亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The pump and dump scheme is a form of market manipulation attack in which coordinated actors drive up the price of an asset in order to sell at a higher price. Due in part to a lack of enforcement, these schemes are widespread within the cryptocurrency marketplace, but the negative impact of these events on the coins they target is not yet fully understood. Drawing upon a novel dataset of pump events extracted from Telegram channels, an order of magnitude larger than the nearest comparable dataset in the literature, we explore the differing tactics of pumping channels and the long-term impact of pump and dump schemes across 765 coins. We find that, despite a short-term positive impact in some cases, the long-term impact of pump and dump schemes on the targeted assets is negative, amounting to an average 30% relative drop in price a year after the pump event.

相關內容

ACM SIGACCESS Conference on Computers and Accessibility是為殘疾人和老年人提供與計算機相關的設計、評估、使用和教育研究的首要論壇。我們歡迎提交原始的高質量的有關計算和可訪問性的主題。今年,ASSETS首次將其范圍擴大到包括關于計算機無障礙教育相關主題的原創高質量研究。官網鏈接: · 模型評估 · Processing(編程語言) · 縮放 · 可約的 ·
2023 年 10 月 27 日

Scalable and effective calibration is a fundamental requirement for Low Cost Air Quality Monitoring Systems and will enable accurate and pervasive monitoring in cities. Suffering from environmental interferences and fabrication variance, these devices need to encompass sensors specific and complex calibration processes for reaching a sufficient accuracy to be deployed as indicative measurement devices in Air Quality (AQ) monitoring networks. Concept and sensor drift often force calibration process to be frequently repeated. These issues lead to unbearable calibration costs which denies their massive deployment when accuracy is a concern. In this work, We propose a zero transfer samples, global calibration methodology as a technological enabler for IoT AQ multisensory devices which relies on low cost Particulate Matter (PM) sensors. This methodology is based on field recorded responses from a limited number of IoT AQ multisensors units and machine learning concepts and can be universally applied to all units of the same type. A multi season test campaign shown that, when applied to different sensors, this methodology performances match those of state of the art methodology which requires to derive different calibration parameters for each different unit. If confirmed, these results show that, when properly derived, a global calibration law can be exploited for a large number of networked devices with dramatic cost reduction eventually allowing massive deployment of accurate IoT AQ monitoring devices. Furthermore, this calibration model could be easily embedded on board of the device or implemented on the edge allowing immediate access to accurate readings for personal exposure monitor applications as well as reducing long range data transfer needs.

With the increasing integration of power plants into the frequency-regulation markets, the importance of optimal trading has grown substantially. This paper conducts an in-depth analysis of their optimal trading behavior in sequential day-ahead, intraday, and frequency-regulation markets. We introduce a probabilistic multi-product optimization model, derived through a series of transformation techniques. Additionally, we present two reformulations that re-frame the problem as a mixed-integer linear programming problem with uncertain parameters. Various aspects of the model are thoroughly examined to observe the optimal multi-product trading behavior of hydro power plant assets, along with numerous case studies. Leveraging historical data from Nordic electricity markets, we construct realistic scenarios for the uncertain parameters. Furthermore, we then proposed an algorithm based on the No-U-Turn sampler to provide probability distribution functions of cleared prices in frequency-regulation and day-ahead markets. These distribution functions offer valuable statistical insights into temporal price risks for informed multi-product optimal-trading decisions.

We consider the problem of deriving upper bounds on the parameters of sum-rank-metric codes, with focus on their dimension and block length. The sum-rank metric is a combination of the Hamming and the rank metric, and most of the available techniques to investigate it seem to be unable to fully capture its hybrid nature. In this paper, we introduce a new approach based on sum-rank-metric graphs, in which the vertices are tuples of matrices over a finite field, and where two such tuples are connected when their sum-rank distance is equal to one. We establish various structural properties of sum-rank-metric graphs and combine them with eigenvalue techniques to obtain bounds on the cardinality of sum-rank-metric codes. The bounds we derive improve on the best known bounds for several choices of the parameters. While our bounds are explicit only for small values of the minimum distance, they clearly indicate that spectral theory is able to capture the nature of the sum-rank-metric better than the currently available methods. They also allow us to establish new non-existence results for (possibly nonlinear) MSRD codes.

We consider contextual bandit problems with knapsacks [CBwK], a problem where at each round, a scalar reward is obtained and vector-valued costs are suffered. The learner aims to maximize the cumulative rewards while ensuring that the cumulative costs are lower than some predetermined cost constraints. We assume that contexts come from a continuous set, that costs can be signed, and that the expected reward and cost functions, while unknown, may be uniformly estimated -- a typical assumption in the literature. In this setting, total cost constraints had so far to be at least of order $T^{3/4}$, where $T$ is the number of rounds, and were even typically assumed to depend linearly on $T$. We are however motivated to use CBwK to impose a fairness constraint of equalized average costs between groups: the budget associated with the corresponding cost constraints should be as close as possible to the natural deviations, of order $\sqrt{T}$. To that end, we introduce a dual strategy based on projected-gradient-descent updates, that is able to deal with total-cost constraints of the order of $\sqrt{T}$ up to poly-logarithmic terms. This strategy is more direct and simpler than existing strategies in the literature. It relies on a careful, adaptive, tuning of the step size.

Central Bank Digital Currency (CBDC) is a novel form of money that could be issued and regulated by central banks, offering benefits such as programmability, security, and privacy. However, the design of a CBDC system presents numerous technical and social challenges. This paper presents the design and prototype of a non-custodial wallet, a device that enables users to store and spend CBDC in various contexts. To address the challenges of designing a CBDC system, we conducted a series of workshops with internal and external stakeholders, using methods such as storytelling, metaphors, and provotypes to communicate CBDC concepts, elicit user feedback and critique, and incorporate normative values into the technical design. We derived basic guidelines for designing CBDC systems that balance technical and social aspects, and reflect user needs and values. Our paper contributes to the CBDC discourse by demonstrating a practical example of how CBDC could be used in everyday life and by highlighting the importance of a user-centred approach.

The recent years have seen remarkable progress in establishing the complexity of the reachability problem for vector addition systems with states (VASS), equivalently known as Petri nets. Existing work primarily considers the case in which both the VASS as well as the initial and target configurations are part of the input. In this paper, we investigate the reachability problem in the setting where the VASS is fixed and only the initial configuration is variable. We show that fixed VASS fully express arithmetic on initial segments of the natural numbers. It follows that there is a very weak reduction from any fixed such number-theoretic predicate (e.g. primality or square-freeness) to reachability in fixed VASS where configurations are presented in unary. If configurations are given in binary, we show that there is a fixed VASS with five counters whose reachability problem is PSPACE-hard.

We investigate CSS and CSS-T quantum error-correcting codes from the point of view of their existence, rarity, and performance. We give a lower bound on the number of pairs of linear codes that give rise to a CSS code with good correction capability, showing that such pairs are easy to produce with a randomized construction. We then prove that CSS-T codes exhibit the opposite behaviour, showing also that, under very natural assumptions, their rate and relative distance cannot be simultaneously large. This partially answers an open question on the feasible parameters of CSS-T codes. We conclude with a simple construction of CSS-T codes from Hermitian curves. The paper also offers a concise introduction to CSS and CSS-T codes from the point of view of classical coding theory.

The growing popularity of Machine Learning (ML) has led to its deployment in various sensitive domains, which has resulted in significant research focused on ML security and privacy. However, in some applications, such as autonomous driving, integrity verification of the outsourced ML workload is more critical--a facet that has not received much attention. Existing solutions, such as multi-party computation and proof-based systems, impose significant computation overhead, which makes them unfit for real-time applications. We propose Fides, a novel framework for real-time validation of outsourced ML workloads. Fides features a novel and efficient distillation technique--Greedy Distillation Transfer Learning--that dynamically distills and fine-tunes a space and compute-efficient verification model for verifying the corresponding service model while running inside a trusted execution environment. Fides features a client-side attack detection model that uses statistical analysis and divergence measurements to identify, with a high likelihood, if the service model is under attack. Fides also offers a re-classification functionality that predicts the original class whenever an attack is identified. We devised a generative adversarial network framework for training the attack detection and re-classification models. The evaluation shows that Fides achieves an accuracy of up to 98% for attack detection and 94% for re-classification.

The ellipsoid method is an algorithm that solves the (weak) feasibility and linear optimization problems for convex sets by making oracle calls to their (weak) separation problem. We observe that the previously known method for showing that this reduction can be done in fixed-point logic with counting (FPC) for linear and semidefinite programs applies to any family of explicitly bounded convex sets. We use this observation to show that the exact feasibility problem for semidefinite programs is expressible in the infinitary version of FPC. As a corollary we get that, for the isomorphism problem, the Lasserre/Sums-of-Squares semidefinite programming hierarchy of relaxations collapses to the Sherali-Adams linear programming hierarchy, up to a small loss in the degree.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司