亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

本文件包含了圖論和加法組合學的課程筆記,這是一門研究生水平的課程,由Yufei Zhao教授于2019年秋季在麻省理工學院講授。課堂筆記是由學生根據課堂內容撰寫的,并在教授的幫助下進行編輯。這些筆記沒有經過徹底的準確性檢查,特別是結果的出處。它們的目的是作為研究資源,而不是作為專業出版物的替代品。我們為任何無心的不準確或不實的陳述道歉。關于這門課的更多信息,包括習題和演講視頻(即將出現),可以在課程網站上找到:

//yufeizhao.com/gtac/

本課程審查圖論與加法組合學的經典與現代發展,并注重在連結這兩門學科的主題。本課程也介紹學生目前的研究課題和開放問題。

付費5元查看完整內容

相關內容

在數學中,圖論是對圖的研究,圖是用于建模對象之間成對關系的數學結構。 在這種情況下,圖由通過邊(也稱為鏈接或線)連接的頂點(也稱為節點或點)組成。 將有向圖(其中邊對稱地鏈接兩個頂點)和有向圖(其中邊不對稱地鏈接兩個頂點)區分開來; 有關更詳細的定義以及通常考慮使用的圖類型的其他變化,請參見圖(離散數學)。 圖形是離散數學研究的主要對象之一。

在復雜的以人為中心的系統中,每天的決策都具有決策相關信息不完全的特點。現有決策理論的主要問題是,它們沒有能力處理概率和事件不精確的情況。在這本書中,我們描述了一個新的理論的決策與不完全的信息。其目的是將決策分析和經濟行為的基礎從領域二價邏輯轉向領域模糊邏輯和Z約束,從行為決策的外部建模轉向組合狀態的框架。

這本書將有助于在模糊邏輯,決策科學,人工智能,數學經濟學,和計算經濟學的專業人員,學者,經理和研究生。

讀者:專業人士,學者,管理者和研究生在模糊邏輯,決策科學,人工智能,數學經濟學,和計算經濟學。

付費5元查看完整內容

凸優化作為一個數學問題已經被研究了一個多世紀,并在許多應用領域的實踐中應用了大約半個世紀,包括控制、金融、信號處理、數據挖掘和機器學習。本文主要研究凸優化的幾個問題,以及機器學習的具體應用。

付費5元查看完整內容

Perkovic對使用Python編程的介紹:作為應用程序開發的重點,第二版不僅僅是對編程的介紹。這是一本包羅萬象的計算機科學入門書,采用了“在正確的時間使用正確的工具”的教學方法,并側重于應用程序開發。該方法是實踐和問題導向的,與實踐問題和解決方案出現在整個文本。文本是命令式的,但并不回避在適當的時候盡早討論對象。關于用戶定義類和面向對象編程的討論將在后面的課文中出現,當學生有更多的背景知識和概念時,可以激發他們的學習動機。章節包括問題解決技術和經典算法的介紹,問題解決和編程以及將核心技能應用于應用程序開發的方法。本版本還包括在更廣泛的領域中提供的示例和實踐問題。另一章的案例研究是獨家威利E-Text,為學生提供實際應用的概念和工具,涵蓋在章節中。

付費5元查看完整內容

統計學習是一套以復雜數據建模和數據理解為目的的工具集,是近期才發展起來的統計學的一個新領域。本書出自統計學習領域聲名顯赫的幾位專家,結合R語言介紹了分析大數據必不可少的工具,提供一些重要的建模和預測技術,并借助豐富的實驗來解釋如何用R語言實現統計學習方法。論題包括線性回歸、分類、重抽樣方法、壓縮方法、基于樹的方法、支持向量機、聚類等,作者借助彩圖和實際案例直觀解釋這些方法。為了讀者更好地理解書中內容,每章后還配有豐富的概念性和應用性練習題。

  書中內容與《The Elements of Statistical Learning》的大部分內容相同,但是本書起點低,弱化了數學推導的細節,更注重方法的應用,所以更適合作為入門教材。當然,這本《統計學習導論》不僅是優秀的“統計學習”或“機器學習”課程的教材,也是數據挖掘、數據分析等相關從業者不可或缺的參考書。

Gareth James 斯坦福大學統計學博士畢業,師從Trevor Hastie。現為南加州大學馬歇爾商學院統計學教授,美國統計學會會士,數理統計協會終身會員,新西蘭統計協會會員。《Statistica Sinica》、《Applications and Case Studies》、《Theory and Methods》等期刊的副主編。

  Daniela Witten 斯坦福大學統計學博士畢業,師從Robert Tibshirani。現為華盛頓大學生物統計學副教授,美國統計學會和國際數理統計協會會士,《Journal of Computational and Graphical Statistics》和《Biometrika》等期刊副主編。

  Trevor Hastie 美國統計學家和計算機科學家,斯坦福大學統計學教授,英國皇家統計學會、國際數理統計協會和美國統計學會會士。Hastie參與開發了 R 中的大部分統計建模軟件和環境,發明了主曲線和主曲面。

  Robert Tibshirani 斯坦福大學統計學教授,國際數理統計協會、美國統計學會和加拿大皇家學會會士,1996年COPSS總統獎得主,提出lasso方法。Hastie和Tibshirani都是統計學習領域的泰山北斗,兩人合著《The Elements of Statistical Learning》,還合作講授斯坦福大學的公開課《統計學習》。  

付費5元查看完整內容

《算法精解:C語言描述》,機械工業出版社出版,外文書名:Mastering Algorithms with C。作者:(美)Kyle Loudon (作者),? 肖翔 (譯者),? 陳舸 (譯者) 。《算法精解:C語言描述》是數據結構和算法領域的經典之作,十余年來,暢銷不衰!全書共分為三部分:部分首先介紹了數據結構和算法的概念,以及使用它們的原因和意義,然后講解了數據結構和算法中最常用的技術——指針和遞歸,最后還介紹了算法的分析方法,旨在為讀者學習這本書打下堅實的基礎;第二部分對鏈表、棧、隊列、集合、哈希表、堆、圖等常用數據結構進行了深入闡述;第三部分對排序、搜索數值計算、數據壓縮、數據加密、圖算法、幾何算法等經典算法進行了精辟的分析和講解。

本書的眾多特色使得它在同類書中獨樹一幟:具體實現都采用正式的C語言代碼而不是偽代碼,在很多數據結構和算法的實現過程中,有大量細節問題是偽代碼不能解決的;每一章都有精心組織的主題和應用;全部示例來自真實的應用,不只是一般的練習;對每種數據結構、算法和示例都進行了詳細分析;每一章的末尾都會有一系列問題和對應的回答,旨在強調這一章的重要思想……

本書中的代碼尤為值得強調:所有實現都采用C語言編寫,所有代碼都優先用于教學目的,所有代碼都在4種平臺上經過完整測試,頭文件記錄了所有公共的接口,命名規則適用于全書所有的代碼,所有的代碼都包含大量注釋……

《O’Reilly精品圖書系列·算法精解:C語言描述》內容包括: · 數據結構和算法的概念,以及使用它們的原因和意義 · 指針和遞歸 · 算法分析 · 常用數據結構:鏈表、棧、隊列、集合、哈希表、樹、堆、優先級隊列以及圖 · 排序和搜索 · 數值計算 · 數據壓縮 · 數據加密 · 圖算法 · 幾何算法

付費5元查看完整內容

貝葉斯數據分析第三版,這本經典的書被廣泛認為是關于貝葉斯方法的主要著作,用實用的方法來分析數據和解決研究問題。貝葉斯數據分析,第三版繼續采取一種實用的方法來分析使用最新的貝葉斯方法。作者——統計界權威——在介紹高級方法之前,先從數據分析的角度介紹基本概念。在整個文本中,大量的工作示例來自實際應用和研究,強調在實踐中使用貝葉斯推理。

第三版新增

  • 非參數建模的四個新章節
  • 覆蓋信息不足的先驗和邊界回避的先驗
  • 關于交叉驗證和預測信息標準的最新討論
  • 改進的收斂性監測和有效的樣本容量計算迭代模擬
  • 介紹了哈密頓的蒙特卡羅、變分貝葉斯和期望傳播
  • 新的和修改的軟件代碼

這本書有三種不同的用法。對于本科生,它介紹了從第一原則開始的貝葉斯推理。針對研究生,本文提出了有效的方法,目前貝葉斯建模和計算的統計和相關領域。對于研究人員來說,它提供了應用統計學中的各種貝葉斯方法。其他的資料,包括例子中使用的數據集,所選練習的解決方案,以及軟件說明,都可以在本書的網頁上找到。

貝葉斯數據分析課程

//avehtari.github.io/BDA_course_Aalto/index.html

付費5元查看完整內容

對因果推理的簡明和自成體系的介紹,在數據科學和機器學習中越來越重要。

因果關系的數學化是一個相對較新的發展,在數據科學和機器學習中變得越來越重要。這本書提供了一個獨立的和簡明的介紹因果模型和如何學習他們的數據。在解釋因果模型的必要性,討論潛在的因果推論的一些原則,這本書教讀者如何使用因果模型:如何計算干預分布,如何從觀測推斷因果模型和介入的數據,和如何利用因果思想經典的機器學習問題。所有這些主題都將首先以兩個變量的形式進行討論,然后在更一般的多元情況下進行討論。對于因果學習來說,二元情況是一個特別困難的問題,因為經典方法中用于解決多元情況的條件獨立不存在。作者認為分析因果之間的統計不對稱是非常有意義的,他們報告了他們對這個問題十年來的深入研究。

本書對具有機器學習或統計學背景的讀者開放,可用于研究生課程或作為研究人員的參考。文本包括可以復制和粘貼的代碼片段、練習和附錄,其中包括最重要的技術概念摘要。

首先,本書主要研究因果關系推理子問題,這可能被認為是最基本和最不現實的。這是一個因果問題,需要分析的系統只包含兩個可觀測值。在過去十年中,作者對這個問題進行了較為詳細的研究。本書整理這方面的大部分工作,并試圖將其嵌入到作者認為對研究因果關系推理問題的選擇性至關重要的更大背景中。盡管先研究二元(bivariate)案例可能有指導意義,但按照章節順序,也可以直接開始閱讀多元(multivariate)章節;見圖一。

第二,本書提出的解決方法來源于機器學習和計算統計領域的技術。作者對其中的方法如何有助于因果結構的推斷更感興趣,以及因果推理是否能告訴我們應該如何進行機器學習。事實上,如果我們不把概率分布描述的隨機實驗作為出發點,而是考慮分布背后的因果結構,機器學習的一些最深刻的開放性問題就能得到最好的理解。
付費5元查看完整內容
北京阿比特科技有限公司