第五代無線通信技術(5G),有可能改變通信系統。5G移動網絡將提供更高的速度、更低的延遲、更高的可靠性、更多的網絡容量和更多的互連性。隨著5G技術在原有系統和新系統中的部署、現代化和實施,預計會有巨大的改進。近年來,隨著各行各業都希望在新技術的風口浪尖上有所創新,對5G技術的投資和興趣也呈指數級增長。充分利用這項技術將推動工業和美國國防部(DoD)的能力在未來有巨大的改進,如更高的性能和更高的效率。本報告重點介紹該技術的現狀和國防部的具體使用案例。
美國防部已將5G技術列為一項重要的戰略技術。從美國防部5G戰略開始,"......那些掌握先進通信技術和無處不在的連接的國家將擁有長期的經濟和軍事優勢" [8]。通信和互聯系統的未來是5G,這本身就使它對美國防部極為重要。通過追求5G技術的最大潛力,美國防部將有能力在技術、性能和額外能力方面達到新的高度。
美國防部5G戰略和美國防部5G戰略實施計劃[9]為解決美國防部如何使用和推進5G網絡和應用的技術、安全、標準和政策以及合作方面提供了路線圖。全面的美國防部5G戰略實施計劃包括四個方面的工作。第一條努力路線是 "促進技術發展",例如,進行5G示范,實施毫米波和動態頻譜共享技術,促進開放架構和虛擬化,并重點發展5G員工隊伍。第二條努力路線是 "通過5G評估、緩解和運營"。這第二條努力路線主要側重于威脅情報、基礎設施風險、供應鏈的安全、全球運營、安全評估、網絡安全和零信任。第三條努力路線是 "影響5G標準和政策",包括與標準制定機構緊密結合。按照這些思路,國防部將創建和更新先進的頻譜管理、支持5G的作戰概念(CONOPS)和技術控制措施的標準和指導方針。最后,第四條努力路線是 "吸引合作伙伴",如國際盟友、工業界和國會成員。
本節確定了國防部對5G技術的具體使用案例。目前,由于各種原因,5G正被應用于所有服務。5G技術是一個關鍵的推動因素,其能力將使整個國防部在許多方面的性能得到改善。
2020年10月,國防部宣布了6億美元的獎勵,用于在五個美國軍事試驗場進行5G實驗和測試,這是世界上最大的全面5G測試的雙重用途。國防部尋求保持在尖端5G測試和實驗的前沿,以加強我們國家的作戰能力,以及美國在這個關鍵領域的經濟競爭力[10]。這五項測試將在3.2.1-3.2.5節中描述。
海軍陸戰隊后勤基地(MCLB)項目將開發一個5G智能倉庫,專注于車輛存儲和維護,以提高MCLB Albany后勤業務的效率和保真度,包括物資和供應的識別、記錄、組織、存儲、檢索和庫存控制。此外,該項目將為測試、完善和驗證新興的5G技術創造一個試驗場。
在內華達州的內利斯空軍基地進行的測試和試驗的目的是為使用5G技術開發一個測試平臺,以幫助空中、太空和網絡空間的殺傷力,同時提高指揮和控制(C2)的生存能力。具體來說,5G網絡將被用于分解和調動現有的C2架構,以實現敏捷作戰的場景。該測試與AT&T公司合作,提供高容量和低延遲的移動5G環境。
在華盛頓的劉易斯-麥克喬德聯合基地(JBLM)正在測試一個項目,其目標是能夠快速部署一個可擴展的、有彈性的、安全的5G網絡,為任務規劃、分布式訓練和作戰使用提供一個試驗平臺,以實驗5G支持的增強現實/虛擬現實(AR/VR)能力。
美國海軍圣地亞哥基地(NBSD)的一個項目的目標是開發一個支持5G的智能倉庫,專注于岸上設施和海軍單位之間的轉運,以提高海軍后勤業務的效率和真實性,包括物資和供應的識別、記錄、組織、存儲、檢索和運輸。此外,該項目將為測試、完善和驗證新興的5G技術創造一個試驗場。
猶他州的希爾空軍基地已經開始調查技術可行性、方法和頻譜共享的效用,以及在商業行業中至關重要的頻段與不同的5G網絡共存。這一事件表明,國防部致力于通過提供分配的頻譜供非聯邦(商業)系統使用,促進美國在5G時代的經濟競爭力。
接下來,來自美國陸軍以及國防高級研究計劃局(DARPA)和MITRE的其他5G國防部用例的進一步例子將在以下3.2.6至3.2.9節中提供。這些額外的用例顯示了在5G領域正在進行的工作的廣度,包括戰術網絡、開源計劃和基于威脅的框架。
5G++為戰術毫米波網絡調整5G是一個正在進行的美國陸軍第二階段小企業創新研究(SBIR)計劃,于2021年2月開始,預計結束日期為2022年8月[11]。這項工作的目標是解決關鍵需求,并提議開發5G++作為毫米波無線電原型,通過納入抗干擾性、改進的低截獲概率/低檢測概率(LPI/LPD)和安全網絡通信,使5G適應戰術領域。5G技術的目標是非常高的吞吐量、低功率和低延遲,預計這不僅有利于商業,也有利于戰術通信。在毫米波頻段工作提供高帶寬,以滿足共享頻譜環境中新興戰術應用不斷增長的吞吐量需求。然而,目前的5G波形并不能滿足美國陸軍對抗干擾性、LPI/LPD和安全性的要求,也不能支持設備對設備(D2D)的ad-hoc網絡模式而不依賴蜂窩狀基礎設施。跨越物理層、鏈路/MAC層和網絡層的新型算法集需要在毫米波、軟件定義的無線電(SDR)平臺上實現,并與5G協議棧一起進行廣泛的測試,以加速5G優勢向戰術領域的轉移。
指揮、控制、通信戰術項目執行辦公室(PEO C3T)進行了一項研究,評估當前和潛在的通信技術,以整合到未來的美國陸軍戰術網絡中。這項研究確定并總結了已經標準化的5G功能和技術,以及尚未標準化的新興功能。它還確定并總結了與現有和計劃中的美國陸軍戰術網絡相關的各種用例和關鍵性能指標(KPI)。這項研究進一步縮小了5G功能和技術的范圍,確定了哪些功能正在進行大量的商業開發,并可能在其商業和國防部部署的情況下有類似的應用和用例。最后,它的結論是建議進一步推進5G技術在美國陸軍各種戰術環境中的潛在應用所需的額外研究投資(見2020年9月出版的報告[12])。
DARPA的開放、可編程、安全的5G(OPS-5G)項目正在進行研究,以開發一個可移植的符合標準的5G移動網絡堆棧,該堆棧是開源的,設計上是安全的。OPS-5G尋求創建開源軟件和系統,以實現安全的5G和后續移動網絡,如6G。開源軟件的標志性安全優勢是增加了代碼的可見性,這意味著代碼可以被檢查、分析和審計,無論是手動還是使用自動工具。此外,開源的可移植性作為一個理想的副作用,使硬件和軟件生態系統脫鉤。這極大地提高了供應鏈攻擊的難度,并簡化了創新硬件進入市場的過程。該計劃旨在實現各種軟件組件的 "即插即用 "方法,從而減少對不信任的技術來源的依賴[13]。DARPA的OPS-5G計劃將創建開源軟件和系統,以實現安全的5G和后續的移動網絡。OPS-5G創造能力,以解決開源軟件的特征速度、萬億節點的僵尸網絡、可疑設備上的網絡切片以及大規模運作的適應性對手。長期目標是一個對美國友好的生態系統[14]。這個項目于2020年9月開始,估計完成日期為2024年9月。
MITRE Five-G Hierarchy of Threats(FiGHT)是一個基于威脅的框架,用于評估5G網絡的保密性、完整性和可用性,以及美國及其合作伙伴使用的設備、武器系統和應用程序。FiGHT利用現有安全框架的概念,并在此基礎上探索5G構件和相關的假設威脅,考慮美國政府的關鍵資產。
通過將一個全面的5G威脅框架應用于具體的用例和架構,這使得網絡投資規劃和優先次序得以確定,從而可以量化風險和優先緩解措施,以確保5G能夠以最小的損害進行革新。這項工作開始于2021財年(FY21),計劃在24財年完成[15]。
本文介紹了詳細而全面的技術文獻結論,旨在確定戰術自主性的當前和未來的研究挑戰。本文非常詳細地討論了當前最先進的強大人工智能(AI)、機器學習(ML)和機器人技術,以及它們在未來軍事和國防應用背景下開發安全和強大自主系統的潛力。此外,我們還討論了在試圖為先進的軍事和國防應用實際建立完全自主系統時出現的一些技術和操作上的關鍵挑戰。我們的論文提供了最先進的可用于戰術自主的先進人工智能方法。據我們所知,這是第一篇論述戰術自主性當前重要趨勢、戰略、關鍵挑戰、戰術復雜性和未來研究方向的作品。我們相信,這項工作將使從事機器人和自主系統領域的學術界和工業界的研究人員和科學家產生極大興趣。我們希望這項工作能鼓勵人工智能多個學科的研究人員去探索更廣泛的戰術自主領域。我們也希望我們的工作能成為設計先進的人工智能和ML模型的重要步驟,對現實世界的軍事和國防環境有實際意義。
關鍵詞:戰術自主性;自主系統;人工智能;軍隊;國防應用;航天;機器倫理;網絡安全;可信賴性;可解釋性
資助
這項工作得到了霍華德大學國防部(DoD)人工智能和機器學習卓越中心(CoE-AIML)的支持,與美國陸軍研究實驗室簽訂了W911NF-20-2-0277合同。
新興技術,如機器人技術和自主系統,正在為潛在的社會革命提供機會[1]。先進的自主系統正在為多個科學領域的科學突破和顛覆性技術創新鋪平道路[2]。自主系統是一個智能系統網絡,能夠獨立完成復雜的任務,在沒有人類明確干預的情況下做出智能決策,以及其他操作管理和控制系統[3,4]。現代自主系統的最新發展對各種潛在的軍事和國防應用越來越關鍵,包括空中監視系統、隱私、網絡安全、導彈防御、航空航天工業等。
背景和動機。來自民用、國防和軍事界的研究科學家們正在通過復雜的工作來確定為工業和現實世界應用實施先進的人工智能和自主系統的最佳方式。利用AI、ML和其他相關的先進技術領域來實現自主系統,是現代自主系統的一個改變戰術的戰略。
現代尖端的人工智能和ML技術已經越來越多地被用于軍事和國防領域的各種成功應用,包括網絡安全[5]、海上安全[6,7]、關鍵基礎設施保護[8,9],以及其他具有重大社會和技術意義的領域。先進的人工智能系統的潛力可以被用來對軍事和國防技術產生積極的影響。人工智能可以在軍事環境中用來評估收集的數據,并提供作戰計劃和戰略支持,加速決策過程。除此之外,人工智能系統可以被設計和部署在戰略、政治、作戰和戰術層面的戰爭中使用。
在政治和戰略層面上,人工智能系統可以用來動態地破壞隱藏的敵人,并實時防御各種形式的對手攻擊。然而,在戰術層面,人工智能可以為無人系統提供更快、更好的態勢感知,以減少其對攻擊的脆弱性。它還可以通過識別可疑的模式和潛在的危險活動有效地自動檢測威脅。然而,盡管在過去的幾十年里,自主性在廣泛的領域內取得了進展,但一些技術和實際的挑戰仍然大大限制了現代自主系統的部署和廣泛采用。第4節、第5節和第6節將討論一些需要解決的關鍵挑戰。因此,必須在人類最低限度的監督或參與下開發現代戰術自主系統,以大幅提高最先進的水平,減少認知工作負荷,增加功能,改善和保持多領域的態勢感知,提高整體機動性和流動性,有效實現部隊保護,支持主動的網絡防御等。
在對自主性越來越感興趣和普及的激勵下,本文對戰術自主性的基本概念和原則進行了全面的技術調查,重點是以前研究工作中沒有充分解決的前沿人工智能和ML方法。據我們所知,這是第一篇論述當前重要趨勢、戰略、基本挑戰、戰術復雜性和未來戰術自主性研究方向的作品。
貢獻。我們論文的主要貢獻總結如下:
我們介紹了戰術自主的基本概念和它在廣泛的應用中的潛力。
我們掌握了在軍事和國防背景下對戰術自主性概念的理解。
據我們所知,我們是第一個提供關于戰術自主性的重要當前趨勢、戰略、基本挑戰、戰術復雜性和未來研究方向的。
我們提出的工作可以作為設計先進和創新的人工智能和ML模型的一個重要步驟,對現實世界的軍事和國防應用具有實際意義。
我們提出了戰術自主性的基本和長期的挑戰。
提綱。本文的其余部分組織如下。第2節提供了簡要的歷史,主要的里程碑,倫理方面,以及戰術自主性的級別。第3節介紹了可用于推進戰術自主能力的不同人工智能技術。第4節描述了對可信人工智能和任務自主性的需求。第5節簡要介紹了平臺之間的廣泛合作和相關的技術挑戰。第6節介紹了最先進的人機協作方法以及與當前方法相關的挑戰。第7節簡要介紹了戰術自主性的網絡安全及其基本挑戰。第8節詳細討論了戰術自主系統的風險和內在挑戰的概述。最后,在第9節中,我們總結了本文并討論了潛在的未來工作。縮略語部分列出了本文中使用的縮略語。
關于自主系統的文獻已經在許多研究工作中得到了廣泛的研究。自主性的概念有不同的內涵,而且在過去幾年里有了很大的發展。例如,[10]中的自主性概念是關于委托的任務。在[10]中詳細解釋了委托的各個方面和層面。一般來說,智能系統背景下的自主性側重于開發智能決策系統,這些系統可以在復雜的戰術環境中自主地進行物理操作,并具有一定程度的自我管理[11]。在本節中,我們只提供明確與歷史、倫理方面、自主的屬性、監管和戰術自主性級別有關的工作背景。
根據美空軍研究實驗室(AFRL)的說法,戰術自主性是一個與現代自主系統相關的術語,該系統在人類的授權和約束下行動,以支持與長期戰略愿景相關的戰術、短期行動。近年來,在廣泛的應用中出現了相當多的關于戰術自主性的跨學科研究。軍方長期以來一直對推進機器人技術和自主行動的能力感興趣。美空軍部(DAF)和國防部(DoD)正在推動開展以戰術自主性為重點的創新自主性研究,這將有助于將研究轉化為實際應用。此外,美國AFRL正在大力優先考慮正在進行的數字化改造戰術自主性的研究工作,特別是在軍事領域,以更好地使作戰人員對抗美國對手。圖1描述了戰術自主性的簡要歷史和重要的里程碑。
圖 1. 戰術自主的性簡史和里程碑。
戰術決策。決策系統采用先進的模型,對復雜環境進行預測。由于這些模型中有許多是數據驅動的,自主系統應該能夠獲得更多關于它們所處的復雜環境的數據,并相應地實時調整它們的基本行為。對智能自主系統在嘈雜、動態和現實環境中的強大和有效的戰術決策的需求正在迅速上升。然而,最關鍵的挑戰之一是為自主系統設計戰術決策模型和支持框架。例如,與其他道路使用者的復雜和動態互動,環境的復雜多樣性,以及傳感器信息的不確定性,使得自主駕駛的戰術決策變得非常困難[12]。
一個結合了規劃和深度強化學習(DRL)的通用框架,可用于自主駕駛系統的戰術決策智能體,在[12]中被詳細描述。該框架的性能在兩個概念上不同的高速公路駕駛場景中進行了評估[12]。戰術決策算法被設計用來處理不可預見的環境狀況和不可預測的對抗性攻擊。戰術決策系統的過程可以被建模為概率的(即包括不確定因素時)或完全確定的(即不包括不確定因素時)。不確定性中的計劃和決策在機器人和自主系統中是至關重要的。因此,在設計自動決策模型和算法時,必須考慮到各種不確定性的來源[13]。部分可觀察的馬爾可夫決策過程(POMDP)是一個通用的數學框架,用于模擬不確定性下的決策任務[13]。然而,在以前的工作中,沒有充分解決設計能夠制定不確定性意識的戰術決策任務的有效方法,如POMDP,以及解決其計算復雜性。因此,正如第3節所解釋的,需要基于先進的人工智能/ML方法的不同策略來加強復雜和現實環境中的戰術決策任務的進程。
自主性的倫理問題對人工智能研究者來說是復雜的挑戰。現代基于人工智能的系統的開發和應用在學術界和工業界都在激增。因此,在決策過程的速度和效率大幅提高的激勵下,我們日常生活的各個方面的決策正在完全委托給人工智能/ML驅動的算法。然而,關于自主權與倫理的關系、社會影響、法規、自主權治理、倫理影響以及這種自主技術和活動的能力等許多重要問題在以往的研究中沒有得到充分的解決。因此,探索基于人工智能的完全自主技術的安全和倫理層面,使我們能夠認識到先進機器自主性的當前和未來潛在發展的倫理影響。此外,對機器智能的倫理學進行準確有效的調查,可以促進發現現有倫理學理論的潛在問題,以及它們在現實世界環境中的一般作用。關于機器倫理學的意義、倫理學理論的研究以及自主智能機器的倫理學影響的詳細討論見于[14]。關于[14]的研究工作還表明,現代算法可以被設計成模仿人類的倫理決策。
機器倫理學。隨著人工智能驅動的決策在廣泛的領域中變得越來越普遍,關于其適用性[15]、倫理層面以及在決策算法設計中對基本方面的考慮等新的重大問題也出現了[16]。機器倫理學的最終目的是有效地研究如何設計智能機器來進行道德和倫理上的推理。它關注的是智能機器對人類和其他自主機器的行為。機器倫理學的主要目標是開發一種智能機器,在可接受的道德層面的指導下,對潛在的行動方案做出決定。區分隱性倫理機器和顯性倫理機器很重要[17]。隱性倫理機器意味著約束智能機器的行動以避免不道德的結果。實現這一目標的一個實用技術是通過開發軟件系統的內部功能和特性來隱性支持和促進道德行為[14]。另一方面,顯式倫理機器可以通過使用倫理原則的顯式表示來解釋倫理信息[14,18]。明確的倫理機器可以處理新的情況,并合理地做出明確的倫理判斷[14,18]。
ML研究界已經開始探索將現代ML能力應用于機器倫理。之前已經介紹了各種用于倫理推理的ML方法。例如,[19]中的工作探討了一個神經網絡模型,該模型對特定的道德判斷和基于案例的道德推理進行分類。在[20]的工作中簡要介紹了一種基于案例的推理方法,以開發能夠指導對道德問題和困境進行推理的系統。[20]中提出的一個主要問題是,機器如何協助或潛在地取代人類在道德推理中的位置。
[21]中提出了一種不同的計算倫理學方法,它采用了一種基于行動的倫理學理論方法。作者為一個具有多種計算職責的倫理理論開發了一個高效的決策程序[21]。除了ML能力之外,還有其他方法來解決這個問題,比如說,使用義務邏輯(deontic logic)(哲學邏輯領域關注義務、許可和相關概念)。例如,[22]中的作者描述了如何使用行為邏輯將一套特定的倫理原則納入自主系統的決策過程。另一方面,[23]中的工作評估了應用行為邏輯方法來實現伊曼紐爾-康德關于絕對命令和道德義務的基本原則的可行性。作為伊曼紐爾-康德關于機器倫理學的一般方法,存在一個決策程序,用于生成絕對命令,并從中得出行動規則。根據[23]中提出的方法的結果,道德范疇被表述為禁止的、允許的或強制的行動。
文獻表明,在分布式人工智能的背景下,有多種方法來定義自主性和自主系統的概念。自主性可以被定義為智能體在沒有直接外部干預的情況下獨立行動的能力,并在最小的人類監督下做出決定。自主系統概念的定義在其自主性屬性方面也有不同。其外部和內部狀態決定了自主性的屬性。當一個系統的行為是非決定性的,可以被認為是自主的。非決定性的系統即使在相同的環境輸入的情況下也可能表現出不同的行為,甚至可能完全失敗。另一方面,如果考慮到系統的內部狀態,一個自主系統也可能是確定性的。一個確定性的系統是一個系統,它的模型從一個給定的環境初始狀態或情況下持續產生相同的結果。在這種情況下,主動性、互動性和涌現是最能描述自主性及其相關基本特征的三個屬性[24,25,26]。自主性的屬性摘要見表1。
表1. 自主性屬性總結。
主動性。智能自主系統必須安全地適應動態和不可預測的環境中的意外情況,以便在各種領域中使用[27]。當自主系統在沒有明確的外部事件的情況下激活目標或啟動行動時,這種自主性的屬性被稱為主動性[24,25,26]。
交互性。這一屬性指的是智能體與環境的交互。自主系統可以動態地與復雜和不可預測的環境互動并作出反應。此外,智能自主系統還能適應動態環境的變化。這一特性在實時應用中非常重要[24,25,26]。
緊急性。復雜的多智能體系統是由多個相互作用的子系統組成的。智能體的交互和主動性產生了新出現的自主屬性,這些屬性事先沒有明確的模型。在大規模多智能體系統的背景下,緊急性的特點是隨著時間的推移,與環境的非線性相互作用引起的意外系統行為。這種特性影響著系統的可靠性和可預測性,它被用作評估自主軟件系統的標準[24,25,26,28]。
受監管的自主性。隨著目前人工智能研究的進展和現代自主系統的影響越來越普遍,建立政策、法規和準則以確保人工智能驅動的智能系統保持可信、道德和以人為本是非常重要的。例如,歐盟的一般數據保護條例(GDPR)[29,30]和美國的公平信用報告法(FCRA)[31]所采用的隱私條例對如何處理個人互聯網數據給出了指示,并授予個人訪問其個人信息的權利,以及獲得有關智能自動系統所做決定的合理解釋。采用這樣的一套法規,使我們能夠評估圍繞人工智能驅動的自主系統及其運作方式的法律和倫理問題。
自主性的級別。根據以前的研究工作,自主性的級別被分為強監管、操作性自主、戰術性自主和戰略性自主。自主級別與基礎動態環境屬性的映射在[26]中有所描述。環境的屬性包括可觀察的、決定性的、偶發的、靜態的和智能體。一個可觀察的環境在任何時候都能完全或部分地接觸到系統的所有必要狀態。一個確定的環境是指基礎環境的下一個狀態完全由當前狀態和智能體選擇的行動決定[32]。在偶發環境中,智能體的經驗被分為多個獨立的偶發事件。環境中的每一個情節都由智能體的感知和然后的行動組成。換句話說,偶發環境是指之前的行動不影響下一次的觀察[32]。然而,如果隨后的行動取決于先前的行動,則環境被稱為順序性的。如果一個環境不隨時間的推移而變化,則被稱為靜態環境。如果一個環境在其上運行時發生變化,則被稱為動態環境。單一智能體系統意味著只有一個智能體在一個特定的環境中行動和互動。然而,如果多個相互作用的智能體與他們的環境相互作用,則被稱為多智能體系統。
強監管表示沒有自主能力的系統。這種監管在復雜程度有限的環境中是有效的。操作性自主表示決策的操作層面。實現操作自主性的智能軟件系統在部分可觀察、確定性、偶發性和靜態的環境中實際上是有效的[26]。戰術自主性在自主系統的戰術決策方面擴展了操作自主性。
自主性是學術界和工業部門的一個活躍的研究領域。隨著現代分布式自主系統和智能技術的普及,人工智能和ML方法已經大大推進了各種研究領域問題的最新進展。人工智能方法在大幅提高自主系統的性能和安全性方面具有關鍵作用。完全自主的和其他復雜的網絡系統被配置和編程為連續運行。這些復雜的系統不斷從周圍環境中收集復雜的信息。因此,操作和理解完全自主系統的動態和運動學,并實時處理巨大的信息流是極具挑戰性的,超出了人類的能力。這時,基于人工智能的技術及其底層的ML能力就有了壓倒性的幫助。事實證明,人工智能和ML系統在一些領域比人類更強大、更高效[33,34,35,36]。除此之外,人工智能和ML系統經常在復雜情況下指導人類理解和自主決策過程[37,38]。
先進的人工智能和自主系統技術已經改變了我們的生活,并將在未來繼續改變。這種由人工智能驅動的技術革命的空前成功,其潛力在于人工智能系統在各種新興技術中的適用性迅速增加。例如,在過去的幾十年里,人工智能技術在機器人和自主系統界創造了潛在的現實世界影響。除了人工智能的潛在好處外,人們也擔心強大的人工智能系統的長期影響[39,40,41]。最近,強大的人工智能和ML技術在戰術自主方面的進展已經徹底改變了廣泛的領域,包括自主駕駛[42,43,44]、航空和航天工業[45]、無人駕駛飛行器(UAV)導航[46]、海上防御[47,48]等。最近自主系統的大多數方法都是基于不同的人工智能技術。表2列出了用于戰術自主的最先進的人工智能技術的摘要。一些主要類別的方法詳細包括以下內容。
深度學習(DL)。這是一種有效且強大的人工智能應用算法,如計算機視覺、自然語言處理(NLP)、機器人、人工智能游戲和其他應用。自其誕生以來,深度學習(DL)方法已被證明能有效地發現和學習高維訓練數據的復雜結構[49]。由于深度神經模型在復雜環境中帶來的巨大性能,DL技術最近被用來解決一些現實世界的應用,如自動駕駛[50,51,52]、計算機視覺[53]、圖像分類[49]、視頻預測[54]等。作者在[55]中展示了深度Q網絡(DQN)代理如何學習為自主駕駛做出一個通用的戰術決策模型。DL方法也有助于根據當前和過去對周圍環境的觀察,預測復雜駕駛環境中自主車輛的行為和性能[56,57]。此外,[58]中提出了一種使用深度神經網絡估計端到端車道位置的方法。
強化學習(RL)。要實現人工智能技術的全部影響和潛力,需要智能自主系統能夠動態地學習并自動做出獨立的決定。與自主系統相關的戰術決策任務的一個根本不同的方法是利用一種不需要對輸入的訓練數據進行標記的人工智能/ML技術。完成這種任務的一個強大的ML范式是應用強化學習(RL)技術[59]。RL是一個框架,為經驗驅動的順序決策問題提供了有效的解決方案[59]。它關注的是智能人工智能代理應如何在復雜和嘈雜的環境中做出合適的決定,以使特定可執行行動的累積獎勵最大化。RL是基于自我學習的人工智能代理和其復雜環境之間的動態互動序列。通過其在人工智能代理中的自學能力,RL正在使各種科學領域取得令人興奮的進展,如自主機器人[60]、自主駕駛[61,62]、NLP[63,64]、游戲[65,66]和許多其他應用。可以利用RL技術來為自主系統創建一個通用的戰術決策代理。例如,基于神經網絡集合的貝葉斯RL技術被用于自主駕駛的有效戰術決策代理[67]。此外,最近的一些工作也將基于深度RL的技術擴展到移動機器人的自主導航任務中[68,69]。
聯邦學習(FL)。在傳統的ML和DL應用中,來自不同客戶的訓練數據通常被聚集在一個中央服務器或云平臺上,以訓練模型有效地執行一個給定的任務[70]。這是一個常見的數據隱私問題,也是經典的ML和DL方法的基本限制,主要是當訓練數據包含高度敏感和機密的信息(如國家機密和軍事相關信息、醫院等),會引起廣泛的安全和隱私以及法律和道德問題。維護智能系統的安全和隱私仍然是一個公開的挑戰。這種情況下,聯邦學習(FL)技術是有幫助的。聯邦學習是一種新興的、有前途的去中心化ML范式,它通過采用分布式計算來解決數據安全和隱私問題[71],提供了一種解決方案。它使網絡中許多資源有限的分布式客戶端能夠協同訓練ML模型,而無需交流他們的本地數據,主要目的是保護用戶的隱私和安全[72,73,74]。通過利用跨學科的技術和科技,機器人和自主系統正變得越來越普遍。鑒于隱私保護、分散學習、并行訓練和機載處理等獨特的優勢,FL有可能成為分布式自主系統的安全和高效的人工智能框架[75]。例如,在[76]中,作者提出了一個FL框架,使自主控制器模型在一組連接和自主的車輛中進行協作學習。其他作者在[77]中證明了FL模型可以被用來從更大的設備池中檢測和識別不同類型的無人機,通過利用單個無人機傳輸的射頻信號。
表2. 用于戰術自主能力的人工智能技術綜述。
最先進的人工智能和ML技術正被越來越多地應用于一系列需要改進操作可靠的時間關鍵型和安全關鍵型系統,如軍事、國防、航空航天、自動駕駛[78]、醫學[79]、科學[80]等。為了提高和確保其端到端的有效性和彈性操作,這些具有人工智能能力的現代自主系統必須被持續驗證、核實和監測。此外,為了使自主系統保持穩健的運行,還需要持續的系統性能評估,以識別不可預見的風險、異常情況和潛在的對抗性威脅。此外,對于超出人類控制的自主武器,也有人工智能支持的軍事關切[81]。
可解釋人工智能。最近ML技術的進步使得人們對人工智能系統的可解釋性越來越感興趣,以幫助人類更深入地了解ML算法的決策過程。在過去的幾年里,先進的人工智能系統在各種復雜的應用中廣泛部署,與此同時,道德、法律和社會對這些系統提供人類可理解的模型解釋和對其輸出的解釋的要求也在增加。作為這些要求的結果,最近有幾項關于要求對基于人工智能的自動系統所做的決定進行解釋和說明的法規的工作被引入[82,83,84]。這也導致了一個不斷增長的研究群體,他們非常關注可解釋的ML技術。如圖2所示,為用戶提供可理解的解釋和說明,可以讓他們更深入地了解系統的自動決策觀點,這是建立對底層人工智能和ML系統信任的關鍵因素[85,86,87]。因此,在關鍵系統的人工智能模型和技術中建立可解釋性和可解釋性也會對安全[88]、倫理[89,90,91]、法律[92,93,94]和可轉移性[95]產生影響。然而,人工智能和ML系統的內部運作是人類難以理解的,被認為是黑箱方法,只有輸入和輸出對用戶可見[96]。這種人工智能和ML系統的算法缺乏透明度,對現實世界的用戶需求缺乏了解,以及我們無法充分解釋這些系統如何以及為什么會達成特定的人工智能驅動的自動決策,使得它從根本上難以理解,即使是該領域的專家[96,97]。為了讓人類充分信任人工智能驅動的系統并建立信心,底層系統的解釋必須與人類的期望和認知一致。最近,越來越多的開源解釋工具和平臺產生了不同的解釋,用于探索和解釋底層的黑盒ML模型,正在被用戶訪問[98,99,100,101]。然而,盡管最近作出了努力,目前大多數最先進的解釋和解釋技術需要更加值得信賴。
圖 2. 可解釋 AI。如第 8 節所述,開發高級 ML 技術以生成可解釋的模型是我們未來工作的一個方向。除此之外,集成最先進的解釋接口以產生對底層模型的有效解釋是我們計劃在未來工作中探索的挑戰。
可信任人工智能。先進的人工智能和ML模型能夠加速復雜系統中數據驅動的自動決策過程。然而,正如前面所解釋的,盡管最近人工智能和ML系統在科學和技術領域被廣泛采用,其系統模型在很大程度上仍然是黑盒方法。對這些復雜的系統如何全面運作有一個清晰和充分的了解,對于建立信任和透明度是很有幫助的。此外,了解人工智能和ML系統的內部運作,可以讓用戶更好地了解底層模型,然后利用它將模型從不可信轉變為可信任的。當模型被用于自動決策系統時,確定人工智能和ML模型的可信度是一個基本問題。正如第6節所解釋的,人類和智能機器之間的合作使現代自主系統得到了快速發展和廣泛使用。在軍事和國家情報機構以及其他關鍵領域有效使用這種復雜的系統,取決于人類和機器之間建立的信任。因此,鑒于人工智能驅動的技術在眾多自主系統中的應用范圍迅速擴大,使這些系統可靠和值得信賴比以往任何時候都更重要[102]。建立一個安全和可信賴的人工智能生態系統對于確保人類安全和在各種應用中采用先進的人工智能技術至關重要[103]。可信的人工智能是一個技術術語,描述了人工智能的安全性、合法性、穩健性和道德原則,包括對人工智能驅動的系統的安全性[104]、隱私[105]、透明度和公平性的基本關注[106,107]。使人工智能系統值得信賴的要求和要素如圖3所示。可信的人工智能的基本概念是基于這樣一個概念:當信任建立起來時,人工智能會充分發揮其潛力。可信性賦予人工智能系統可解釋性技術,使人類更容易理解和信任無處不在的人工智能算法所產生的結果和輸出背后的特征和原因。
圖 3. 可信人工智能的要求和要素 [108]。
任務自主性。它是一個技術術語,大多用于國防和航空航天技術行業和其他下一代自主和智能系統。任務自主性是指自主系統在使用現代數據驅動的人工智能/ML技術對底層系統的了解和理解的基礎上,獨立執行各種基本的復雜任務的能力,如深空探測任務[109]。為了使先進的任務自主系統的開發和實施在戰術上有用,必須解決上述與自主和人工智能系統相關的潛在安全和風險問題。
先進的算法決策系統的激增使得不同平臺之間的協作成為可能。然而,實現和確定人類、智能機器和自主代理之間的直接協作是具有挑戰性的。一些需要解決的主要技術挑戰是互操作性、可組合性和適應性。
互操作性。在自主性方面,互操作性使不同類型的大規模自主系統能夠通過底層平臺獨立地進行通信。當設計具有強烈自主性概念的交互式自主代理系統時,互操作性問題發生在不同的層面。正如在[110]中詳細描述的那樣,互操作性層可以分為連接層、通信層、本體層和服務層。
可組合性。在軟件系統開發領域,可組合性對于創建一個強大、靈活和可互操作的系統來說是必要的,在這個系統中,不同的交互式自主組件可以無縫通信[111]。它能夠將基于組件的系統的獨立功能結合起來,以完成一個特定的、無法獨立完成的總體任務。可組合性使系統設計有能力通過重復使用現有的系統組件和適應新的變化來提高敏捷性[111]。一個可組合的架構允許幾個系統組件的組裝。這樣的方法有重要的好處,包括可重用性、靈活性和改進的模塊化。自主性、模塊化和可發現性是可組合組件的主要元素。在一個可組合的系統中,每個組件都被期望在沒有其他組件的幫助下自主獨立地執行一個給定的任務。另一方面,模塊化是指當一個可組合系統中的每個組件被設計成獨立解決一個特定任務時的系統屬性。這使得系統設計者有可能將模塊化組件組裝成一個系統。除此之外,可組合系統的框架必須可以被其他用戶發現,以便單個組件可以被重復使用。
適應性。一個交互式自主系統需要意識到它的內部狀態和它穩健運行的復雜環境。先進的自主系統有能力自主地、互動地監測和適應復雜環境中的任何意外變化。一個復雜的系統有效處理運行環境中動態功能變化的程度被稱為適應性[112,113]。一個適應性強的、穩健的、有彈性的系統能夠容忍環境中的突然變化和動態情況,而不依賴外部干預[112]。
人機協作的概念及其能力是當前人工智能研究中許多進展的核心。人機協作是一種范式,在這種范式中,人類和具有不同能力的智能機器整合并緊密合作,以完成一個需要集體行動的共同目標[114,115]。它關注的是對打算供人類使用的智能機器的深入理解和評估[116]。鑒于最近的指數增長和人工智能技術的預測能力,在智能系統和人類之間創造一個成功的協作操作環境來解決復雜的問題是至關重要的。然而,廣泛采用人工智能系統的主要挑戰之一是將人類和分布式智能系統無縫整合以實現共同目標的能力。
有效地利用人機合作,使人類能夠更深入地了解智能機器的自動決策。然而,正如第4節所解釋的,這高度依賴于人工智能自動決策系統和人類之間的信任。這是因為當人類對人工智能驅動的決策給予更多的信任時,就會產生關于信任問題的疑問。人機合作的有效性主要取決于機器的透明度以及用戶對人工智能系統的行為是否符合預期、安全、可理解的信心程度[117]。跨越多個學科、由現代人工智能技術驅動的自主系統和領域專家的廣泛合作,對于建立人工智能/ML模型的可解釋性,創建一個可信賴的人工智能生態系統,以及釋放人工智能的潛力以解決更多重大問題,是非常引人注目的。
人工智能有可能提高人類的能力,使組織決策自動化,并從根本上改變企業的運作方式[118,119]。人工智能/ML系統的可解釋性是一種潛在的人機合作方式,因為具有解釋和解釋結果能力的自動化使人類能夠更好地理解智能機器的基本行為。使用自主系統的主要好處之一是能夠比人更快地實時處理更多數據。為了確保安全和有效的關鍵任務操作,跨越不同領域的自主系統,如國防、醫療[120]、航空航天、制造、自動駕駛等,都被評估為與人類協作操作。因此,探索更好的人機協作的前沿技術,有能力提高生產力、可用性、可靠性、操作性能、通信接口、設計和操作平臺的成本,在人類和智能機器之間分享知識,并確保安全和現有系統適應新環境和新任務的能力[121,122]。在[123]中提出了一個人機合作框架,指導人工智能開發團隊創建廣泛采用的道德人工智能系統,這些系統是可用的、安全的、值得信賴的。除此之外,主要的參與者,如IBM[124]、DeepMind[125]、谷歌[126]和其他學術機構最近啟動了一項研究工作,以加強人機協作[127,128,129]。
自主系統的重大進展正在日益提高我們日常生活的質量。鑒于過去幾年的這些技術進步,出現了不同形式的人機協作。自組織編隊是指具有不同知識和能力的人類和智能機器集體合作以實現共同目標的過程[130]。自組織人機編隊是一個具有挑戰性的場景,在這個場景中,智能體與未知的異質隊友合作,事先沒有協調的知識。一個有效的自組織團隊成員是一個善于將其他代理的能力與自己的能力進行比較評估的代理。在軍事、工業和其他自主環境中,在沒有任何先決條件的情況下與異質團隊進行有效和穩健的合作是非常重要的。沒有任何事先協調的協作是人機研究中的一個已知挑戰[131]。作為解決這個問題的一種方法,[132]中提出了一種針對自組織團隊環境的在線規劃算法,該算法是為智能體在沒有任何預先協調的情況下進行合作而設計的。
以下是限制我們在動態操作環境中有效整合人類和智能機器的一些主要挑戰。
異質性。在人機協作中,由于人類決策任務的顯著異質性,智能機器很難預測和適應人類在動態操作環境中的行動。因此,開發可用于解決人機協作環境中異質性問題的最先進的模型和技術非常重要。
通信。人機協作的成功取決于人類和智能機器之間的有效通信。人類的通信能力有限,只能處理有限的信息量。因此,通過簡單地交換基本信息,人類和機器可以有效地溝通信息,支持人機協作。然而,這在人類和機器之間造成了信任問題。有效團隊溝通的一個關鍵組成部分是智能系統和人類之間建立的信任[133]。在人機協作中,信任被定義為用戶對智能系統結論的可靠性及其完成既定目標的能力的信心[134,135]。透明度的概念是信息交流的一個關鍵方面,因為人類和智能機器需要共享知識,對意圖、推理和決策過程、性能和未來計劃有共同的理解[136,137]。
當人類和機器作為團隊一起工作時,通信可能有助于建立信任。此外,它可以用來建立有效設計信息的準則,促進人機合作的整體性能和信任[138]。然而,機器必須首先能夠大致模仿人類處理信息的方式,才能使機器以人類能夠理解的方式交換信息。人機協作關系有三個最重要的組成部分:人、智能機器、以及人與智能機器(或替代品)之間的互動。因此,如上所述,通過開發可解釋和可信賴的人工智能來建立信任,對人機協作的成功至關重要。然而,人工智能系統日益增長的復雜性和脆弱性,以及它們學習和適應動態變化的操作環境的能力,也為在人機團隊中建立信任提出了新的挑戰。
協調。為了充分發揮異質團隊的潛力,人類和智能機器應該以高效和協調的方式進行合作。如上所述,人機協作中的通信是指人與智能機器之間的信息交流,或者說是交替進行。另一方面,協調是指組織和管理團隊成員及其相關行為以實現特定的共同目標[139,140]。根據[141],有效的人機協調涉及三個基本要求。這些要求是共同點、可預測性和可指導性。為了準確有效地進行團隊溝通,參與者必須首先確定適當的共同點,即知識、共同信念和假設、共同目標等。共同點是指參與對話的所有參與者共同相信的信息[141]。而協調小組成員合理預測對方行動和行為的能力被稱為相互可預測性[141]。另一方面,可指導性是指當環境和優先事項突然改變時,團隊成員重新指導、幫助或影響對方行為的能力[142]。因此,根據這三個要求開發一個支持隱性協調的高級模型是很重要的。隱性協調被定義為在不使用行為通信的情況下,基于假設和意圖同步團隊成員的行動和行為的過程[143,144]。這意味著通信對于隱性協調來說不一定是強制性的。隱性協調有助于提高團隊的效率,因為它使團隊成員即使在沒有直接溝通的情況下,也能通過避免分心和有效通信來共同工作[145]。這反過來又大大減少了通信的開銷[146]。
適應性。通過調整策略和行為來有效改變行動方案以應對意外變化的復雜條件的能力被稱為適應性[113]。適應性可以分為兩類:人類輔助的適應性,以及機器輔助的適應性[147]。智能機器應該能夠識別人類隊友的知識和行為。此外,機器還應該能夠預測和應對人類的新知識和行為。然而,這需要開發現代適應性(即機器控制的適應性)和適應性(即人類控制的適應性)系統。
近年來,自主系統吸引了學術界和工業部門的大量關注。然而,自主系統在各種領域的廣泛和有效采用也帶來了需要解決的安全攻擊的顯著增加。因為網絡攻擊者的目標是大規模自主系統,如現代自主車輛(AV)、載人航天器、空間交通管理系統、船舶、移動機器人、復雜核電站的運營、飛機、智能城市的關鍵基礎設施等,以破壞系統的安全性,并對其運營造成破壞性的損害。因此,設計基于人工智能的方法是至關重要的,它可以主動應對試圖破壞和獲取自主系統及其指揮組件的潛在破壞性攻擊,例如,針對系統的基本自主決策能力。自動檢測和應對鋪天蓋地的安全威脅,處理大量的數據,并發現未知攻擊的新模式,是人工智能系統在網絡安全方面的一些好處[148]。
人工智能在網絡安全方面的挑戰。人工智能會帶來不可預見的法律、道德和社會風險和挑戰,如果不能有效解決,可能會大大降低其潛力。如上所述,人工智能及其先進的ML技術已經發展成為廣泛的創新和動態領域的一項有利技術。人工智能具有戰術和戰略上的潛在好處。然而,在與使用人工智能系統相關的信任和道德考慮方面,它也被認為有一些關鍵的制約和限制。例如,[149]中的作者談到,人工智能本身可能對網絡安全和法律及道德問題構成威脅。他們認為,人工智能系統缺乏可解釋性和可解釋性,可以被利用來隱藏安全攻擊[149]。[150]中的另一項工作也證明了人工智能在網絡安全威脅方面既有積極作用,也有消極作用。此外,鑒于人工智能驅動的網絡欺凌的興起,作者還認為應該允許網絡安全專家繼續做他們的工作,并在人類智能有必要時進行網絡測試。
入侵檢測系統旨在檢測網絡中盡管采取了預防措施但仍不可避免地發生的入侵或安全攻擊[151]。入侵檢測系統有多種方法。一些方法采用了基于簽名的技術,在該技術中,事件被檢測到并與預先定義的已知安全攻擊和入侵的簽名數據庫進行比較[152,153]。其他系統采用異常檢測技術,系統在數據中發現潛在的有害模式,這些模式不符合正常行為的預期概念[154,155,156] 。在現代自主技術中,監測和識別異常情況,檢測非法和惡意活動,并采取補救措施,以確保實時自主決策系統的持續運行,特別是在戰術環境中,同樣重要。[157]中提出了一個原型的分布式入侵檢測架構,該架構使用為戰術環境定制的自主代理。[158]中提出了一種基于人工智能的方法來識別和檢測無人機中的入侵行為。
反自主技術越來越受歡迎,之前已經提出了各種方法來解決這個問題。當一個自主系統的基本保密性和功能受到損害時,它就會使自己更容易受到未來的安全攻擊,并對其他自主系統構成潛在威脅。因此,在不斷變化的條件下,主動檢測和識別旨在針對自主系統的潛在網絡攻擊是至關重要的。在[159]中,作者調查了需要解決的安全和隱私挑戰,以提高網絡物理系統的復原力。在[160]中介紹了一個用于自駕車的入侵檢測系統。160]中的工作涉及到,自動駕駛汽車如果被破壞,也會對道路上的乘客和行人構成風險。此外,他們的論文還討論了互聯自動駕駛汽車的漏洞如何超越了對道路上的司機、乘客和行人的危害。作者認為,互聯自動駕駛汽車的協調有可能被用來發動影響大規模車輛特設網絡(VANET)的大范圍攻擊[160]。
無人機系統具有巨大的潛力,可以在廣泛的下一代技術應用中徹底改變研究和創新。這些系統有可能受到復雜的攻擊,旨在破壞其復雜的操作和自主決策能力。這些攻擊可以用于進攻性和防御性的網絡行動。因此,有必要制定靈活和積極的戰略,有效地提供一個潛在的防御機制,以應對旨在利用安全關鍵的自主系統在最小的人為控制下的實時漏洞的攻擊。
戰術自主性為許多國防和軍事應用提供了一個很好的解決方案,只需有限的人力參與。ML和AI系統為實現民用和軍事應用的自主性創造了前所未有的機會。然而,為了開發長期的、值得信賴的、強大的和安全的自主系統,需要解決基本的挑戰。對智能系統中使用的復雜技術和工藝的實際理解是許多人工智能和ML系統的關鍵部分,這些系統是戰術自主的核心組成部分。
雖然有許多開放性的研究問題需要解決,但要實現戰術自主性在國防和其他應用中的全部潛力,需要解決的一些最長期和最重要的挑戰包括以下幾點。
用于戰術自主的可信賴的人工智能。為關鍵的國防任務開發可信的、強大的和有彈性的人工智能和ML框架,需要了解與可信的人工智能和任務自主性有關的理論和實踐技術和方法,平臺之間的協作,以及通過解決第4節、第5節和第6節分別討論的關鍵技術挑戰實現的人機合作。為了增強對人工智能系統的信心,我們需要進行更多的研究來解決這些問題,使人工智能系統值得信賴。
對基于人工智能的模型進行驗證。確保基于人工智能的解決方案按照預期工作是極其重要的。然而,設計最先進的方法來驗證基于人工智能的系統是具有挑戰性的,需要大量的工作。
平臺之間的協作。改善人類和完全自主的系統(如飛行員和自主副駕駛)之間的實時協作是具有挑戰性的。因此,開發一個有效的、高效的協作性自主解決方案是一個需要克服的關鍵挑戰。
人機聯合協作。深入了解機器如何向人類學習,人類如何向機器學習,以及機器和人類如何共同工作是非常重要的。我們如何才能設計出先進的自主系統,在軍事和國防環境中與人類協同工作?
提高安全性。我們如何設計和部署一個端到端的方法,整合現代安全關鍵型自主系統的安全問題?
軍事和國防工業希望利用AI和ML的能力來推進和改善其在戰術環境中的表現。在本文中,我們對戰術自主的概念、技術和技術進行了全面的技術概述。此外,我們的論文還強調了在試圖為先進的現實世界軍事和國防應用實際建立完全自主系統時出現的一些關鍵和操作挑戰。因此,我們希望本文能鼓勵人工智能和ML研究人員在戰術自主性領域進一步探索開發架構和方法論。
設計先進的人工智能和ML模型,對現實世界的軍事和國防應用具有實際意義,這是一個很大的挑戰。進一步調查這個問題,重點是在以前的研究工作中沒有充分解決的尖端人工智能和ML方法,是未來工作的一個有趣的方向。此外,展示一系列實際應用和最先進的方法,以解決和深入了解本文所討論的一些長期關注的挑戰,是未來戰術自主權實際應用的另一個研究方向的課題。
聯合全域指揮與控制(JADC2)是一項長期的工作,旨在連接跨太空、空中、陸地、海洋和網絡領域的軍事資產。美國防部打算讓JADC2分析所有這些領域的作戰數據,使決策者能夠更有效地確定、執行和監測行動。
美國防部正處于開發JADC2的早期階段,并發布了初步指南,包括一項概述廣泛目標的戰略。然而,國防部還沒有確定細節,如哪些現有系統將有助于JADC2,以及未來需要開發哪些能力。一份眾議院報告指示國防部報告整個JADC2工作的范圍、成本和時間表。目前,國防部正處于確定這些內容的早期階段。
2020年4月,美國政府問責局報告了空軍對JADC2的貢獻--先進戰斗管理系統(ABMS)--并建議空軍制定采購和規劃文件。自那時起,空軍已經采取了措施,并確定了兩項ABMS工作:
2022年6月,空軍成立了一個公司聯盟,協助制定網絡要求,稱為ABMS數字基礎設施,以實現ABMS工作。此外,在2022年9月,空軍為ABMS建立了一個新的領導結構。雖然這些都是發展ABMS的積極步驟,但空軍迄今尚未交付任何能力,并正在確定未來的能力和交付時間。
為了保持對對手的競爭優勢,美國防部(DOD)的軍事指揮官需要一個實時的、完整的戰斗空間圖,以便他們能夠迅速做出明智的決定,指導行動,并監督行動的執行。歷史上,當國防部和軍事部門獲得武器系統時,他們通常優先考慮單個系統的能力,而不是連接性、數據互操作性和各系統的功能兼容性。國防部認識到,其系統現在需要在更復雜的戰斗環境中運行,并需要更多的連接性。國防部打算讓全域聯合指揮與控制(JADC2)來解決這些問題,利用數字環境來分析所有領域的作戰數據,使決策者能夠更有效地確定、執行和監控行動。
先進戰斗管理系統(ABMS)是空軍對JADC2的貢獻。它旨在建立一個數據網絡以連接空軍和太空部隊的傳感器、系統和武器。2020年4月,美國政府問責局發現,空軍在沒有商業案例的關鍵要素的情況下開始了ABMS的開發,如為預算要求提供成本估算。
伴隨著H.R.4350號法案的一份眾議院軍事委員會報告包括了一項由GAO對ABMS進行審查的規定。此外,眾議院戰術空軍和陸軍小組委員會要求GAO對ABMS進行審查,以及它將如何促進國防部為JADC2制定更廣泛的目標。本報告討論了(1)空軍為ABMS能力制定計劃的程度,以及(2)國防部對JADC2的定義。
為了評估空軍在多大程度上制定了ABMS能力計劃,審查了ABMS采購計劃文件,以確定空軍確定了哪些能力,以及開發這些能力的成本和時間表。這些文件包括計劃簡介、采購戰略、需求文件、成本評估和合同文件。GAO還審查了空軍向國會工作人員提供的ABMS狀況簡報。GAO利用美國政府問責局確定的采購領先做法分析了這些文件,以確定空軍計劃是否涉及商業案例的關鍵要素。這些要素包括確定的要求、獲得成熟技術的計劃、成本估算和可承受性分析。
GAO還將這些文件與國防部的采購指南進行了比較,如適應性采購框架主要能力采購途徑和軟件采購途徑,以確定空軍計劃是否包括采購規劃的關鍵組成部分。GAO還確定了空軍為解決美國政府問責局先前關于ABMS的工作中的公開建議所采取的步驟,其中包括開發商業案例的關鍵要素的建議。此外,GAO審查了ABMS合同,以確定空軍計劃如何利用承包商來幫助滿足ABMS的要求。此外,GAO采訪了空軍ABMS的領導和官員,以了解目前ABMS的工作以及空軍計劃如何確定和優先考慮未來的ABMS工作。GAO還討論了空軍辦公室在規劃和執行ABMS工作中的作用和責任。
為了評估美國防部對JADC2的定義程度,審查了關鍵政策、規劃文件、實施指南、信息文件和概述簡報,包括機密和非機密文件。審查了這些文件以確定JADC2的目標、JADC2的管理結構、JADC2官員的角色和職責以及國防部領導層對如何實施JADC2目標的指導。還審查了與每個軍事部門對JADC2工作的貢獻有關的文件,包括空軍的ABMS、海軍部的Overmatch項目和陸軍的Convergence項目。盡管獲得了信息以獲得對 "聚合項目 "和 "超配項目 "的總體了解,但鑒于重點是國防部如何定義JADC2,所以沒有詳細評估這些努力。此外,采訪了JADC2的領導層以及來自國防部長辦公室和聯合參謀部的官員,他們代表了JADC2七個工作組中的四個。討論了國防部在執行JADC2目標方面的進展,潛在的挑戰,以及為應對這些挑戰所采取的措施。此外,采訪了空軍、空軍、海軍、海軍陸戰隊和陸軍的官員,以確定每個軍事部門目前為實現JADC2目標所做的努力,并討論國防部領導層如何為實施JADC2提供指導。
在2021年10月至2023年1月按照公認的政府審計準則進行了這次績效審計。這些標準要求計劃和實施審計,以獲得充分、適當的證據,為基于審計目標的調查結果和結論提供合理依據。所獲得的證據為基于審計目標的審計結果和結論提供了合理的依據。
1.對機器學習系統如何學習一項任務給出一個概述。 2.識別對手攻擊ML系統的三種方式。 3.識別防御者可能需要解決的九個問題,以防御一個ML系統。
小型無人駕駛飛機系統(sUAS)的指數式增長為美國防部帶來了新的風險。技術趨勢正極大地改變著小型無人機系統的合法應用,同時也使它們成為國家行為者、非國家行為者和犯罪分子手中日益強大的武器。如果被疏忽或魯莽的操作者控制,小型無人機系統也可能對美國防部在空中、陸地和海洋領域的行動構成危害。越來越多的 sUAS 將與美國防部飛機共享天空,此外美國對手可能在美國防部設施上空運行,在此環境下美國防部必須保護和保衛人員、設施和資產。
為了應對這一挑戰,美國防部最初強調部署和使用政府和商業建造的物資,以解決無人機系統帶來的直接風險;然而,這導致了許多非整合的、多余的解決方案。雖然最初的方法解決了近期的需求,但它也帶來了挑戰,使美國防部跟上不斷變化問題的能力變得復雜。為了應對這些挑戰,美國防部需要一個全局性的戰略來應對無人機系統的危害和威脅。
2019年11月,美國防部長指定陸軍部長(SECARMY)為國防部反小型無人機系統(C-sUAS,無人機1、2、3組)的執行機構(EA)。作為執行機構,SECARMY建立了C-sUAS聯合辦公室(JCO),該辦公室將領導、同步和指導C-sUAS活動,以促進整個部門的統一努力。
美國防部的C-sUAS戰略提供了一個框架,以解決國土、東道國和應急地點的sUAS從危險到威脅的全過程。國防部的利益相關者將合作實現三個戰略目標:(1)通過創新和合作加強聯合部隊,以保護國土、東道國和應急地點的國防部人員、資產和設施;(2)開發物資和非物資解決方案,以促進國防部任務的安全和可靠執行,并剝奪對手阻礙實現目標的能力;以及(3)建立和擴大美國與盟友和合作伙伴的關系,保護其在國內外的利益。
美國防部將通過重點關注三個方面的工作來實現這些目標:準備好部隊;保衛部隊;和建立團隊。為了準備好部隊,國防部將最大限度地提高現有的C-sUAS能力,并使用基于風險的方法來指導高效和快速地開發一套物質和非物質解決方案,以滿足新的需求。為了保衛部隊,國防部將協調以DOTMLPF-P考慮為基礎的聯合能力的交付,并同步發展作戰概念和理論。最后,作為全球首選的軍事伙伴,國防部將通過利用其現有的關系來建設團隊,建立新的伙伴關系,并擴大信息共享,以應對新的挑戰。
通過實施這一戰略,美國防部將成功地應對在美國本土、東道國和應急地點出現的無人機系統威脅所帶來的挑戰。在這些不同操作環境中的指揮官將擁有他們需要的解決方案,以保護國防部人員、設施、資產和任務免受當前和未來的無人機系統威脅。
2018年國防部人工智能戰略將人工智能定義為機器執行通常需要人類智能的任務的能力。戰略和相關計劃包括了全面戰略的一些特點,但不是全部。例如,國防部的9個與人工智能相關的戰略和計劃并不包括與采用人工智能技術相關的資源、投資和風險的完整描述(見圖)。在未來與人工智能相關的戰略中,發布包括綜合戰略的所有特征的指導,可以幫助國防部更好地定位,幫助管理者確保對人工智能的問責和負責任的使用。
國防部已經開始識別并報告其人工智能活動,但其人工智能基線庫存存在局限性,如排除分類活動。國防部官員表示,這些限制將在AI庫存識別過程的后續階段得到解決。然而,國防部還沒有開發一個高層次的計劃或路線圖來捕獲所有的需求和里程碑。該計劃將為國防部提供一個高層次的、端到端對所有必要特征的視圖,以實現該計劃的目標,為國會和國防部決策者提供一個完整、準確的人工智能活動清單。
國防部組織在人工智能活動上進行合作,但可以更充分地納入領先的合作實踐。國防部使用了各種正式和非正式的合作機制,GAO之前的工作已經確定,如跨機構小組。國防部已經部分納入了領先的協作實踐,例如識別領導能力。然而,國防部官員告訴我們,他們正在制定指導方針和協議,明確定義參與人工智能活動的國防部組件的角色和職責。通過最終確定和發布這樣的指南,國防部可以幫助確保所有參與者對整個部門的AI工作的責任和決策達成一致。