亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A recent line of work in mechanism design has focused on guaranteeing incentive compatibility for agents without contingent reasoning skills: obviously strategyproof mechanisms guarantee that it is "obvious" for these imperfectly rational agents to behave honestly, whereas non-obviously manipulable (NOM) mechanisms take a more optimistic view and ensure that these agents will only misbehave when it is "obvious" for them to do so. Technically, obviousness requires comparing certain extrema (defined over the actions of the other agents) of an agent's utilities for honest behaviour against dishonest behaviour. We present a technique for designing NOM mechanisms in settings where monetary transfers are allowed based on cycle monotonicity, which allows us to disentangle the specification of the mechanism's allocation from the payments. By leveraging this framework, we completely characterise both allocation and payment functions of NOM mechanisms for single-parameter agents. We then look at the classical setting of bilateral trade and study whether and how much subsidy is needed to guarantee NOM, efficiency, and individual rationality. We prove a stark dichotomy; no finite subsidy suffices if agents look only at best-case extremes, whereas no subsidy at all is required when agents focus on worst-case extremes. We conclude the paper by characterising the NOM mechanisms that require no subsidies whilst satisfying individual rationality.

相關內容

Recent work in Vision-and-Language Navigation (VLN) has presented two environmental paradigms with differing realism -- the standard VLN setting built on topological environments where navigation is abstracted away, and the VLN-CE setting where agents must navigate continuous 3D environments using low-level actions. Despite sharing the high-level task and even the underlying instruction-path data, performance on VLN-CE lags behind VLN significantly. In this work, we explore this gap by transferring an agent from the abstract environment of VLN to the continuous environment of VLN-CE. We find that this sim-2-sim transfer is highly effective, improving over the prior state of the art in VLN-CE by +12% success rate. While this demonstrates the potential for this direction, the transfer does not fully retain the original performance of the agent in the abstract setting. We present a sequence of experiments to identify what differences result in performance degradation, providing clear directions for further improvement.

Linear mixed models (LMMs) are instrumental for regression analysis with structured dependence, such as grouped, clustered, or multilevel data. However, selection among the covariates--while accounting for this structured dependence--remains a challenge. We introduce a Bayesian decision analysis for subset selection with LMMs. Using a Mahalanobis loss function that incorporates the structured dependence, we derive optimal linear coefficients for (i) any given subset of variables and (ii) all subsets of variables that satisfy a cardinality constraint. Crucially, these estimates inherit shrinkage or regularization and uncertainty quantification from the underlying Bayesian model, and apply for any well-specified Bayesian LMM. More broadly, our decision analysis strategy deemphasizes the role of a single "best" subset, which is often unstable and limited in its information content, and instead favors a collection of near-optimal subsets. This collection is summarized by key member subsets and variable-specific importance metrics. Customized subset search and out-of-sample approximation algorithms are provided for more scalable computing. These tools are applied to simulated data and a longitudinal physical activity dataset, and demonstrate excellent prediction, estimation, and selection ability.

The Mixture-of-Experts (MoE) technique can scale up the model size of Transformers with an affordable computational overhead. We point out that existing learning-to-route MoE methods suffer from the routing fluctuation issue, i.e., the target expert of the same input may change along with training, but only one expert will be activated for the input during inference. The routing fluctuation tends to harm sample efficiency because the same input updates different experts but only one is finally used. In this paper, we propose StableMoE with two training stages to address the routing fluctuation problem. In the first training stage, we learn a balanced and cohesive routing strategy and distill it into a lightweight router decoupled from the backbone model. In the second training stage, we utilize the distilled router to determine the token-to-expert assignment and freeze it for a stable routing strategy. We validate our method on language modeling and multilingual machine translation. The results show that StableMoE outperforms existing MoE methods in terms of both convergence speed and performance.

The success of large-scale models in recent years has increased the importance of statistical models with numerous parameters. Several studies have analyzed over-parameterized linear models with high-dimensional data that may not be sparse; however, existing results depend on the independent setting of samples. In this study, we analyze a linear regression model with dependent time series data under over-parameterization settings. We consider an estimator via interpolation and developed a theory for excess risk of the estimator under multiple dependence types. This theory can treat infinite-dimensional data without sparsity and handle long-memory processes in a unified manner. Moreover, we bound the risk in our theory via the integrated covariance and nondegeneracy of autocorrelation matrices. The results show that the convergence rate of risks with short-memory processes is identical to that of cases with independent data, while long-memory processes slow the convergence rate. We also present several examples of specific dependent processes that can be applied to our setting.

Existing inferential methods for small area data involve a trade-off between maintaining area-level frequentist coverage rates and improving inferential precision via the incorporation of indirect information. In this article, we propose a method to obtain an area-level prediction region for a future observation which mitigates this trade-off. The proposed method takes a conformal prediction approach in which the conformity measure is the posterior predictive density of a working model that incorporates indirect information. The resulting prediction region has guaranteed frequentist coverage regardless of the working model, and, if the working model assumptions are accurate, the region has minimum expected volume compared to other regions with the same coverage rate. When constructed under a normal working model, we prove such a prediction region is an interval and construct an efficient algorithm to obtain the exact interval. We illustrate the performance of our method through simulation studies and an application to EPA radon survey data.

The dynamic response of the legged robot locomotion is non-Lipschitz and can be stochastic due to environmental uncertainties. To test, validate, and characterize the safety performance of legged robots, existing solutions on observed and inferred risk can be incomplete and sampling inefficient. Some formal verification methods suffer from the model precision and other surrogate assumptions. In this paper, we propose a scenario sampling based testing framework that characterizes the overall safety performance of a legged robot by specifying (i) where (in terms of a set of states) the robot is potentially safe, and (ii) how safe the robot is within the specified set. The framework can also help certify the commercial deployment of the legged robot in real-world environment along with human and compare safety performance among legged robots with different mechanical structures and dynamic properties. The proposed framework is further deployed to evaluate a group of state-of-the-art legged robot locomotion controllers from various model-based, deep neural network involved, and reinforcement learning based methods in the literature. Among a series of intended work domains of the studied legged robots (e.g. tracking speed on sloped surface, with abrupt changes on demanded velocity, and against adversarial push-over disturbances), we show that the method can adequately capture the overall safety characterization and the subtle performance insights. Many of the observed safety outcomes, to the best of our knowledge, have never been reported by the existing work in the legged robot literature.

Recently, numerous studies have demonstrated the presence of bias in machine learning powered decision-making systems. Although most definitions of algorithmic bias have solid mathematical foundations, the corresponding bias detection techniques often lack statistical rigor, especially for non-iid data. We fill this gap in the literature by presenting a rigorous non-parametric testing procedure for bias according to Predictive Rate Parity, a commonly considered notion of algorithmic bias. We adapt traditional asymptotic results for non-parametric estimators to test for bias in the presence of dependence commonly seen in user-level data generated by technology industry applications and illustrate how these approaches can be leveraged for mitigation. We further propose modifications of this methodology to address bias measured through marginal outcome disparities in classification settings and extend notions of predictive rate parity to multi-objective models. Experimental results on real data show the efficacy of the proposed detection and mitigation methods.

CP decomposition (CPD) is prevalent in chemometrics, signal processing, data mining and many more fields. While many algorithms have been proposed to compute the CPD, alternating least squares (ALS) remains one of the most widely used algorithm for computing the decomposition. Recent works have introduced the notion of eigenvalues and singular values of a tensor and explored applications of eigenvectors and singular vectors in areas like signal processing, data analytics and in various other fields. We introduce a new formulation for deriving singular values and vectors of a tensor by considering the critical points of a function different from what is used in the previous work. Computing these critical points in an alternating manner motivates an alternating optimization algorithm which corresponds to alternating least squares algorithm in the matrix case. However, for tensors with order greater than equal to $3$, it minimizes an objective function which is different from the commonly used least squares loss. Alternating optimization of this new objective leads to simple updates to the factor matrices with the same asymptotic computational cost as ALS. We show that a subsweep of this algorithm can achieve a superlinear convergence rate for exact CPD with known rank and verify it experimentally. We then view the algorithm as optimizing a Mahalanobis distance with respect to each factor with ground metric dependent on the other factors. This perspective allows us to generalize our approach to interpolate between updates corresponding to the ALS and the new algorithm to manage the tradeoff between stability and fitness of the decomposition. Our experimental results show that for approximating synthetic and real-world tensors, this algorithm and its variants converge to a better conditioned decomposition with comparable and sometimes better fitness as compared to the ALS algorithm.

Autoscaling is a critical component for efficient resource utilization with satisfactory quality of service (QoS) in cloud computing. This paper investigates proactive autoscaling for widely-used scaling-per-query applications where scaling is required for each query, such as container registry and function-as-a-service (FaaS). In these scenarios, the workload often exhibits high uncertainty with complex temporal patterns like periodicity, noises and outliers. Conservative strategies that scale out unnecessarily many instances lead to high resource costs whereas aggressive strategies may result in poor QoS. We present RobustScaler to achieve superior trade-off between cost and QoS. Specifically, we design a novel autoscaling framework based on non-homogeneous Poisson processes (NHPP) modeling and stochastically constrained optimization. Furthermore, we develop a specialized alternating direction method of multipliers (ADMM) to efficiently train the NHPP model, and rigorously prove the QoS guarantees delivered by our optimization-based proactive strategies. Extensive experiments show that RobustScaler outperforms common baseline autoscaling strategies in various real-world traces, with large margins for complex workload patterns.

Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.

北京阿比特科技有限公司