無人飛行器(UAVs)對國家安全的重要建筑物和設施構成了威脅。由于它們能夠像單個飛機一樣運行,它們被用于恐怖活動的方式實際上是無限的。任何負責對國家可靠運作至關重要的設施的人,都有義務確保可接受的安全水平。由于無人機可以用來攻擊受保護的結構,因此需要用反無人機系統來保護它們。本文提出了一種評估檢測和消滅無人飛行器的系統的有效性的方法。為了提出一種評估反無人機系統有效性的新方法,對描述現有反無人機系統的科學文獻和其他文件進行了分析。還分析了戰時和恐怖主義事件中涉及使用無人機的攻擊,并評估了現有的反無人機解決方案。由于檢測和消滅無人機的技術方案多種多樣,而且位置和天氣條件也不同,因此提出了一種基于概率計算和消滅無人機的通用方法,使用數學公式。這種方法可以在測量真實條件下無人機的探測和失效概率的基礎上,評估整個反無人機系統的有效性。所提出的方法可以對目前現有的反無人機系統的有效性進行評估,并可以提出探測和消滅無人機的新方法。這種基于數學計算的方法可以編寫軟件,用于在計算機上模擬反無人機系統,并在受保護設施中建造這些系統之前確認其有效性。
2021年1月,美國防部發布了第一個反小型無人機系統戰略,以應對小型無人機系統的快速技術進步和擴散給軍事人員、設施和資產帶來的日益增長的風險。現有的反無人機能力--嚴重依賴電子戰來破壞用戶和設備之間的通信聯系--不再能解決不斷變化的威脅,包括自主無人機、COTS技術以及空域中越來越多的無人機,這些都能使C-sUAS操作者不知所措。為了應對日益復雜的小型無人機威脅,由陸軍領導的聯合反無人機系統辦公室正在為其新的系統方法尋求物資和非物資解決方案。一個令人困擾的C-UAS挑戰涉及到雷達探測系統將一些SUAS與其他飛行物體(如鳥類)區分開來,因為它們的尺寸相當,運動緩慢,高度較低。由于電子光學傳感器和人類操作員在規模上的分類數量有限,使用雷達數據進行不準確或低效的sUAS分類可能是一種武力保護威脅。本論文使用來自兩個不同訓練環境的鳥類和無人機雷達軌跡數據,探索數據中的隱藏結構,使用這兩個數據集開發獨立的無監督和監督學習模型,并試驗數據采樣和特征工程,以提高模型對不同環境和動態環境條件的魯棒性。
圖. 本論文方法包括兩個迭代,每個迭代都涉及不同的數據采樣技術(第3.4節)的兩階段統計學習方法(第3.5節)。然后,通過比較兩個迭代中各自的表現來分析和評估每個訓練算法,通過使用訓練算法的訓練地點的整個數據集和備用訓練地點的整個數據集來驗證每個算法的預測準確性。
無人機技術的快速發展--包括傳感器小型化、電池壽命、飛行效率和改進的控制機制--再加上無人機越來越便宜和商業用途,使其在社會中無處不在。然而,隨著無人機可用于越來越多的善意目的,有責任對無人機的使用進行適當的監管,以盡量減少高風險的意外事件和惡意行為者(包括恐怖分子和敵對政權)的邪惡活動的可能性。雖然無人駕駛飛機系統(UAS)已經存在了幾十年,但小型無人駕駛飛機系統(sUAS)的全球擴散給美國國防部(DOD)帶來了特別棘手的挑戰,因為不僅需要保護美國的領空、設施和關鍵基礎設施免受這種日益強大的新威脅,還需要將這種力量保護擴展到前沿作戰基地(FOB)或臨時任務支持點(MSS),此外還需要在戰斗中提供移動力量保護(MFP)。2020年,在納戈爾諾-卡拉巴赫44天的戰爭中,阿塞拜疆對其鄰國亞美尼亞的一系列攻擊(使用低成本的土耳其Baykar Bayraktar [TB2]無人機),以及烏克蘭堅韌不拔的防御和反擊。 在2022年俄烏戰爭初期,烏克蘭(在[TB2]無人機和數以千計的其他無人機系統的幫助下)進行了頑強的防御和反擊,以抵消俄羅斯前進的壓倒性軍事優勢,這提供了兩個引人注目的例子,說明傳統作戰系統在大規模無人機的不對稱威脅面前的脆弱性。
雖然反小型無人機系統(C-sUAS)的問題集有多個方面--從探測到動能或非動能威脅反應--國防工業正在努力解決,但數據科學家已經特別被雷達系統快速有效地從鳥類和其他大氣雜波中分辨出sUAS的挑戰吸引。雷達系統在探測和分類無人機系統方面通常有兩個主要問題。第一個問題涉及它們的尺寸(容易與鳥類混淆)和速度(非常快或慢,包括它們的懸停能力)的組合。第二,涉及到對具有各種飛行現象、雷達截面(RCS)、光學發射、反射特性和材料結構的多樣化的sUAS類型(介于兩個一般的旋轉翼和固定翼類別之間)的描述。盡管這一領域的一些研究致力于探索一種包括其他傳感器類型的系統方法--如光電/紅外(IR)、聲學和人員監視--以減少雷達系統的脆弱性,但這種解決方案假設了當今有這樣一個傳感器套件在一個固定地點協同工作的奢侈。然而,追求這種 "黃金標準 "的解決方案對于有效地從探測到分類空中物體的重要性,并不否認改進雷達系統的鑒別性能的持續重要性,無論是獨立的還是在不同傳感器類型的總體系統中。
經與Anduril工業公司協商,并使用來自兩種截然不同的訓練環境的鳥類和無人機的雷達跟蹤數據,本論文旨在實現兩個目標。首先,試圖用獨立的無監督和有監督的學習方法來驗證(或改進)來自國防工業的現有分類算法的性能,并在這兩種環境中分別訓練模型。第二,試圖加強模型對兩種不同環境和動態環境條件(即降水和風)的穩健性,目前在每個新環境中都需要一個漫長而昂貴的系統校準過程。
為了實現這兩個目標,本研究通過開發、測試和驗證各種無監督和有監督學習模型對來自訓練模型的環境和替代環境的鳥類和無人機的判別性能,對兩個訓練環境中的數百只鳥類和無人機的雷達軌跡數據(由Anduril Industries提供)進行了實驗。通過采用獨立方法,在兩個訓練環境中表現最好的模型成功地驗證了Anduril的分類器(由數據贊助商提供)的性能,該模型在同一環境中訓練和驗證的準確率分別達到97%和98%。然而,觀察到在另一個環境下驗證的準確率下降了20-25%(表現最好的模型),以及對兩種環境下的數據集和模型的明顯差異的直覺,促使對方法的第二次迭代進行了修改,在模型的穩健性方面取得了邊際改善。本論文最后提出了四項建議,即繼續使用這種方法進行統計和機器學習研究,但要探索收集更多的雷達軌跡數據特征,以便更好地捕捉鳥類和不同類型無人機之間的飛行現象學差異。
基本挑戰涉及管理高超音速導彈在大氣層中以超過五倍音速(5馬赫)的速度飛行所暴露的極端熱量。(對于在大氣層中以較低速度飛行的巡航導彈和主要在大氣層上方飛行的彈道導彈來說,高熱是一個較小的問題)。廣泛的飛行測試是必要的,以保護高超音速導彈的敏感電子器件,了解各種材料的性能,并預測持續溫度高達3000華氏度時的空氣動力學。測試正在進行中,但近年來的失敗已經推遲了進展。
美國防部已經制定了一項戰略,在沖突早期使用精確的高速導彈,以化解潛在對手,如俄羅斯正在開發的反介入和區域拒止(A2/AD)能力。高超音速導彈和配備機動彈頭的彈道導彈都可以提供速度、精度、射程和生存能力(到達目標而不被攔截的能力),這在CBO考慮的軍事場景中是有用的。然而,許多任務并不要求快速打擊。對于這些任務,存在成本較低的高超音速導彈和彈道導彈的替代選項,包括亞音速巡航導彈。高超音速武器主要用于應對防御力強且時間極其敏感的威脅。
高超音速導彈可以抵消遠程(中程)防御系統,因為它們在大氣層內飛行,低于中程彈道導彈防御系統通常運行的高度。高超音速武器還能以不可預測的高速機動來對付目標附近的短程防御系統,使其更難追蹤和攔截。彈道導彈也很難防御,特別是如果它們配備了混淆中程導彈防御系統的反措施和擊敗短程導彈防御系統的可操縱彈頭。只有非常有效的遠程防御系統才有可能威脅到中途的彈道導彈。迄今為止,沒有任何潛在的美國對手部署過這種防御系統。
CBO估計,購買300枚帶有機動彈頭的地面或海上發射的中程彈道導彈,并將導彈系統維持20年,將總共花費134億美元(按2023年美元計算)。CBO估計,同樣數量的可比高超音速導彈的成本將增加約三分之一,即179億美元。(這兩項估計都不包括通常與技術上具有挑戰性的項目有關的成本超支。) 高超音速導彈的較高成本部分反映了建立能夠承受高超音速飛行熱量的系統的復雜性。CBO的估計不包括導彈的研究和開發費用。
美國空軍研究實驗室(AFRL)在技術開發方面的主要目標之一是將技術轉移給 "客戶",以滿足能力需求。這種轉換可以是在AFRL內部,也可以是向工業界,向系統項目辦公室(SPO),或直接向作戰人員。每個 "客戶 "類別都描述了一個潛在的 "過渡伙伴"。技術開發可以發生在支持客戶要求的成熟期("技術拉動"),即客戶提出他們的需求("要求"),AFRL用為滿足該需求而定制的技術發展來回應。當AFRL開發新技術或根據其作為關鍵技術領域的科學和技術(S&T)領導者的角色為舊技術找到新用途時,技術發展也可以在沒有具體要求的情況下發生。這被稱為 "技術推動",當AFRL科學家進行的基礎和/或應用科學研究發現了以前未知的軍事能力的潛力時,就會發生這種情況。技術拉動 "和 "技術推動 "項目都可以改變AFRL其他項目、工業、SPO或作戰人員的可能性,創造出潛在的破壞性能力,如果沒有相應的科技研究活動,對手是很難對付的。任何轉型所面臨的挑戰是,技術的價值可能沒有被更廣泛的社會所理解,在新技術的情況下,也沒有被進行研究的科學家所理解。
科學家和潛在的過渡伙伴之間的討論往往不能準確地確定一項技術的成熟度、潛在的軍事用途,以及一項技術的合理和可靠的使用時間表。在 "技術拉動 "和 "技術推動 "的情況下,對技術成熟度的準確描述是必要的,以告知科技領導層和潛在過渡伙伴開發的進展。成熟度,通常被稱為技術準備水平(TRL),是一個時間快照,它描述了演示或測試環境的特點,在該環境下,一項特定的技術被成功地測試。美國國防部(DoD)對TRL有一個標準的定義,從1到9,范圍從基本原理到實際任務操作中證明的實際系統。 從歷史上看,官方的TRL評估只在正式的采購過程中被系統地分配,然而,在AFRL項目開發的各個層面,通常都會要求進行技術成熟度評估。
目前缺乏一種系統的方法來評估AFRL技術,也缺乏對任何評估的文件驗證。雖然這并不是轉型失敗的原因,但有條不紊、準確和可驗證的TRL評估過程有助于為其他多個過程奠定基礎;支持與其他科技專業人士、管理機構和潛在的轉型伙伴進行有意義的合作;并支持提高AFRL技術轉型的概率。這些其他過程包括技術成熟計劃(TMP)、推進難度(AD2)、制造準備水平(MRL)、集成準備水平(IRL)、系統準備評估和水平(SRA和SRL)、空軍未來(HAF/A57,正式的空軍作戰人員集成能力(AFWIC))。技術、任務、資源、組織(TMRO)方法,AFRL過渡指標(ATM)和項目管理審查(PMR)。
TRL可以通過各種方式得出,但通常是通過技術準備評估(TRA)來確定。技術準備評估是在對技術的形式、與系統其他部分的集成程度以及操作環境等方面的保真度逐步提高的基礎上確定TRL的。TRA是一個系統的、以證據為基礎的過程,評估關鍵技術要素(CTE)的成熟度,這些要素可以是硬件、軟件、過程或它們的組合。一個技術要素是 "關鍵 "的,如果被收購的系統依賴于這個技術要素來滿足操作要求(在可接受的成本和進度限制內),如果該技術要素或其應用是一項新技術,以一種新的方式使用舊的/更新的技術,或者該技術要素或其應用在詳細設計或演示期間被用于構成重大技術風險的領域。正式的TRA最常被用來支持一個采購項目的確定階段,如美國法典第10章第2366b條詳細規定的要求,即在里程碑B批準之前,一個項目必須在相關環境中進行演示;然而,非正式的,或 "知識建設TRA",也可以用來評估技術成熟度,為開發人員、項目經理、管理機構和潛在的過渡伙伴提供有用的信息,以更有效地成熟關鍵技術,確定一個技術的準備程度,管理和解決當前和未來的發展風險。
今天,國防戰略和空軍參謀長和空間業務主管要求加速技術發展,并使能力更快地進入作戰人員手中。 一個可靠的、可重復的技術成熟度評估是后續和同步進程和方法的關鍵,如TMPs、AD2、MRLs、IRLs、SRAs和SRLs、TMRO、ATM和PMRs,并為支持AFRL內部、工業、SPO或在技術被證明達到適當水平后直接向作戰人員的快速過渡活動建立了基礎。本研究提出了進行這些TRA的建議程序和工具。
本研究的主要目的是確定和推薦一個嚴格的、標準化的、可重復的程序和支持工具,以進行TRA,從伙伴的角度增加現有技術解決方案的可信度,并支持增加成功技術的過渡概率。因此,本研究將:
確定一個量身定做的、嚴格的、標準化的、可重復的TRA流程,以進行可靠的TRA,同時提供支持流程執行的工具。
將評估何時進行TRA的過程系統化,如何處理結果,以及如何確定下一步。
詳細說明識別CTE的系統方法
制作一個可定制的TRA模板,包括對可信度和客觀性至關重要的特征
確定支持技術成熟和TRL評估的RY能力
將技術要素納入建模、模擬和分析(MS&A)的方法。
確定數據工件和儲存庫,以證明所分配的TRL。
《美國法典》第10章第2366條要求美國防部在一個項目進入全面生產之前進行現實的生存能力測試。這意味著通過向作戰配置的系統發射可能在戰斗中遇到的彈藥來測試系統的脆弱性,主要強調對潛在用戶傷亡的測試。在脆弱性測試中還應考慮到系統的易受攻擊性和作戰性能。
脆弱性評估評價了一個系統承受威脅的破壞性影響的能力。對裝甲戰車及其乘員進行這種評估的挑戰是,測試通常是破壞性的。在許多情況下,可用于測試全尺寸系統的資產數量有限。有了良好的測試計劃,一些測試資產可以被修復并再次用于測試;然而,測試設計必須考慮到資產數量少的問題,并選擇最佳點,這對深入的統計推理提出了挑戰。為了緩解這個問題,測試人員從更實惠的來源收集數據,包括組件和子系統級測試。這就產生了一個新的挑戰,構成了本文的前提:如何將較低層次的數據源連接起來,以提供一個可信的系統級的車輛脆弱性預測?本文提出了一個案例研究,展示了解決這個問題的方法。我們強調了基本統計技術的使用--實驗設計、統計建模和不確定性的傳播--在一個描述地面車輛被間接炮火攻擊的戰斗場景中。
用于創建概念性案例研究的數據是不保密的,文件中的信息是基于公開來源的參考資料。所有的數據都是隨機產生的,所提出的模型和結果僅是說明性的。既沒有來自任何政府贊助商的數據,也沒有技術信息。
美陸軍技術出版物(ATP)3-01.81反無人駕駛飛機系統(C-UAS)技術提供了在行動中防御低、慢、小(LSS)無人駕駛飛機威脅的計劃考慮。這個ATP還提供了關于如何計劃并將C-UAS士兵的任務納入單位訓練活動的指導。當區域威脅估計包括較小的無人機系統(UAS)平臺時,本ATP為旅級及以下部隊提供規劃指導。
ATP 3-01.81的主要受眾是在其行動中采用聯合武器規劃技術的機動旅及以下級別的指揮官和參謀人員、下級領導、排級和班級。然而,所有部署組織的領導人都可以從本出版物規定的補充信息和C-UAS技術中受益。此外,培訓人員和教育工作者也將使用本出版物來支持將聯合武器防空納入他們的課程。
指揮官、參謀部和下屬確保他們的決定和行動符合適用的美國、國際,以及在某些情況下,東道國的法律和法規。各級指揮官確保他們的士兵按照戰爭法和交戰規則行動。(見FM27-10)。
ATP 3-01.81在適用的情況下使用聯合術語。部分聯合和陸軍術語和定義同時出現在詞匯表和正文中。ATP 3-01.81并沒有規定本出版物中的任何支持者術語。對于文本中顯示的其他定義,該術語為斜體,并在定義后注明了提議者出版物的編號。
除非另有說明,ATP 3-01.81適用于現役陸軍、陸軍國民警衛隊和美國陸軍預備役。
防御無人機系統是一項艱巨的任務,沒有單一的解決方案可以擊敗所有類別的LSS威脅。
傳感器和預警能力的協作和綜合規劃以及各梯隊之間的情報共享是至關重要的。與空地一體化或空域管理人員協調,以獲得最新的情報和防御支持,有助于最大限度地減少空中威脅的影響,減少損失,保護人員和設備,以及在行動區內作業的友好無人機系統。本出版物由四章和一個附錄組成,集中討論了對不可預測的威脅環境的規劃,這種環境有可能在LSS無人機系統的協助下進行協調攻擊。支持性附錄提供了旅級及以下的訓練策略。
第1章。行動環境
第2章。旅級規劃的考慮因素
第3章。營級規劃的考慮因素
第4章。連級C-UAS行動
附錄A. C-UAS訓練策略
這本技術手冊涵蓋了對抗全方位的無人駕駛飛機及其各自系統組件的所有方面。它應該通過啟動思考和強調北約對打擊無人駕駛飛機系統的全面解決方案的方法,來幫助匯集民間和軍事專家。這本書很有用,是對聯合空軍和空間力量委員會出版的學術著作的寶貴補充。
圖1.3提供了無人機系統組件及其相對空間排列的概況。根據組件本身、它所處的領域以及它與北約部隊的潛在距離,有不同的攻擊點作為采用反措施的選擇。雖然這些攻擊點可以由以下各節描述的任務來解決,但所有的攻擊點都應相互補充,并有助于全面的、多領域的C-UAS努力。
LSS無人機系統作為COTS產品,任何人都可以輕易獲得,并對關鍵的公共基礎設施和軍事設施構成迫在眉睫的威脅。確保友軍和關鍵基礎設施安全的部隊保護措施通常集中在需要保護的區域。自然和人為的障礙物,如樹木或建筑物,可以覆蓋LSS無人機系統的接近,并大大延遲對該地區這些物體的探測,進一步縮短可用的反應時間。力量保護措施的主要目的應該是拒絕UAS進入保護區域。然而,出于情報目的安全捕獲UAS可能也是可取的。
較大的無人機系統可以在高達30,000英尺的高空運行,在某些情況下甚至更高。這些無人機系統的雷達截面(RCS)與任何其他傳統的飛機相當,因此可以被大多數空中和導彈防御(AMD)系統探測到并參與。然而,現代地對空彈藥并不便宜,而且是為打擊高價值目標而設計的。大量或成群的低成本無人機系統可能會迅速顛覆傳統AMD的成本效益比,并使目前的系統效率降低。短程防空(SHORAD)、反火箭炮、火炮和迫擊炮(C-RAM)系統,甚至是傳統的防空炮可能提供有效的,但也是高效的,對無人機系統的防御。
大型無人機系統的發射和回收通常從任務區內部或附近的地面控制站(GCS)進行。地面控制站可以是移動的,安裝在卡車上,也可以是固定的,放在地面上,例如靠近機場。在任何情況下,大型無人機系統的發射和回收元件(LRE)是一個高價值的目標,因為它通常負責發射和回收幾個無人機。消除一個LRE可能會使無人機系統的操作在相應的地區停止,因為新的無人機系統不能再被發射,空中的無人機可能無法被安全回收。因此,人工智能可能會在對手的無人駕駛能力甚至可以用來對付友軍之前,破壞、降低、拒絕或摧毀它們。
一旦升空,大型系統通常可以從LRE移交給MCE,并通過衛星通信(SATCOM)進行BLOS操作。MCE可以位于任務區以外的地方,可能是在對手的領土深處,并利用一個加固的基礎設施。北約特種作戰部隊(SOF)可能被用作攻擊敵方MCE本身的手段,摧毀對無人機系統BLOS操作至關重要的SATCOM地面節點,甚至在無人機系統機組成員下班后殺死他們的戰斗人員。
無人機系統完全依賴于其計算機系統、信息技術和網絡連接。控制站,特別是在固定裝置(如MCE)內的控制站,有可能通過網絡空間受到攻擊,利用其硬件和軟件的安全漏洞,也可以利用人為的故障、疏忽或易感性。通過GSM網絡運行的COTS無人機系統很可能只能通過網絡空間領域進行訪問,因為電磁頻譜中的對抗措施可能是禁區,例如,如果頻率被公開使用。
無人機系統的C2是通過LOS或BLOS無線電傳輸進行的,通常也依賴于定位、導航和定時(PNT)信號。電磁作戰(EMO)可用于所有層級的UAS,以阻礙和破壞C2和PNT傳輸,甚至欺騙PNT信息以轉移或降落UAS。然而,"傳統 "的電子戰(EW)有其局限性,現代型號的UAS能夠自主飛行,不再依賴連續的數據鏈。然而,即將到來的定向能武器(DEW),如高功率微波(HPM)或高能激光(HEL),可能會給EMO組合增加動能,并可用于使傳感器有效載荷無法使用或摧毀無人機本身。
檢測飛行中的UA通常是防御它們的第一步。較大的UA甚至可以用傳統的雷達系統探測到,而LSS UA需要更多的專業設備將其與雜波,如樹葉和鳥類區分開來。然而,除了空域監視之外,可靠地識別入侵的無人機系統及其能力,以及識別C2傳輸的來源,對于選擇適當的反措施至關重要。這包括關于UA的能力和自主水平、對手LRE和MCE的位置,以及SATCOM資產和使用的頻率的信息。C-UAS系統必須得到這些信息,最好是實時的,以處理一個合適的目標定位解決方案。
SATCOM是BLOS無人機系統操作的一個重要部分。但COTS UAS也利用各自衛星群提供的PNT信號。在 "外空條約 "的限制下,針對天基通信和PNT的反措施可能是一個合法的選擇,以抵御對手UAS的整個艦隊。這不一定需要反衛星武器的動能交戰。事實上,地面或天基干擾能力可能是有效的,而不需要冒產生大量碎片的風險,這些碎片可能使整個軌道無法為人類所用。
二十一世紀的美國空軍一直保持著二十世紀的行動安全(OPSEC)文化,這種文化嚴重偏向于與空軍官職相關的言論和活動。空軍OPSEC政策和文化沒有充分解決以無處不在的數據收集為特征的互聯世界。這一差距造成了一個關鍵的弱點,有可能削弱空軍在未來沖突中的競爭優勢。
本文首先討論了美空軍OPSEC文化及其對21世紀信息環境的失敗之處。然后,本文通過商業企業如何利用數據定位消費者的角度分析了普遍的數據收集的信息環境。利用這一結構,本文研究了對手如何利用類似的方法,通過美國空軍駐軍或戰場上的人員,在沖突前或沖突中對美國空軍進行基于人群的大規模監視和偵察。
作者提出了潛在的保障措施和緩解策略,強調了解決與空軍人員的個人生活深深交織的脆弱性的挑戰。他還建議采用一個主觀和客觀傷害的框架來重新定位空軍的OPSEC文化。最后,他建議采取一種基于教育和培訓的緩解方法,貫穿于飛行員的整個職業生涯。因此,空軍將像重視金融知識或身體素質一樣重視數字流暢性。這樣做將培養一種圍繞無處不在的數據收集和基于人口的監控所帶來的威脅的有教育意義的意識文化。
外國政府的監控通常被認為是在兩種情況下進行的。第一種是對個人的監控。第二種情況是對手通過技術手段,如衛星或信號監測,或物理手段,如報告部隊動向的人員,跟蹤部署的美國部隊的位置和活動。空軍利用行動安全(OPSEC)來對付這兩種類型的敵方監視。
OPSEC的目的是通過實現基本保密來保護軍事行動,基本保密的定義是通過拒絕向對手提供關鍵信息和指標來實現的。雖然從反間諜的角度來看,外國政府對海外臨時任務的飛行員個人的監視是令人擔憂的,但其相關風險與對手作為一個集體實體對飛行員進行持續監視的潛在危害有著本質的區別。由于數據獲取的增加和快速的技術進步,我們的對手現在有低風險的機會從遠處對我們的部隊進行監視和偵察。盡管我們對手的能力有所進步,空軍OPSEC政策和支持它的文化在21世紀基本上沒有改變。
美國政府的其他部門正在認真對待計算和數據收集所帶來的威脅,最明顯的是情報界。可以理解的是,情報機構會特別關注這種威脅,因為其人員的身份和活動是要保密的。雖然美國空軍可能為支持國家政策目標而開展秘密活動,但很少有空軍成員為了個人或職業安全需要身份保護;這導致了一種錯誤的安全感。
空軍的OPSEC政策和文化仍然根植于前社交媒體、前數字時代,當時我們的對手通常無法直接接觸到空軍人員。在二十世紀,接觸的空軍人員受到地理環境的限制;美國是一個相對的避難所,不受敵人的窺視。試圖監視一名空軍成員需要投入人員,而且風險很大,回報很少。技術的進步已經消除了地理上提供的傳統安全庇護所。互聯網及其附帶的連接設備網絡意味著在美國境內駐扎的空軍人員不再是敵人監視的對象。在21世紀,通過傳感器、社交媒體參與、智能手機和其他設備的擴散所產生的大量高度具體和個性化的數據,可以接觸到我們的部隊,而我們的對手無需承擔任何人身風險。技術的進步使我們的對手不僅能夠觀察到空軍資產(如飛機)的移動,而且還能觀察到飛行員個人和集體的移動。因此,傳統上我們的對手無法觸及并感興趣的空軍人員現在成為他們可以利用的重要信息渠道。
本文指出了空軍OPSEC文化和政策與商業計算和傳感能力的進步之間的一個關鍵差距。空軍人員每天與收集大量高度個性化數據的廣泛技術互動。雖然商業企業利用這些數據來鎖定消費者,但本文研究了對手如何利用類似的方法,利用其成員的個人在線活動對空軍進行大規模監視,而不管其地理位置如何。這一分析從空軍的OPSEC文化開始,以及這種文化在21世紀的信息環境中未能解決的問題。本文將這一環境描述為無處不在的數據收集環境,討論了美國的對手如何在沖突前和沖突中利用數據和大規模監控為自己服務,并提供了一個框架來評估數據對空軍成員的傷害方式。最后,分析報告以幾個建議作結。首先,空軍應投資于其OPSEC文化的現代化,重點是政策、教育和培訓。第二,空軍應該采取一種基于教育和培訓的緩解方法,在飛行員的整個職業生涯中,創造一種圍繞無處不在的數據收集所帶來的威脅的教育意識文化。
本文中使用的幾個關鍵術語定義如下:監視是指對已知的重要事物進行監測。人群監視是指對手監測和跟蹤具有特定特征的個人群體的能力,如所有空軍成員或特定的人口群體、專業、地理位置或空軍內部的其他子集。人群監視與大規模監視的不同之處在于它能夠專注于一個特定的群體。偵察與監視不同,它使用相同的基礎數據來確定新出現的重要指標和警告,如即將發生的軍事行動。 物聯網(IoT)描述了不斷擴大的、基本上不顯眼的傳感器環境,它收集實時計算機化的感官信息,詳細說明在一個特定環境中發生的事情。大數據是大量不同數據集的綜合,其組合方式是總和大于部分。人工智能(AI)不是一種技術,而是一種系統,它 "結合了信息獲取目標、邏輯推理原則和自我修正能力",其最終目標是實現對大量數據的分析,并利用這些數據 "分辨出一種模式來解釋當前數據并預測未來用途。"
報告概述了反無人機技術及方法,介紹了美國國防部面臨的無人機威脅及反無人機投資計劃,以及美海軍、陸軍、空軍、海軍陸戰隊及國防部其它機構的反無人機武器研究進展情況,并指出了國會在監管方面可能面臨的問題。
無人機系統技術迅速擴散,易被國家、非國家行為者和個人使用,這些系統可為美國對手提供一種低成本的手段,執行針對或攻擊美軍的情報、監視和偵察任務。大多數小型無人機尺寸小、使用特殊結構材料且飛行高度較低,無法被傳統的防空系統探測到。在2023財年,美國國防部計劃至少花費6.68億美元用于反無人機(C-UAS)技術研發,至少花費7800萬美元用于反無人機武器采購。隨著國防部繼續開發、采購和部署這些系統,美國會對其使用的監督可能會增加,也必須就未來的授權、撥款和其他立法行動做出決定。
反無人機技術可以采用多種方法探測敵對或未經授權的無人機目標。一是使用光電、紅外或聲學傳感器分別通過目標的視覺、熱量或聲音特征探測目標;二是使用雷達系統探測,但由于小型無人機信號特征不明顯,該方法探測效果不佳;三是識別用于控制無人機的無線信號,通常使用射頻傳感器探測。這些方法通常被組合使用,以提供更有效的分層探測能力。
各類系統探測到無人機后,電子戰“干擾”裝置即可干擾無人機與其操作人員的通信鏈路。干擾裝置通常可分為便攜式、固定式或可移動式,根據其類型的不同,重量可從幾公斤至數百公斤。除電子戰干擾裝置外,也可以使用槍支、網絡、定向能、傳統防空系統,甚至訓練有素的動物(如鷹)擊敗或摧毀無人機系統。目前,美國防部正在研發多種反無人機技術,以確保其具備強大的反無人機防御能力。
美空軍正在進行高功率微波和高能激光武器反無人機測試工作。2019年10月,空軍接收了一套車載高能激光反無人機武器系統 (HELWS)樣機。HELWS旨在在幾秒鐘內識別并壓制敵對或未經授權的無人機,幾乎可無限次射擊。此外,空軍還在尋求機載反無人機武器,目前工作狀態尚不明確。
圖1 便攜式反UAS技術
2014年,美海軍在“龐塞”號(LPD-15)上部署了第一款可作戰的激光武器系統(LaWS),LaWS是30千瓦激光武器樣機,能夠執行反無人機任務。自那時起,美海軍就一直在開發和安裝更多的低、慢、小(LSS)無人機激光武器原型,以提高對抗水面艦艇和無人機的能力。
海軍正在研發部署的干擾無人機傳感器的光學致盲器“奧丁”(ODIN)及60千瓦“太陽神”(HELIOS)激光器,均旨在保護美海軍裝備和系統免受無人機襲擊。此外,在2019年3月28日的一份備忘錄中,海軍部宣布將與國防數字服務局合作,快速開發新的網絡賦能反無人機武器,以應對不斷演變的無人機威脅。
海軍陸戰隊通過其地基防空(GBAD)計劃辦公室資助了多個反無人機系統。2019年,海軍陸戰隊完成了海上防空綜合系統(MADIS)的海外測試,該系統采用電子干擾與炮彈相結合技術,可安裝在MRZR全地形車輛、聯合輕型戰術車輛和其他平臺上。2019年7月,拳師號USS BOXER LHD-4兩棲攻擊艦上的海軍陸戰隊員使用海上防空綜合系統壓制了一艘被認為在該艦“威脅范圍”內的伊朗無人機。作為地基防空計劃的一部分,海軍陸戰隊也在采購緊湊型激光武器系統(CLaWS),該是美國防部批準的首個陸基激光武器,具有2千瓦、5千瓦和10千瓦三種型號,目前陸軍也在使用。盡管海軍陸戰隊已試驗了單兵攜帶反無人機技術,但海軍陸戰隊司令大衛·伯杰(DavidBerger)在2019年向國會作證時認為,由于重量和功率的要求,單兵攜帶反無人機技術沒有取得成功。
圖2 海上防空綜合系統
2016年7月,陸軍發布了反無人機戰略,以指導其反無人機能力的發展。2017年4月,陸軍技術出版物3-01.81《反無人駕駛飛機系統技術》概述了作戰期間防御低、慢、小無人機威脅的規劃考慮,以及如何規劃并將反無人機士兵任務納入陸軍訓練活動。
反無人機是美陸軍作戰能力發展司令部的六層防空和導彈防御概念的一部分,六層概念包括:彈道導、低空無人機交戰(BLADE)、多任務高能激光(MMHEL)、下一代火控雷達、機動防空技術(MADT)、高能激光戰術車輛驗證機(HEL-TVD)、低成本增程防空(LOWER AD)。目前,上述系統仍在開發中,美陸軍已部署了一些便攜式、車載和機載反無人機系統。此外,美陸軍與國防數字服務局還在合作開發計算機支持的反無人機產品。
美國防部正在研究和開發多種反無人機技術。聯合參謀部和其他國防部機構參與了反無人機研究工作,如“黑鏢”(Black Dart)演習,該演習旨在“評估和驗證現有和新興的防空和導彈防御能力及反無人機任務集特有的概念”和“倡導士兵所需的反無人機能力”。國防高級研究計劃局積極開展“反蜂群人工智能”等研究,為反無人機技術研發提供資金。2019年12月,國防部精簡了各種反小型無人機項目,指定陸軍為執行機構,負責監督美國防部所有反小型無人機的開發工作。
2019年12月,美國防部成立由陸軍領導的聯合反小型無人機系統辦公室(JCO),負責監督美軍所有反無人機研發工作。通過與作戰司令部和負責采辦和保障的國防部副部長辦公室協商,該辦公室已評估了超過40種反小型無人機系統,并確定未來美軍反無人機項目的研發方向和標準,該辦公室還選擇了10種小型無人機防御系統和一個標準化的指揮控制系統,以進行后續研發工作。聯合反小型無人機系統辦公室還制定了一份聯合能力發展文件,概述了未來系統的作戰需求,并于2021年1月發布了《國防部反小型無人機系統戰略》。該辦公室還將制定另外一份國防部關于反小型無人機指揮和反小型無人機能力評估的文件。
根據計劃,美國防部將于2024財年在俄克拉荷馬州的福特希爾建立一個聯合反小型無人機學院,以在各軍種同步開展反無人機戰術訓練。
此外,美國會《2021財年國防授權法案》第1074節要求國防部向國會提交一系列報告,包括聯合反小型無人機系統辦公室開展的反小型無人機活動報告和獨立評估情況,以及無人機帶來威脅的報告等。
伴隨美國防部開發、使用及部署反無人機系統武器,美國會需對其進行更多監管,并可能面臨如下潛在問題:
隨著預算削減的增加和空軍機隊的老化,空軍正在尋找創新的方法來減少工具、零件和用品的采購、運輸和庫存成本。特別是,傳統的制造、庫存和運輸飛機零部件和用品可能是緩慢的、昂貴的、對人員有害的和對環境有害的。被稱為"3-D打印"的新制造技術,也被稱為 "增材制造"(AM)被推薦為可能的解決方案,以減少維修時間、采購成本、運輸和庫存成本,同時也比傳統的、制造的替換零件更安全、勞動強度更低、更環保。
本文研究AM能在多大程度上使空軍受益,及其目前的實施情況。本文概述了空軍目前供應鏈的成本、操作失敗和環境影響,以及軍事單位如何利用AM來幫助減少這些問題。雖然正在采取措施在基地和倉庫層面實施三維(3-D)打印,但空軍沒有為其實施提供明確的方向,也沒有充分地利用其好處。因此,本文建議空軍開發可部署的三維打印包,提供三維打印培訓,并對在什么情況下應該購買三維打印機提供更多指導。此外,還就哪些部件應該被打印出來提出了建議,并建立了認證3-D打印飛機部件的正式批準程序。
在承包商工廠和軍事后勤中心之間的空軍物資運輸占用了巨大的資源;2013年運輸成本超過了56億美元。
運輸物資的成本如此之高,是因為C-5 "銀河 "運輸物資的平均每飛行小時成本為100941美元,而這還沒有考慮到飛機的維修和保養。因此,隨著作戰節奏的加快,需要更多的零部件。 此外,沖突越遠,運輸成本就越高。
戰爭規劃者試圖為軍隊后勤評估戰爭儲備和備件,然而,他們的評估往往與實際需求不相符合。例如,在2012年,空軍花費了4.861億美元用于交付16架C-27A "斯巴達 "貨運飛機,其中包括6050萬美元的備件給阿富汗空軍。在這16架飛機中,有6架必須被 "拆解 "以獲得備件,以便其他10架飛機能夠繼續運行。拆解是指從武器系統中拆下一個目前可以使用的零件,用于維修需要該零件的飛機,以使其具備任務能力。 C-27A "斯巴達 "計劃最終被認為是不可持續的,因為空軍確定需要額外的2億美元的備件來正常維護飛機。
為了解決與類似問題有關的巨大成本和短缺,陸軍、海軍、美國國家航空航天局、國防部(DOD)供應商和其他組織正越來越多地轉向一種名為 "3-D打印 "的新技術,也被稱為 "增材制造"。這項技術使他們能夠在內部創建零件和用品,從而減少他們的供應鏈和運輸成本。不幸的是,空軍現在才剛剛開始探索三維(3-D)打印的好處。因此,本文探討了以下問題:如果空軍在部署地點實施三維打印,會有什么好處?
空軍將3D打印機和相關原材料運輸到部署地點,允許快速定制飛機零件,減少危險廢物,并削減庫存持有和運輸成本。更重要的是,它可以通過允許部隊根據需要在現場制造工具、零件和用品來提高作戰能力。
增材制造(AM)是通過逐層添加(打印)一種材料(通常是塑料或金屬),直到創造出三維物體。相比之下,減材(傳統)制造則是將材料去除,直到留下所需的物體。AM允許零件的定制和現場生產,對培訓的要求最低。
3-D打印經常使用逆向工程來重新創建,并有可能在3-D掃描儀的幫助下改進現有零件。就像磁共振成像使用磁場和無線電波來創建人體內部器官和組織的詳細圖像一樣,3-D掃描儀創建了一個所需部件的數字副本。這種3-D模型數據可以被儲存起來,用于未來的制造,或使用軟件進行操作,以改進零件的設計。3D制造的零件可以打印出空心或蜂窩狀的屬性,這可以使它們更輕,更能夠承受熱應力。AM允許在制造開始前在虛擬環境中開發和快速測試設計。此外,這些3-D設計可以通過電子方式發送給部署地點的操作員。
在已部署軍事裝備的環境中,實施3-D打印將需要在初期運輸大型打印機、原材料和外圍支持設備。然而,它可以在幾個方面減少運輸和庫存成本。首先,原材料可以被包裝或托盤化,使每立方英寸的材料多于零件本身。因此,濃縮材料可以使飛機載荷的利用率更高,減少補給任務。其次,多余的粉末狀原材料可以被回收到AM工藝中至少14次。此外,原材料通常保留其貨幣價值或升值。因此,多余的原材料可以在私營部門出售,而且安全問題很小。
在部署地點制造零件和用品可以幫助減少運輸成本。空軍老化的機隊的許多備件沒有被提前制造出來,而且供應有限。3-D打印可以降低維護成本,并為空軍提供機會,通過內部制造這些零件來延長其機隊的使用壽命。尋找和運輸稀有零件的時間可以減少,從而提高出勤率(與任務和訓練有關的飛行時間)。
空軍最近為美國本土設施購置了3-D打印機,陸軍和海軍也在早期實施3-D打印,這可能表明AM提供了財務上的好處。AM允許在需要的基礎上生產零件,這可以減少物資儲存的占地面積,消除零件的持有成本,并以更少的停機時間提高操作能力。
這篇研究文獻將使用問題-解決方案的方法來研究空軍如何通過在前沿作戰基地部署3-D打印機來生產飛機零件、工具和用品而獲益。本文首先簡要介紹了3-D打印機和AM,并提供了它們的使用實例。此外,還將對空軍的供應鏈進行總結。在這個總結之后,將徹底描述空軍在部署飛機零部件和用品時面臨的問題和挑戰,以及環境問題和操作影響。下一節將概述如何將3-D打印機部署到戰斗環境中的可能手段。本文的每一節都將使用定量數據來支持所有關于支出、節約、庫存水平和制造產量的主張和建議。最后,將根據研究結果提出實施3-D打印機的建議,隨后是結論。
本文件是北約 IST-151 研究任務組 (RTG) 活動的最終報告,題為“軍事系統的網絡安全”。該 RTG 專注于研究軍事系統和平臺的網絡安全風險評估方法。 RTG 的目標如下:
? 協作評估軍事系統的網絡安全,并在 RTG 的北約成員國之間共享訪問權限;
? 在 RTG 的北約成員國之間共享風險評估方法和結果;
? 將 RTG 的北約成員國使用的評估方法整合到一個連貫的網絡安全風險評估方法中,以使北約國家受益。
軍事平臺比以往任何時候都更加計算機化、網絡化和受處理器驅動。他們大量使用數據總線,如 MIL-STD-1553A/B、CAN/MilCAN、RS-422/RS-485、AFDX 甚至普通以太網,以及戰術通信的舊標準,如 MIL-STD-188C 和 Link 16。此外,捕獲器、傳感器、執行器和許多嵌入式系統是擴展攻擊面的額外無人保護的潛在輸入。結果是增加了網絡攻擊的風險。然而,這些平臺的持續穩定運行對于軍事任務的成功和公共安全至關重要。
軍事系統和平臺是網絡攻擊的首選目標,不是因為它們像消費電子產品那樣普遍,而是因為它們潛在的戰略影響。一旦受到影響,就可以實現各種短期和長期影響,從拒絕能力到秘密降低其有效性或效率。因此,軍隊必須在各個層面解決網絡安全問題:戰略層面,同時獲取平臺和系統;作戰層面,同時規劃軍事任務和戰術。
北約國家擁有大量可能面臨網絡攻擊的軍事平臺和系統。因此,北約將受益于利用當前的流程和方法來設計更安全的系統并評估當前系統的網絡安全。
本報告介紹了針對軍事系統和平臺量身定制的網絡安全評估方法,該方法由 RTG 團隊成員合作開發,并建立在他們的經驗和專業知識之上。團隊成員已經使用的流程被共享、分析、集成和擴充,以產生本報告中描述的流程。本報告的目標受眾是愿意評估和減輕其軍事系統的網絡安全風險的決策者。
圖一:網絡安全評估過程的五個主要步驟。
第 2 節介紹了 RTG 團隊在其存在的三年中用于開發流程的方法。第 3 節列出了可以應用該過程的系統的一些特征。最后,第 4 節描述了評估流程,而第 5 節總結本報告。
軍事平臺比以往任何時候都更加計算機化、網絡化和受處理器驅動。這導致增加了網絡攻擊的風險。然而,這些平臺的持續穩定運行對于軍事任務和公共安全的成功至關重要。
絕對的網絡安全是不存在的。必須通過迭代風險評估持續管理網絡安全。傳統 IT 系統存在許多網絡安全風險管理框架和流程。然而,在軍事平臺和系統方面,情況遠非如此。本文檔介紹了針對軍事系統量身定制的網絡安全風險評估流程。該流程由北約 IST-151 研究任務組 (RTG) 活動的團隊成員開發,該活動名為“軍事系統的網絡安全”。該過程可以應用于傳統的 IT 和基于固件的嵌入式系統,這些系統在軍事平臺和系統中無處不在。