《機器人網絡的分布式控制》是計算機科學和控制理論的獨特融合。本書提供了一套廣泛的工具,用于理解協調算法,確定其正確性,并評估其復雜性;它分析了任務的各種協作策略,例如共識、集合、連通性維護、部署和邊界估計。統一主題是機器人網絡的一種正式模型,它明確地結合了機器人網絡的通信、傳感、控制和處理能力——這一模型進而產生了描述和分析協調算法的通用正式語言。
為控制和機器人的第一和二年級研究生寫的書,這本書也將對控制理論,機器人,分布式算法和自動機理論的研究人員有用。本書提供了基本概念和主要結果的解釋,以及大量的例子和練習。
對具有固定互連拓撲的處理器網絡和具有位置依賴互連拓撲的機器人網絡的圖論概念、分布式算法和復雜性度量進行了完備的闡述
詳細處理平均和一致算法解釋為同步網絡上的線性迭代
幾何概念的介紹,如分割,接近圖,和多中心函數
詳細處理運動協調算法的部署,會合,連通性維護和邊界估計
在過去的幾十年里,組合優化和圖論——作為組合學的整個領域——經歷了特別快速的發展。這一事實有多種原因;一個是,例如,應用組合論證已經變得越來越普遍。然而,數學之外的兩個發展可能更為重要:首先,組合優化的許多問題直接產生于工程和管理的日常實踐:確定交通或通信網絡中最短或最可靠的路徑,最大或相容的流量,或最短的線路;規劃交通網絡的連接;協調項目;解決供需問題。第二,隨著越來越高效的計算機系統的發展,那些屬于運籌學的任務的實際實例已經可以得到。此外,組合優化問題對復雜性理論也很重要,復雜性理論是數學和理論計算機科學的交叉領域,涉及算法分析。組合優化是數學中令人著迷的一部分,它的魅力——至少對我來說——很大程度上來自于它的跨學科性和實用性。本書主要介紹了可以用圖論方法表述和處理的組合優化部分;既不考慮線性規劃理論,也不考慮多面體組合理論。
這本書的目的是全面概述在算法的數學分析中使用的主要技術。涵蓋的材料從經典的數學主題,包括離散數學,基本的真實分析,和組合學,以及從經典的計算機科學主題,包括算法和數據結構。重點是“平均情況”或“概率”分析,但也涵蓋了“最壞情況”或“復雜性”分析所需的基本數學工具。我們假設讀者對計算機科學和實際分析的基本概念有一定的熟悉。簡而言之,讀者應該既能寫程序,又能證明定理。否則,這本書是自成一體的。
這本書是用來作為算法分析高級課程的教科書。它也可以用于計算機科學家的離散數學課程,因為它涵蓋了離散數學的基本技術,以及組合學和重要的離散結構的基本性質,在計算機科學學生熟悉的背景下。傳統的做法是在這類課程中有更廣泛的覆蓋面,但許多教師可能會發現,這里的方法是一種有用的方式,可以讓學生參與到大量的材料中。這本書也可以用來向數學和應用數學的學生介紹與算法和數據結構相關的計算機科學原理。
盡管有大量關于算法數學分析的文獻,但該領域的學生和研究人員尚未直接獲得廣泛使用的方法和模型的基本信息。本書旨在解決這種情況,匯集了大量的材料,旨在為讀者提供該領域的挑戰的欣賞和學習正在開發的先進工具以應對這些挑戰所需的背景知識。補充的論文從文獻,這本書可以作為基礎的介紹性研究生課程的算法分析,或作為一個參考或基礎的研究人員在數學或計算機科學誰想要獲得這個領域的文獻自學。
第 1 章:算法 分析考慮算法分析的一般動機以及研究算法性能特征的各種方法之間的關系。
第 2 章:遞歸關系 專注于各種類型的 遞歸關系的基本數學屬性,這些遞歸關系在通過從程序的遞歸表示到描述其屬性的函數的遞歸表示的直接映射來分析算法時經常出現。
第 3 章:生成函數 在算法的平均情況分析中介紹了一個核心概念:生成函數 ——作為我們研究對象的算法與發現其屬性所必需的分析方法之間的必要且自然的聯系。
第 4 章:漸近逼近 研究了推導問題的近似解或逼近精確解的方法,這使我們能夠 在分析算法時對感興趣的數量進行 簡潔而精確的估計。
第 5 章:分析組合 學介紹了一種研究組合結構的現代方法,其中生成函數是研究的中心對象。這種方法是通過本書其余部分研究特定結構的基礎。
第 6 章:樹 研究了許多不同類型的 樹的屬性,以及在許多實際算法中隱含和顯式出現的基本結構。我們的目標是提供對樹組合分析的廣泛文獻結果的訪問,同時為大量算法應用提供基礎。
第 7 章:排列 調查了排列的組合屬性(數字1到N的排序),并展示了它們如何以自然的方式與基本的和廣泛使用的排序算法相關聯。
第 8 章:字符串和嘗試 研究 字符串、字符序列或從固定字母表中提取的字母的基本組合屬性,并介紹處理字符串的算法,從計算理論核心的基本方法到實用的文本處理方法重要應用程序的主機。
第 9 章:單詞和映射 涵蓋單詞的全局屬性( 來自M 字母字母表的 N 字母字符串),這些屬性在經典組合學(因為它們模擬獨立伯努利試驗的序列)和經典應用算法(因為它們散列算法的模型輸入序列)。本章還涵蓋了隨機映射 ( N個字母表中的N個字母單詞),并討論了與樹和排列的關系。
《量子信息理論》這本書基本上是自成體系的,主要關注構成這門學科基礎的基本事實的精確數學公式和證明。它是為研究生和研究人員在數學,計算機科學,理論物理學尋求發展一個全面的理解關鍵結果,證明技術,和方法,與量子信息和計算理論的廣泛研究主題相關。本書對基礎數學,包括線性代數,數學分析和概率論有一定的理解。第一章總結了這些必要的數學先決條件,并從這個基礎開始,這本書包括清晰和完整的證明它提出的所有結果。接下來的每一章都包含了具有挑戰性的練習,旨在幫助讀者發展自己的技能,發現關于量子信息理論的證明。
這是一本關于量子信息的數學理論的書,專注于定義、定理和證明的正式介紹。它主要是為對量子信息和計算有一定了解的研究生和研究人員準備的,比如將在本科生或研究生的入門課程中涵蓋,或在目前存在的關于該主題的幾本書中的一本中。量子信息科學近年來有了爆炸性的發展,特別是在過去的二十年里。對這個問題的全面處理,即使局限于理論方面,也肯定需要一系列的書,而不僅僅是一本書。與這一事實相一致的是,本文所涉及的主題的選擇并不打算完全代表該主題。量子糾錯和容錯,量子算法和復雜性理論,量子密碼學,和拓撲量子計算是在量子信息科學的理論分支中發現的許多有趣的和基本的主題,在這本書中沒有涵蓋。然而,當學習這些主題時,人們很可能會遇到本書中討論的一些核心數學概念。
圖論因其在計算機科學、通信網絡和組合優化方面的應用而成為一門重要的學科。它與其他數學領域的互動也越來越多。雖然這本書可以很好地作為圖表理論中許多最重要的主題的參考,但它甚至正好滿足了成為一本有效的教科書的期望。主要關注的是服務于計算機科學、應用數學和運籌學專業的學生,確保滿足他們對算法的需求。在材料的選擇和介紹方面,已試圖在基本的基礎上容納基本概念,以便對那些剛進入這一領域的人提供指導。此外,由于它既強調定理的證明,也強調應用,所以應該先吸收主題,然后對主題的深度和方法有一個印象。本書是一篇關于圖論的綜合性文章,主題是有組織的、系統的。這本書在理論和應用之間取得了平衡。這本書以這樣一種方式組織,主題出現在完美的順序,以便于學生充分理解主題。這些理論已經用簡單明了的數學語言進行了描述。這本書各方面都很完整。它將為主題提供一個完美的開端,對主題的完美理解,以及正確的解決方案的呈現。本書的基本特點是,概念已經用簡單的術語提出,并詳細解釋了解決過程。
這本書有10章。每一章由緊湊但徹底的理論、原則和方法的基本討論組成,然后通過示例進行應用。本書所介紹的所有理論和算法都通過大量的算例加以說明。這本書在理論和應用之間取得了平衡。第一章介紹圖。第一章描述了同構、完全圖、二部圖和正則圖的基本和初等定義。第二章介紹了不同類型的子圖和超圖。本章包括圖形運算。第二章還介紹了步行、小徑、路徑、循環和連通或不連通圖的基本定義。第三章詳細討論了歐拉圖和哈密頓圖。第四章討論樹、二叉樹和生成樹。本章深入探討了基本電路和基本割集的討論。第五章涉及提出各種重要的算法,在數學和計算機科學中是有用的。第六章的數學前提包括線性代數的第一個基礎。矩陣關聯、鄰接和電路在應用科學和工程中有著廣泛的應用。第七章對于討論割集、割頂點和圖的連通性特別重要。第八章介紹了圖的著色及其相關定理。第九章著重介紹了平面圖的基本思想和有關定理。最后,第十章給出了網絡流的基本定義和定理。
Elements of Robotics 是一本為高中生以上水平的讀者寫的機器人教科書。旨在彌合在學校里玩機器人與深入研究機器人學之間的市場空白和學習需求,讓讀者從工業和科研應用的角度了解機器人的主要研究課題。本書概述了不同類型的機器人以及用于構建機器人的組件,并側重于介紹機器人算法。書中的算法描述只用到了高中生或者大學新生的數學知識,如微積分,代數和概率論等,深入淺出地解釋了定位、繪圖、圖像處理、機器學習和群組機器人等高級主題算法。本書以開放獲取的形式出版,自出版至今兩年里已通過SpringerLink被讀者下載61萬多次。
本書致力于魯棒優化——一種處理不確定數據優化問題的特定的和相對新穎的方法。
? 數據不確定性的現象是什么,為什么它值得專門處理,
? 如何在魯棒優化中處理這一現象,以及如何將這種處理方法與處理數據不確定性的傳統方法進行比較。
本書的主體部分分為四個部分:
第一部分是 魯棒線性規劃的基本理論,它從一個不確定線性規劃問題及其魯棒/廣義魯棒問題的概念的詳細討論開始。
第二部分可以看作是第一部分的“二次曲線版本”,將non-adjustable魯棒優化的主要概念推廣到二次曲線形式的不確定凸規劃問題,重點是不確定二次曲線和半定規劃問題。
第三部分致力于魯棒多階段決策,特別是魯棒動態規劃。
第四部分提出了三個實際的例子,充分詳細地提出了RO方法的應用。
這本書的目的是介紹圖理論的基礎。在第一章中,我們對數學符號和證明技巧給予了明確的關注。這種方法使學生逐漸為使用圖論所必需的工具——復雜網絡——做好準備。在書的第二部分,學生學習關于隨機網絡,小世界,互聯網和網絡的結構,點對點系統,和社會網絡。再說一次,所有的問題都是在初級階段討論的,但這樣到最后學生們確實會有這樣的感覺:1。學會了如何閱讀和理解與圖論相關的基本數學。了解基本圖論如何應用于優化問題,如通訊網絡中的路由。更多地了解這個小世界和隨機網絡的神秘領域。
近年來,自然語言處理的研究方法取得了一些突破。這些突破來源于兩個新的建模框架以及在計算和詞匯資源的可用性的改進。在這個研討會小冊子中,我們將回顧這些框架,以一種可以被視為現代自然語言處理開端的方法論開始:詞嵌入。我們將進一步討論將嵌入式集成到端到端可訓練方法中,即卷積神經網絡和遞歸神經網絡。這本小冊子的第二章將討論基于注意力的模型的影響,因為它們是最近大多數最先進的架構的基礎。因此,我們也將在本章中花很大一部分時間討論遷移學習方法在現代自然語言處理中的應用。最后一章將會是一個關于自然語言生成的說明性用例,用于評估最先進的模型的訓練前資源和基準任務/數據集。
//compstat-lmu.github.io/seminar_nlp_ss20/
在過去的幾十年里,人工智能技術的重要性和應用不斷得到關注。在當今時代,它已經與構成人類塑造環境的大部分環境密不可分。因此,商業、研究和開發、信息服務、工程、社會服務和醫學等無數部門已經不可逆轉地受到人工智能能力的影響。人工智能有三個主要領域組成了這項技術:語音識別、計算機視覺和自然語言處理(見Yeung (2020))。在這本書中,我們將仔細研究自然語言處理(NLP)的現代方法。
這本小冊子詳細介紹了用于自然語言處理的現代方法,如深度學習和遷移學習。此外,本研究亦會研究可用于訓練自然語言處理任務的資源,并會展示一個將自然語言處理應用于自然語言生成的用例。
為了分析和理解人類語言,自然語言處理程序需要從單詞和句子中提取信息。由于神經網絡和其他機器學習算法需要數字輸入來進行訓練,因此應用了使用密集向量表示單詞的詞嵌入。這些通常是通過有多個隱藏層的神經網絡學習的,深度神經網絡。為了解決容易的任務,可以應用簡單的結構神經網絡。為了克服這些簡單結構的局限性,采用了遞歸和卷積神經網絡。因此,遞歸神經網絡用于學習不需要預先定義最佳固定維數的序列的模型,卷積神經網絡用于句子分類。第二章簡要介紹了NLP中的深度學習。第三章將介紹現代自然語言處理的基礎和應用。在第四章和第五章中,將解釋和討論遞歸神經網絡和卷積神經網絡及其在自然語言處理中的應用。
遷移學習是每個任務或領域的學習模型的替代選擇。在這里,可以使用相關任務或領域的現有標記數據來訓練模型,并將其應用到感興趣的任務或領域。這種方法的優點是不需要在目標域中進行長時間的訓練,并且可以節省訓練模型的時間,同時仍然可以(在很大程度上)獲得更好的性能。遷移學習中使用的一個概念是注意力,它使解碼器能夠注意到整個輸入序列,或自注意,它允許一個Transformer 模型處理所有輸入單詞,并建模一個句子中所有單詞之間的關系,這使得快速建模一個句子中的長期依賴性成為可能。遷移學習的概念將在小冊子的第6章簡要介紹。第七章將通過ELMo、ULMFiT和GPT模型來描述遷移學習和LSTMs。第八章將詳細闡述注意力和自注意力的概念。第九章將遷移學習與自注意力相結合,介紹了BERT模型、GTP2模型和XLNet模型。
為NLP建模,需要資源。為了找到任務的最佳模型,可以使用基準測試。為了在基準實驗中比較不同的模型,需要諸如精確匹配、Fscore、困惑度或雙語評估替補學習或準確性等指標。小冊子的第十章簡要介紹了自然語言處理的資源及其使用方法。第11章將解釋不同的指標,深入了解基準數據集SQuAD、CoQa、GLUE和SuperGLUE、AQuA-Rat、SNLI和LAMBADA,以及可以找到資源的預訓練模型和數據庫,如“帶代碼的論文”和“大壞的NLP數據庫”。
在小冊子的最后一章中,介紹了生成性NLP處理自然語言生成,從而在人類語言中生成可理解的文本。因此,不同的算法將被描述,聊天機器人和圖像字幕將被展示,以說明應用的可能性。
本文對自然語言處理中各種方法的介紹是接下來討論的基礎。小冊子的各個章節將介紹現代的NLP方法,并提供了一個更詳細的討論,以及各種示例的潛力和限制。
在復雜的以人為中心的系統中,每天的決策都具有決策相關信息不完全的特點。現有決策理論的主要問題是,它們沒有能力處理概率和事件不精確的情況。在這本書中,我們描述了一個新的理論的決策與不完全的信息。其目的是將決策分析和經濟行為的基礎從領域二價邏輯轉向領域模糊邏輯和Z約束,從行為決策的外部建模轉向組合狀態的框架。
這本書將有助于在模糊邏輯,決策科學,人工智能,數學經濟學,和計算經濟學的專業人員,學者,經理和研究生。
讀者:專業人士,學者,管理者和研究生在模糊邏輯,決策科學,人工智能,數學經濟學,和計算經濟學。
高斯過程(GPs)為核機器的學習提供了一種有原則的、實用的、概率的方法。在過去的十年中,GPs在機器學習社區中得到了越來越多的關注,這本書提供了GPs在機器學習中理論和實踐方面長期需要的系統和統一的處理。該書是全面和獨立的,針對研究人員和學生在機器學習和應用統計學。
這本書處理監督學習問題的回歸和分類,并包括詳細的算法。提出了各種協方差(核)函數,并討論了它們的性質。從貝葉斯和經典的角度討論了模型選擇。討論了許多與其他著名技術的聯系,包括支持向量機、神經網絡、正則化網絡、相關向量機等。討論了包括學習曲線和PAC-Bayesian框架在內的理論問題,并討論了幾種用于大數據集學習的近似方法。這本書包含說明性的例子和練習,和代碼和數據集在網上是可得到的。附錄提供了數學背景和高斯馬爾可夫過程的討論。