于最大熵譜密度估計的伯格(回定理的證明。科爾莫戈羅夫復雜度這一章也是本書的獨到之處。面將費希爾信息,互信息、中心極限定理以及布倫一閔可夫斯基不等式與熵冪不等式聯系在一起,也是我們引以為豪之處。令我們感到驚訝的是.關于行列式不等式的許多經典結論,當利用信息論不等式后會很容易得到證明。
自從香農的奠基性論文面世以來,盡管信息論已有了相當大的發展,但我們還是要努力強調它的連貫性。雖然香農創立信息論時受到通信理論中的問題啟發,然而我們認為信息論是一門獨立的學科,可應用于通信理論和統計學中。我們將信息論作為一個學科領域從通信理論、概率論和統計學的背景中獨立出來因為明顯不可能從這些學科中獲得難以理解的信息概念。由于本書中絕大多數結論以定理和證明的形式給出,所以,我們期望通過對這些定理的巧妙證明能說明這些結論的完美性。一般來講,我們在介紹問題之前先描述回題的解的性質,而這些很有的性質會使接下來的證明順理成章。
使用不等式串、中間不加任何文字、最后直接加以解釋,是我們在表述方式上的一項創新希望讀者學習我們所給的證明過程達到一定數量時,在沒有任何解釋的情況下就能理解其中的大部分步,并自己給出所需的解釋這些不等式串好比模擬到試題,讀者可以通過它們確認自己是否已掌握證明那些重要定理的必備知識。這些證明過程的自然流程是如此引人注目,以至于導致我們輕視了寫作技巧中的某條重要原則。由于沒有多余的話,因而突出了思路的邏輯性與主題思想u我們希望當讀者閱讀完本書后,能夠與我們共同分亨我們所推崇的,具有優美、簡潔和自然風格的信息論。
本書廣泛使用弱的典型序列的方法,此概念可以追溯到香農1948年的創造性工作,而它真正得到發展是在20世紀70年代初期。其中的主要思想就是所謂的漸近均分性(AEP),或許可以粗略地說成“幾乎一切事情都是等可能的"
第2章闡述了熵、相對熵和互信息之同的基本代數關系。漸近均分性是第3章重中之重的內容,這也使我們將隨機過程和數據壓縮的熵率分別放在第4章和第5章中論述。第6章介紹博弈,研究了數據壓縮的對偶性和財富的增長率。可作為對信息論進行理性思考基礎的科爾莫戈羅夫復雜度,擁有著巨大的成果,放在第14章中論述。我們的目標是尋找一個通用的最矩描述,而不是平均意義下的次佳描述。的確存在這樣的普遍性概念用來刻畫一個對象的復雜度。該章也論述了神奇數0,揭示數學上的不少奧秘,是圖靈機停止運轉概率的推廣。第7章論述信道容量定理。第8章敘述微分熵的必需知識,它們是將早期容量定理推廣到連續噪聲信道的基礎。基本的高斯信道容量問題在第9章中論述。第il章闡述信息論和統計學之間的關系,20世紀年代初期庫爾貝克首次對此進行了研究,此后相對被忽視。由于率失真理論比無噪聲數據壓縮理論需要更多的背景知識,因而將其放置在正文中比較靠后的第10章。
網絡信息理論是個大的主題,安排在第巧章,主要研究的是噪聲和干擾存在情形下的同時可達的信息流。有許多新的思想在網絡信息理論中開始活躍起來,其主要新要素有干擾和反饋第16章講述股票市場,這是第6章所討論的博弈的推廣,也再次表明了信息論和博弈之間的緊密聯系。第17章講述信息論中的不等式,我們借此一隅把散布于全書中的有趣不等式重新收攏在一個新的框架中,再加上一些關于隨機抽取子集熵率的有趣新不等式。集合和的體積的布倫一閔可夫斯基不等式,獨立隨機變量之和的有效方差的熵冪不等式以及費希爾信息不等式之間的美妙關系也將在此章中得到詳盡的闡述。
本書力求推理嚴密,因此對數學的要求相當高·要求讀者至少學過一學期的概率論課程且有扎實的數學背景,大致為本科高年級或研究生一年級水平。盡管如此,我們還是努力避免使用測度論。因為了解它只對第16章中的遍歷過程的AEP的證明過程起到簡化作用。這符合我們的觀點,那就是信息論基礎與技巧不同,后者才需要將所有推廣都寫進去。
本書的主體是第2,3,4,5,7,8,9,10,11和巧章,它們自成體系,讀懂了它們就可以對信息論有很好的理解。但在我們看來,第14章的科爾莫戈羅夫復雜度是深人理解信息論所需的必備知識。余下的幾章,從博弈到不等式.目的是使主題更加連貫和完美。
來自昆士蘭大學經典線性代數分析包括線性方程、矩陣等內容,值得關注!
作者是莫斯科國立大學數學教授Georgi E. Shilov,主要內容包括行列式,線性空間,線性方程組,向量自變量的線性函數,坐標變換,線性算子矩陣的規范形式,雙線性和二次形式,歐幾里德空間,酉空間,歐幾里德和酉空間中的二次形式,有限維代數及其表示,并對有限維空間的類別進行了附錄。
作者從初級材料開始,很容易進入高級領域,涵蓋了所有高級本科生或研究生課程的標準主題。材料以一貫清晰的風格呈現。問題包括,一個完整的部分提示和答案在后面。
在他的方法中牢記代數、幾何和分析的統一,并為需要學習技巧的學生寫作,希洛夫教授在這個問題上做出了最好的闡述之一。因為它包含大量的問題和例子,這本書將是有用的自學和課堂。
這本書的書名聽起來有點神秘。如果這本書以一種錯誤的方式呈現了這個主題,人們為什么要讀它呢?書中哪些地方做得特別“不對”?
在回答這些問題之前,讓我先描述一下本文的目標受眾。這本書是“榮譽線性代數”課程的課堂講稿。這應該是高等數學學生的第一門線性代數課程。它的目標是一個學生,雖然還不是非常熟悉抽象推理,但愿意學習更嚴格的數學,在“烹飪書風格”的微積分類型課程。除了作為線性代數的第一門課程,它也應該是第一門向學生介紹嚴格證明、形式定義——簡而言之,現代理論(抽象)數學風格的課程。
目標讀者解釋了基本概念和具體實例的非常具體的混合,它們通常出現在介紹性的線性代數文本中,具有更抽象的定義和高級書籍的典型構造。
本書幫助學生掌握一門標準的美國大學線性代數課程。課程的標準內容包括高斯消去法、向量空間、線性映射、行列式、特征值和特征向量。它給學生的幫助來自于采取一種漸進發展的方法-這本書的介紹強調動機,使用許多例子。發展的方法是這本書最推薦的,所以我將詳細說明。數學課程開始時較少關注理論,更多關注計算。之后的課程要求學生具備數學成熟的能力: 理解不同類型的論點,熟悉許多數學研究的主題,如基本集合和函數事實,以及獨立閱讀和思考的能力。與更高級的教科書相比,這本書充滿了理論的例證,往往是相當詳細的例證。
//joshua.smcvt.edu/linearalgebra/
這本書的主要目的是提出一個連貫的介紹圖論,適合作為一本教科書為高等本科和在數學和計算機科學研究生。它提供了一個系統的處理圖的理論,而不犧牲其直觀和審美的吸引力。大量使用的證明技術被描述和說明,并且提供了大量的練習——不同難度的練習——幫助讀者掌握這些技術并加強他們對材料的掌握。
Individual chapters: Preface Contents Chapter 1: Graphs and Subgraphs Chapter 2: Trees Chapter 3: Connectivity Chapter 4: Euler Tours and Hamilton Cycles Chapter 5: Matchings Chapter 6: Edge Colourings Chapter 7: Independent Sets and Cliques Chapter 8: Vertex Colourings Chapter 9: Planar Graphs Chapter 10: Directed Graphs Chapter 11: Networks Chapter 12: The Cycle Space and Bond Space Appendix 1: Hints to Starred Exercises Appendix II: Four Graphs and a Table of their Properties Appendix III: Some Interesting Graphs Appendix IV: Unsolved Problems Appendix V: Suggestions for Further Reading Glossary of Symbols Index