This paper presents a safety-critical approach to the coordinated control of cooperative robots locomoting in the presence of fixed (holonomic) constraints. To this end, we leverage control barrier functions (CBFs) to ensure the safe cooperation of the robots while maintaining a desired formation and avoiding obstacles. The top-level planner generates a set of feasible trajectories, accounting for both kinematic constraints between the robots and physical constraints of the environment. This planner leverages CBFs to ensure safety-critical coordination control, i.e., guarantee safety of the collaborative robots during locomotion. The middle-level trajectory planner incorporates interconnected single rigid body (SRB) dynamics to generate optimal ground reaction forces (GRFs) to track the safety-ensured trajectories from the top-level planner while addressing the interconnection dynamics between agents. Distributed low-level controllers generate whole-body motion to follow the prescribed optimal GRFs while ensuring the friction cone condition at each end of the stance legs. The effectiveness of the approach is demonstrated through numerical simulations and experimentally on a pair of quadrupedal robots.
This paper concerns the risk-aware control of stochastic systems with temporal logic specifications dynamically assigned during runtime. Conventional risk-aware control typically assumes that all specifications are predefined and remain unchanged during runtime. In this paper, we propose a novel, provably correct control scheme for linear systems with unbounded stochastic disturbances that dynamically evaluates the feasibility of runtime signal temporal logic specifications and automatically reschedules the control inputs. The method guarantees the probabilistic satisfaction of newly accepted runtime specifications without sacrificing the satisfaction of the previously accepted ones. The proposed control method is validated by a robotic motion planning case study. The idea of closed-loop control rescheduling with probabilistic risk guarantees provides a novel solution for runtime control synthesis of stochastic systems.
Autonomous driving systems require the ability to fully understand and predict the surrounding environment to make informed decisions in complex scenarios. Recent advancements in learning-based systems have highlighted the importance of integrating prediction and planning modules. However, this integration has brought forth three major challenges: inherent trade-offs by sole prediction, consistency between prediction patterns, and social coherence in prediction and planning. To address these challenges, we introduce a hybrid-prediction integrated planning (HPP) system, which possesses three novelly designed modules. First, we introduce marginal-conditioned occupancy prediction to align joint occupancy with agent-wise perceptions. Our proposed MS-OccFormer module achieves multi-stage alignment per occupancy forecasting with consistent awareness from agent-wise motion predictions. Second, we propose a game-theoretic motion predictor, GTFormer, to model the interactive future among individual agents with their joint predictive awareness. Third, hybrid prediction patterns are concurrently integrated with Ego Planner and optimized by prediction guidance. HPP achieves state-of-the-art performance on the nuScenes dataset, demonstrating superior accuracy and consistency for end-to-end paradigms in prediction and planning. Moreover, we test the long-term open-loop and closed-loop performance of HPP on the Waymo Open Motion Dataset and CARLA benchmark, surpassing other integrated prediction and planning pipelines with enhanced accuracy and compatibility.
Centralized control of a multi-agent system improves upon distributed control especially when multiple agents share a common task e.g., sorting different materials in a recycling facility. Traditionally, each agent in a sorting facility is tuned individually which leads to suboptimal performance if one agent is less efficient than the others. Centralized control overcomes this bottleneck by leveraging global system state information, but it can be computationally expensive. In this work, we propose a novel framework called Longitudinal Control Volumes (LCV) to model the flow of material in a recycling facility. We then employ a Kalman Filter that incorporates local measurements of materials into a global estimation of the material flow in the system. We utilize a model predictive control algorithm that optimizes the rate of material flow using the global state estimate in real-time. We show that our proposed framework outperforms distributed control methods by 40-100% in simulation and physical experiments.
As autonomous driving technology matures, safety and robustness of its key components, including trajectory prediction, is vital. Though real-world datasets, such as Waymo Open Motion, provide realistic recorded scenarios for model development, they often lack truly safety-critical situations. Rather than utilizing unrealistic simulation or dangerous real-world testing, we instead propose a framework to characterize such datasets and find hidden safety-relevant scenarios within. Our approach expands the spectrum of safety-relevance, allowing us to study trajectory prediction models under a safety-informed, distribution shift setting. We contribute a generalized scenario characterization method, a novel scoring scheme to find subtly-avoided risky scenarios, and an evaluation of trajectory prediction models in this setting. We further contribute a remediation strategy, achieving a 10% average reduction in prediction collision rates. To facilitate future research, we release our code to the public: github.com/cmubig/SafeShift
Our work introduces a module for assessing the trajectory safety of autonomous vehicles in dynamic environments marked by high uncertainty. We focus on occluded areas and occluded traffic participants with limited information about surrounding obstacles. To address this problem, we propose a software module that handles blind spots (BS) created by static and dynamic obstacles in urban environments. We identify potential occluded traffic participants, predict their movement, and assess the ego vehicle's trajectory using various criticality metrics. The method offers a straightforward and modular integration into motion planner algorithms. We present critical real-world scenarios to evaluate our module and apply our approach to a publicly available trajectory planning algorithm. Our results demonstrate that safe yet efficient driving with occluded road users can be achieved by incorporating safety assessments into the planning process. The code used in this research is publicly available as open-source software and can be accessed at the following link: //github.com/TUM-AVS/Frenetix-Occlusion.
The standard quadrotor is one of the most popular and widely used aerial vehicle of recent decades, offering great maneuverability with mechanical simplicity. However, the under-actuation characteristic limits its applications, especially when it comes to generating desired wrench with six degrees of freedom (DOF). Therefore, existing work often compromises between mechanical complexity and the controllable DOF of the aerial system. To take advantage of the mechanical simplicity of a standard quadrotor, we propose a modular aerial system, IdentiQuad, that combines only homogeneous quadrotor-based modules. Each IdentiQuad can be operated alone like a standard quadrotor, but at the same time allows task-specific assembly, increasing the controllable DOF of the system. Each module is interchangeable within its assembly. We also propose a general controller for different configurations of assemblies, capable of tolerating rotor failures and balancing the energy consumption of each module. The functionality and robustness of the system and its controller are validated using physics-based simulations for different assembly configurations.
To maintain full autonomy, autonomous robotic systems must have the ability to self-repair. Self-repairing via compensatory mechanisms appears in nature: for example, some fish can lose even 76% of their propulsive surface without loss of thrust by altering stroke mechanics. However, direct transference of these alterations from an organism to a robotic flapping propulsor may not be optimal due to irrelevant evolutionary pressures. We instead seek to determine what alterations to stroke mechanics are optimal for a damaged robotic system via artificial evolution. To determine whether natural and machine-learned optima differ, we employ a cyber-physical system using a Covariance Matrix Adaptation Evolutionary Strategy to seek the most efficient trajectory for a given force. We implement an online optimization with hardware-in-the-loop, performing experimental function evaluations with an actuated flexible flat plate. To recoup thrust production following partial amputation, the most efficient learned strategy was to increase amplitude, increase frequency, increase the amplitude of angle of attack, and phase shift the angle of attack by approximately 110 degrees. In fish, only an amplitude increase is reported by majority in the literature. To recoup side-force production, a more challenging optimization landscape is encountered. Nesting of optimal angle of attack traces is found in the resultant-based reference frame, but no clear trend in amplitude or frequency are exhibited -- in contrast to the increase in frequency reported in insect literature. These results suggest that how mechanical flapping propulsors most efficiently adjust to damage of a flapping propulsor may not align with natural swimmers and flyers.
The growing interest in language-conditioned robot manipulation aims to develop robots capable of understanding and executing complex tasks, with the objective of enabling robots to interpret language commands and manipulate objects accordingly. While language-conditioned approaches demonstrate impressive capabilities for addressing tasks in familiar environments, they encounter limitations in adapting to unfamiliar environment settings. In this study, we propose a general-purpose, language-conditioned approach that combines base skill priors and imitation learning under unstructured data to enhance the algorithm's generalization in adapting to unfamiliar environments. We assess our model's performance in both simulated and real-world environments using a zero-shot setting. In the simulated environment, the proposed approach surpasses previously reported scores for CALVIN benchmark, especially in the challenging Zero-Shot Multi-Environment setting. The average completed task length, indicating the average number of tasks the agent can continuously complete, improves more than 2.5 times compared to the state-of-the-art method HULC. In addition, we conduct a zero-shot evaluation of our policy in a real-world setting, following training exclusively in simulated environments without additional specific adaptations. In this evaluation, we set up ten tasks and achieved an average 30% improvement in our approach compared to the current state-of-the-art approach, demonstrating a high generalization capability in both simulated environments and the real world. For further details, including access to our code and videos, please refer to //hk-zh.github.io/spil/
This paper presents a groundbreaking approach to causal inference by integrating continuous normalizing flows (CNFs) with parametric submodels, enhancing their geometric sensitivity and improving upon traditional Targeted Maximum Likelihood Estimation (TMLE). Our method employs CNFs to refine TMLE, optimizing the Cram\'er-Rao bound and transitioning from a predefined distribution $p_0$ to a data-driven distribution $p_1$. We innovate further by embedding Wasserstein gradient flows within Fokker-Planck equations, thus imposing geometric structures that boost the robustness of CNFs, particularly in optimal transport theory. Our approach addresses the disparity between sample and population distributions, a critical factor in parameter estimation bias. We leverage optimal transport and Wasserstein gradient flows to develop causal inference methodologies with minimal variance in finite-sample settings, outperforming traditional methods like TMLE and AIPW. This novel framework, centered on Wasserstein gradient flows, minimizes variance in efficient influence functions under distribution $p_t$. Preliminary experiments showcase our method's superiority, yielding lower mean-squared errors compared to standard flows, thereby demonstrating the potential of geometry-aware normalizing Wasserstein flows in advancing statistical modeling and inference.
The low resolution of objects of interest in aerial images makes pedestrian detection and action detection extremely challenging tasks. Furthermore, using deep convolutional neural networks to process large images can be demanding in terms of computational requirements. In order to alleviate these challenges, we propose a two-step, yes and no question answering framework to find specific individuals doing one or multiple specific actions in aerial images. First, a deep object detector, Single Shot Multibox Detector (SSD), is used to generate object proposals from small aerial images. Second, another deep network, is used to learn a latent common sub-space which associates the high resolution aerial imagery and the pedestrian action labels that are provided by the human-based sources