復雜的高精度人機系統(如航空航天和機器人手術)的效率和安全性與其操作員的認知準備、管理負荷的能力和態勢感知密切相關。對腦力工作量的準確評估有助于防止操作員失誤,并通過預測因工作超負荷或刺激不足而導致的能力下降,從而進行相關干預。基于人體和大腦活動測量的神經人體工程學方法,可以在復雜的培訓和工作環境中提供對人類心理負荷進行可靠的評估。本文概述了可穿戴大腦和身體成像方法,通過神經/生理信號評估心理工作量的潛力,并提供了一種基于多模態生物傳感器,進行多領域認知任務中負荷比較評估的研究設計。這種利用神經成像和生理監測的綜合神經人體工程學評估,可以為下一代神經適應性接口和培訓方法的開發提供信息,以實現更有效的人機交互和操作員技能獲取。
圖3-1:傳感器套件顯示fNIRS、EEG、ECG、PPG和EOG(這里沒有顯示眼動跟蹤)。
目前越來越多的趨勢是從實況空中訓練轉向明顯更便宜的模擬任務訓練。然而,節省成本并不是唯一的原因;特定任務根本無法在真實環境中得到有效和安全的訓練。模擬似乎是通用的解決方案。
但戰斗機飛行員僅在飛行模擬中無法達到所需的戰備水平。因此,現場訓練和綜合訓練相結合可能是理想的答案。
北約MSG活動128和165通過分布式模擬探索了北約任務訓練的操作和技術要求,并提出了聯合和聯合空中作戰的通用參考架構。盡管他們的主要重點是虛擬和建設性模擬,但實時訓練方面一直被考慮在未來擴展到LVC培訓網絡。
本次講座強調了混合現場和綜合訓練的好處,并適當考慮了在多域和跨國網絡中連接多個資產的困難。目前正在開發和建立諸如LVC網關、多級安全(MLS)架構、跨域解決方案(CDS)、特殊人機界面(HMI)等技術解決方案,以使這一切成為可能。
剩下的主要限制是什么?解決方法是什么?
成功完成地下作業需要高度專業化的能力和由最新工具輔助的準確規劃。奧地利軍事學院的NIKE研究小組旨在為這些非常特殊的作戰環境提供決策、規劃和培訓。3D模型、平面圖、地圖或激光掃描等異構數據源的快速數據集成和可視化,以及從地下結構內部的傳感器和攝像頭收集的操作員信息,提供了虛擬進入通常看不見的裝置的可能性。BORIS(基于瀏覽器的空間定向)初始HTML模型、地下作業任務工具 (SOMT) 或快速隧道建模工具 (FTMT) 等專用工具通過創建虛擬的地下任務區域來提高快速可視化。在擴展現實 (XR) 應用程序中,改進的空間理解顯著改善了決策,并支持同步任務規劃和執行。由于地下服務結構的運營商和行動部隊之間的密切合作和信息交流是成功的先決條件,所有相關因素和行動者的整合將大大增加全面合作。該項目通過在真正全面的通用作戰圖中顯示相關信息來增強通用視角,從而實現更準確和精確的行動,減少自身損失和附帶損害。
自主系統的開發者需要通過測試來訓練和驗證他們的算法。最終用戶在決定如何有效利用系統時也可以使用這些數據。模擬是在真實環境中進行實驗的另一種選擇,它更安全,成本更低,并允許執行可重復和可控的實驗。傳統上,機器人專家使用的模擬器專注于與系統相關的細節,同時簡化了與環境、通信和資產間關系相關的方面。作為替代方案,CMRE提出了一個海事仿真框架(MSF),可與機器人中間件(即MOOS和ROS)互操作,采用了一種硬件和軟件循環仿真方法,允許模擬通常被簡化的重要外部因素。這些擴展元素包含內容可以發現自主系統的開發人員可能不知道的交互,從而提高開發中的系統的健壯性。這項工作的目的是建立一個可配置和可擴展的仿真框架,以訓練和測試海事系統的自主行為,以協助系統開發者和支持最終用戶的操作決策。
該框架由高級體系結構(HLA)中的專用模擬器、聯邦成員模擬環境、平臺動態、傳感仿真、通信和直觀的可視化組成。提出的框架提供了一種模擬情況,包括復雜的海上操作的挑戰,以水下領域為重點,提供了比傳統方法更全面和現實的能力。到目前為止,MSF已經被用于支持地雷對抗(MCM)和反潛戰(ASW)任務中自主系統算法的發展,具有單個或多個車輛配置。
由于軍事戰場日益復雜,國防部門正在尋找最先進的解決方案,為操作人員提供工具,以實現比對手更快和更有效的決策過程。這些工具通常被稱為決策支持系統(DSS),在過去幾十年里一直在使用。人工智能技術通常被應用在決策支持系統中,以確保與個人行為相比,錯誤率更低,決策更快。在決策支持系統中,這種實現的有效性在很大程度上取決于操作者對人工智能提供的建議的理解能力,以及由此產生的信任。可解釋的人工智能(XAI)允許用戶通過在DSS的用戶界面(UI)中可視化的過程來了解系統是如何得出關于某個決策的建議的。然而,這也帶來了一個固有的問題,即:在用戶超載、降低操作者的決策性能之前,應該向用戶展示多少過程?
在這項研究中,一個人工智能驅動的應用程序已經被開發出來,它可以幫助操作員規劃一個軍用直升機任務。在這個場景中,操作者需要為直升機上的士兵找到兩個合適的著陸區域(LZs),以便接近一個小城市地區的恐怖分子營地。DSS支持選擇合適的降落區域的過程,考慮到各個方面,例如到目標區域的距離、光斑大小、表面類型和坡度。為了評估達到信任和任務績效的最佳水平需要多少透明度,我們定義了四個可解釋性級別,每個級別都增加了信息透明度和控制級別。對于這四個關卡中的每一個,都需要在測試階段設計、開發和評估獨特的ui。結果表明,第三和第四UI設計的性能有所提高(決策制定的時間更少,LZ決策的正確百分比更高,提交的LZ反映了良好的人機交互,感知和實際得分之間的偏差較低),這比前兩層提供了更多的信息和更多的互動可能性。結果還表明,用戶更喜歡個性化他們的UI,以滿足他們的角色、體驗水平和個人偏好。
網絡空間是當前軍隊必須應對的威脅環境之一。特別是,社交網絡已經成為一個重要的影響場景,用戶在其中也透露了大量的心理信息。本文的目的是確定對社交網絡中行為的分析是否可以被確立為對用戶個性的有效間接測量,以及找出這是否可以成為軍隊的有用工具。為此,我們對5個數據庫(PsycInfo、Web of Science、Scopus、Psicodoc和PubMed)中存在的研究進行了系統回顧,選擇了那些基于大五模型的文章。在找到的194篇文章中,共對過去10年中發表的36篇論文進行了深入分析,這些論文對應于20個國家。結果顯示,社交網絡中呈現的行為與用戶自我報告的個性相吻合。此外,某些與 "大五模型 "中的因素相關的在線行為模式可以被識別出來。這種分析技術已經證明了它的可靠性和有效性,揭示了它能夠補充和擴展傳統的自我報告或熟人報告措施。它也可能構成軍隊感興趣的工具,旨在提高部隊的可操作性。
2014年,劍橋大學心理學教授Aleksandr Kogan開發了一款名為 "這是你的數字生活 "的應用程序。通過Facebook,這個應用程序為用戶提供了完成一系列問題的可能性,目的是確定他們的個性。據估計,科根教授發起的這個項目總共獲得了超過7800萬社交網絡用戶的個人信息(Hindman, 2018)。
這些數據被劍橋分析公司購買,后來得知,這些數據被用來影響2016年美國總統選舉的投票意向,(Sampedro, 2021)。就該公司當時的首席執行官亞歷山大-菲克斯而言,了解選民的個性使他們在某種程度上能夠預測他們的行為,并以此設計一系列的信息,以操縱態度和改變投票行為(Hindman,2018)。
拋開這些數據的濫用所引起的爭議,很明顯,我們正處于人類行為研究的變革時期。對傳統環境的經典觀察現在正在向互聯網和新技術領域轉移,也提供了新的可能性,而且正如在劍橋分析公司的案例中所看到的,對社會現象產生了強大的影響。
在工業資產運行過程中出現的異常情況可能表明存在退化和故障,隨著時間的推移,會導致不期望的行為、運行條件的喪失以及系統的最終崩潰。預測性維護技術負責監測系統的狀態,以便在初始階段對這些異常情況進行檢測,從而以最佳方式安排維護任務。本文介紹了一種基于機器學習的人工智能技術的海軍資產預測性維護解決方案。為此,使用了由船舶實時收集并通過控制中心傳輸的傳感器(溫度、壓力等)的信息。所開發的系統(SOPRENE)能夠從我們軍艦上的發動機的歷史數據中預測不同的故障模式或異常運行狀況的發生。此外,該系統的使用可擴展到大型艦隊,該解決方案已使用Spark分布式環境來實現,以促進預測的分布式計算。
維護成本是工業運營成本的一個重要部分。在某些情況下,如在冶金行業,這些成本可以達到總生產成本的15%-60%。此外,其中三分之一的投資由于不必要的或不正確的活動而被浪費。然而,維護是至關重要的,因為系統的故障會導致巨大的財務成本。
在過去,由于不可能處理大量連續的數據流,所以在很多情況下,只能使用統計技術。然而,今天的預測性維護則遵循更先進的理念:
與其依靠這些行業統計數據(如平均故障間隔時間)來安排維護活動,不如對系統進行實時監測,以確定其狀態和真實狀況。目前的計算能力允許處理更多的數據,以及使用更復雜的技術來進行預測、檢測異常情況和對系統進行可能的診斷。因此,預測性維護可以理解為基于系統的當前狀態或條件以及根據運行歷史進行的未來預測的預防性維護。
這項研究工作介紹了在SOPRENE項目中開發的預測性維護系統在海軍艦艇發動機上的應用。擬議的系統已經分析并使用了分布式環境中的機器學習技術。在這個意義上,所考慮的方法論可以根據Ran等人的說法來劃分。
2019 年的項目提案征集產生了 10 個項目,共包含 15 個研究工作流。這些項目涉及 140 多名教職員工、研究人員和學生,他們隸屬于麻省理工學院校園和麻省理工學院林肯實驗室的 20 多個不同的組織單位。所有項目團隊都涉及空軍人員,他們嵌入研究團隊并充當項目與國防部利益相關者之間的聯絡人。這些項目于 2020 年 1 月開始,推進了廣泛領域的人工智能研究,包括天氣建模和可視化、培訓計劃優化以及增強自主性以增強和放大人類決策。人工智能加速器的研究活動已成功擴展,包括與海軍研究生院和美國太空部隊合作的種子研究項目,以及于 2021 年 1 月啟動的人工智能教育研究項目。總共11個項目 。
Guardian Autonomy for Safe Decision Making
Air Guardian 旨在通過開發用于增強和放大人類決策的算法和工具來推進人工智能和自主性。AI Guardian 通過使用過去的數據建議行動并融合來自傳感器和信息源的輸入來幫助人類。AI Guardian 系統的支持在出現意外和復雜情況時特別有用。Guardian 的端到端機器學習算法向專家學習如何在高度動態和令人驚訝的情況下以常識推理做出反應。我們的目標是使代理能夠感知其環境,識別短期風險,對其操作員以及其他合作和對抗代理的意圖和行為進行推理,以確定最佳行動方案。
該項目旨在開發一種新的框架和算法類別,使無人機系統能夠在模擬器環境中學習復雜的多智能體行為,然后將其知識從模擬無縫轉移到現實世界的現場環境中。該團隊設想了一個急救系統,在該系統中,一群自動駕駛飛機接受了虛擬訓練,了解如何在新的災區模擬中導航和合作。然后,系統將在模擬中獲得的學習轉移到真正的自主飛機群中。一架飛機部署了一個大型“母艦”地面站,該地面站釋放這些訓練有素的自主飛機,以自動執行時間緊迫、勞動密集型的任務,例如勘測災區以及定位和識別幸存者。
合成孔徑雷達 (SAR) 是一種能夠產生高分辨率景觀圖像的雷達成像技術。由于能夠在所有天氣和光照條件下生成圖像,與光學系統相比,SAR 成像在人道主義援助和救災 (HADR) 任務中具有優勢。該項目旨在通過利用來自相關模式(例如,EO/IR、LiDAR、MODIS)、模擬數據和基于物理的模型的補充信息,提高 SAR 圖像的人類可解釋性、SAR 目標檢測和自動目標識別 (ATR) 的性能. 項目結果和產生的技術將在整個政府企業中共享,以便在 HADR 問題空間中受益,跨服務的多個合作伙伴可能能夠利用已開發的技術。
為了改善人工調度飛機航班的極其復雜和耗時的過程,該項目旨在實現飛機航班調度的自動化,以提高調度效率和在存在不確定性的情況下的魯棒性。這將優化培訓飛行計劃,同時提供可解釋性并消除決策中的孤島。該技術使調度人員能夠在快速變化的環境中快速有效地重新構建調度,從而大大加快計劃和決策周期。雖然最初專注于飛機航班調度,但該技術適用于許多部門的所有復雜資源分配任務。
大量標記數據、新算法和計算機性能的可用性使人工智能革命成為可能。但漫長的計算機在環開發周期阻礙了人類發明和部署創造性的人工智能解決方案。此外,摩爾的終結削弱了半導體技術提供性能的歷史能力。AI 性能越來越依賴于硬件架構、軟件和算法。Fast AI 項目專注于為快速構建 AI 解決方案奠定基礎,在現代和傳統硬件平臺上實現性能和可移植性。我們在編程語言、編譯器技術、綜合儀器、分析生產力工具和并行算法等領域進行創新。
人工智能技術成功的核心要求是高質量的數據。讓系統做好“AI 就緒”的準備工作包括收集和解析原始數據以供后續攝取、掃描、查詢和分析。該項目將開發 ML 增強數據庫技術,以降低存儲和處理成本,同時實現各種數據庫孤島之間的數據共享。此外,我們將開發一個異常值檢測引擎來識別來自多個來源的復雜事件流中的時間異常。
AI Accelerator 自然語言處理項目旨在推進平面/文本圖像數據和空軍任務中的會話代理、知識表示和預測算法。隨著人工智能領域的進步,隨著我們在數據中記錄更多的工作,并在我們的家中找到更多的設備,人們能夠以有意義的方式與技術交互至關重要——就像人類一樣,語言很重要——尤其是在發現關于數字系統的信息。目標是通過對話交互和知識提取來推進人工智能社區,以進行開放域對話和非結構化信息。
AI加速器自然語言處理外語項目專注于構建個性化的外語教育框架,其中包括要獲得的語言知識模型。這項工作利用當前的外語,根據學習者在課程作業各個階段的預期知識水平量身定制,并制定標準化的能力測試措施。該模型將有助于個性化學習體驗,并闡明學習結果何時和/或何處對學生不利。
用于天氣和氣候的地球情報 (EI) 引擎包括一個新穎的 AI 測試平臺,以支持美國空軍的快速、有效決策和長期戰略規劃和運營。人工智能的進步有助于縮小人工智能研究人員與可用地球系統數據之間的差距,通過一個連接數據和模型的平臺、新穎的算法和圖像填補任務,將低質量的天氣和氣候數據集與高質量的天氣和氣候數據集聯系起來。EI引擎將為美國空軍提供改進的異常檢測算法;對集中式地球情報數據的關鍵遠程訪問;用于任務支持的地球智能的直觀超級計算機可視化;改進任務行動的臨近預報天氣預報;以及受氣候變化影響的戰略位置識別,以加強資源配置。
盡管機器學習模型的性能令人難以置信,但它們仍然難以理解——我們不明白它們是如何或為什么得出結論的。因此,我們不可能對模型的決策充滿信心,并在它們出現故障時對其進行調試。這種“黑盒”性質限制了我們部署和節約維護機器學習系統的能力,尤其是在高風險的環境中。該項目以全新的思維方式處理機器學習的可解釋性:將機器學習和人機交互方法相結合,使實際用戶的可操作性成為主要目標。目標是確定可解釋機器學習的標準,從而能夠開發具有與人類和任務一致的數據表示和決策界面的模型。
人工智能技術已被證明在許多關鍵應用中非常成功,例如對象識別、語音識別等。然而,這些成功依賴于收集大量數據集和仔細的手動注釋。這個過程成本高、耗時長,而且在很多情況下,沒有足夠的數據可用。遷移學習通過利用機器看到的過去數據僅使用少數帶注釋的示例來解決未來問題,從而為這些問題提供了解決方案。這項研究側重于遷移學習中的挑戰,旨在開發可以從根本上從多個異構任務中學習的算法,超越低級任務相似性,以實現跨不同任務的更廣泛遷移。此類算法將在包括計算機視覺和自然語言處理在內的多個領域具有普遍適用性,并將大大減少對大量注釋數據的依賴,從而降低部署和維護人工智能系統的成本和時間。
人工智能和機器學習 (ML) 方法已為美國空軍展示了巨大的前景。然而,當數據輸入或任務目標與算法訓練期間遇到的目標發生變化時,許多現有的 ML 算法通常會發生災難性的失敗。這種缺乏可靠性以及現代 ML 技術的不透明性使得無法在關鍵任務環境中自信地部署機器學習系統。此外,模型無法適應不斷變化的環境,這意味著每當環境發生變化時都需要(通常是昂貴且困難的)模型重新調整。本研究將側重于以魯棒性為中心的方法來開發 ML 算法。強大的 AI 開發環境 (RAIDEN) 優先考慮 ML 的可靠性、多功能性和適應性。我們努力提供的模型、框架和算法將簡化真正可靠和高效的機器學習系統的部署。
該項目匯集了生物醫學儀器、信號處理、神經生理學、心理物理學、計算機視覺、人工智能 (AI) 和機器學習 (ML) 方面的專家以及空軍飛行員,以開發和測試基于人工智能的多模式用于客觀性能預測和優化的生理傳感器融合方法。該項目將利用身臨其境的虛擬環境來訓練飛行員并不引人注目地測量性能預測指標。從該計劃開發的一系列挑戰數據集將用于參與社區。該團隊與多個政府研究工作以及空中教育和培訓司令部的無數飛行員培訓單位合作,尋求通過明顯加快飛行員培訓時間表來提供概念驗證,從而更快地培養“更好的飛行員”。
國防部和民用部門正在研究幾種不同的 GPS 替代方案,以解決 GPS 替代方案;但是,每種替代方案都會帶來額外的成本和用例。磁導航提出了一種替代 GPS 系統,該系統依賴于地球的磁共振——一個眾所周知且不變的系統——進行導航。磁導航當前的一些問題涉及 1) 減少系統上的多余噪聲,例如飛機本身的磁輸出,2) 以與軍事系統一致的實時速度或速度確定位置,以及 3) 與其他系統相結合系統來展示一個完全替代的 GPS 系統。目前的項目著眼于使用魯棒的神經微分模型來解決磁導航的缺點并提供 GPS 的可行替代方案。
該項目旨在應用人??工智能來增強美國空軍檢測、識別和地理定位未知射頻 (RF) 信號的能力,同時提供自適應干擾緩解和智能頻譜分析工具。這些能力增強了空軍情報監視和偵察 (ISR) 任務、通信、信號情報 (SIGINT) 和電子戰。結果將提高帶寬利用效率和頻譜共享,提高空軍在高干擾環境中的通信性能,產生更高質量的射頻信號情報,并提高系統對對抗性攻擊和干擾的魯棒性。
KAL 是一個探索性研究項目,旨在推進教育研究活動,為具有不同角色和教育背景的學習者(從空軍和國防部 (DoD) 人員到公眾)大規模促進最大的學習成果。項目團隊將研究和評估與在各種現有課程中培訓空軍人員人工智能主題相關的各種教學實踐和學習效益,繪制教育需求和能力的格局,并試點實驗學習經驗,目標是盡早概述用于創新技術支持的培訓和學習的原型。