As autonomous driving technology matures, safety and robustness of its key components, including trajectory prediction, is vital. Though real-world datasets, such as Waymo Open Motion, provide realistic recorded scenarios for model development, they often lack truly safety-critical situations. Rather than utilizing unrealistic simulation or dangerous real-world testing, we instead propose a framework to characterize such datasets and find hidden safety-relevant scenarios within. Our approach expands the spectrum of safety-relevance, allowing us to study trajectory prediction models under a safety-informed, distribution shift setting. We contribute a generalized scenario characterization method, a novel scoring scheme to find subtly-avoided risky scenarios, and an evaluation of trajectory prediction models in this setting. We further contribute a remediation strategy, achieving a 10% average reduction in prediction collision rates. To facilitate future research, we release our code to the public: github.com/cmubig/SafeShift
Humanoid robots hold great promise in assisting humans in diverse environments and tasks, due to their flexibility and adaptability leveraging human-like morphology. However, research in humanoid robots is often bottlenecked by the costly and fragile hardware setups. To accelerate algorithmic research in humanoid robots, we present a high-dimensional, simulated robot learning benchmark, HumanoidBench, featuring a humanoid robot equipped with dexterous hands and a variety of challenging whole-body manipulation and locomotion tasks. Our findings reveal that state-of-the-art reinforcement learning algorithms struggle with most tasks, whereas a hierarchical learning baseline achieves superior performance when supported by robust low-level policies, such as walking or reaching. With HumanoidBench, we provide the robotics community with a platform to identify the challenges arising when solving diverse tasks with humanoid robots, facilitating prompt verification of algorithms and ideas. The open-source code is available at //sferrazza.cc/humanoidbench_site.
Unmanned aerial vehicles (UAVs), specifically quadrotors, have revolutionized various industries with their maneuverability and versatility, but their safe operation in dynamic environments heavily relies on effective collision avoidance techniques. This paper introduces a novel technique for safely navigating a quadrotor along a desired route while avoiding kinematic obstacles. We propose a new constraint formulation that employs control barrier functions (CBFs) and collision cones to ensure that the relative velocity between the quadrotor and the obstacle always avoids a cone of vectors that may lead to a collision. By showing that the proposed constraint is a valid CBF for quadrotors, we are able to leverage its real-time implementation via Quadratic Programs (QPs), called the CBF-QPs. Validation includes PyBullet simulations and hardware experiments on Crazyflie 2.1, demonstrating effectiveness in static and moving obstacle scenarios. Comparative analysis with literature, especially higher order CBF-QPs, highlights the proposed approach's less conservative nature. Simulation and Hardware videos are available here: //tayalmanan28.github.io/C3BF-UAV/
Autonomous parallel-style on-ramp merging in human controlled traffic continues to be an existing issue for autonomous vehicle control. Existing non-learning based solutions for vehicle control rely on rules and optimization primarily. These methods have been seen to present significant challenges. Recent advancements in Deep Reinforcement Learning have shown promise and have received significant academic interest however the available learning based approaches show inadequate attention to other highway vehicles and often rely on inaccurate road traffic assumptions. In addition, the parallel-style case is rarely considered. A novel learning based model for acceleration and lane change decision making that explicitly considers the utility to both the ego vehicle and its surrounding vehicles which may be cooperative or uncooperative to produce behaviour that is socially acceptable is proposed. The novel reward function makes use of Social Value Orientation to weight the vehicle's level of social cooperation and is divided into ego vehicle and surrounding vehicle utility which are weighted according to the model's designated Social Value Orientation. A two-lane highway with an on-ramp divided into a taper-style and parallel-style section is considered. Simulation results indicated the importance of considering surrounding vehicles in reward function design and show that the proposed model matches or surpasses those in literature in terms of collisions while also introducing socially courteous behaviour avoiding near misses and anti-social behaviour through direct consideration of the effect of merging on surrounding vehicles.
The quest for real-time, accurate environmental perception is pivotal in the evolution of autonomous driving technologies. In response to this challenge, we present DyRoNet, a Dynamic Router Network that innovates by incorporating low-rank dynamic routing to enhance streaming perception. DyRoNet distinguishes itself by seamlessly integrating a diverse array of specialized pre-trained branch networks, each meticulously fine-tuned for specific environmental contingencies, thus facilitating an optimal balance between response latency and detection precision. Central to DyRoNet's architecture is the Speed Router module, which employs an intelligent routing mechanism to dynamically allocate input data to the most suitable branch network, thereby ensuring enhanced performance adaptability in real-time scenarios. Through comprehensive evaluations, DyRoNet demonstrates superior adaptability and significantly improved performance over existing methods, efficiently catering to a wide variety of environmental conditions and setting new benchmarks in streaming perception accuracy and efficiency. Beyond establishing a paradigm in autonomous driving perception, DyRoNet also offers engineering insights and lays a foundational framework for future advancements in streaming perception. For further information and updates on the project, visit //tastevision.github.io/DyRoNet/.
Modern autonomous systems, such as flying, legged, and wheeled robots, are generally characterized by high-dimensional nonlinear dynamics, which presents challenges for model-based safety-critical control design. Motivated by the success of reduced-order models in robotics, this paper presents a tutorial on constructive safety-critical control via reduced-order models and control barrier functions (CBFs). To this end, we provide a unified formulation of techniques in the literature that share a common foundation of constructing CBFs for complex systems from CBFs for much simpler systems. Such ideas are illustrated through formal results, simple numerical examples, and case studies of real-world systems to which these techniques have been experimentally applied.
For mobile robots, navigating cluttered or dynamic environments often necessitates non-prehensile manipulation, particularly when faced with objects that are too large, irregular, or fragile to grasp. The unpredictable behavior and varying physical properties of these objects significantly complicate manipulation tasks. To address this challenge, this manuscript proposes a novel Reactive Pushing Strategy. This strategy allows a mobile robot to dynamically adjust its base movements in real-time to achieve successful pushing maneuvers towards a target location. Notably, our strategy adapts the robot motion based on changes in contact location obtained through the tactile sensor covering the base, avoiding dependence on object-related assumptions and its modeled behavior. The effectiveness of the Reactive Pushing Strategy was initially evaluated in the simulation environment, where it significantly outperformed the compared baseline approaches. Following this, we validated the proposed strategy through real-world experiments, demonstrating the robot capability to push objects to the target points located in the entire vicinity of the robot. In both simulation and real-world experiments, the object-specific properties (shape, mass, friction, inertia) were altered along with the changes in target locations to assess the robustness of the proposed method comprehensively.
Initially considered as low-power units with limited autonomous processing, Edge IoT devices have seen a paradigm shift with the introduction of FPGAs and AI accelerators. This advancement has vastly amplified their computational capabilities, emphasizing the practicality of edge AI. Such progress introduces new challenges of optimizing AI tasks for the limitations of energy and network resources typical in Edge computing environments. Our study explores methods that enable distributed data processing through AI-enabled edge devices, enhancing collaborative learning capabilities. A key focus of our research is the challenge of determining confidence levels in learning outcomes, considering the spatial and temporal variability of data sets encountered by independent agents. To address this issue, we investigate the application of Bayesian neural networks, proposing a novel approach to manage uncertainty in distributed learning environments.
Recent advancements in NLP have witnessed the groundbreaking impact of pretrained models, yielding impressive outcomes across various tasks. This study seeks to extend the power of pretraining methodologies to facilitating the prediction over tables in data science, a domain traditionally overlooked, yet inherently challenging due to the plethora of table schemas intrinsic to different tasks. The primary research questions underpinning this work revolve around the establishment of a universal pretraining protocol for tables with varied structures, the generalizability and transferability of learned knowledge across tasks, the adaptation to diverse downstream applications, and the incorporation of incremental columns over time. In response to these challenges, we introduce UniTabE, a straightforward yet effective method designed to process tables in a uniform manner, devoid of constraints imposed by specific table structures. UniTabE's core concept relies on representing each basic table element with a module, termed TabUnit. This is subsequently followed by a Transformer encoder to refine the representation. Moreover, our model is designed to facilitate pretraining and finetuning through the utilization of free-form prompts. In order to implement the pretraining phase, we curated an expansive tabular dataset comprising approximately 13B samples, meticulously gathered from the Kaggle platform. This research primarily centers on classification and regression tasks involving tabular data, and conducts rigorous experimental testing and analyses to validate the effectiveness of our methodology. The experimental results demonstrate UniTabE's superior performance against several baselines across massive benchmarks. This, therefore, underscores UniTabE's potential to significantly enhance the semantic representation of tabular data, thereby marking a significant stride for tabular data analysis.
Internet of Things (IoT) devices are capable of allowing for far-reaching access to and evaluation of patient data to monitor health and diagnose from a distance. An electronic healthcare system that checks patient data, prepares medicines and provides financial assistance is necessary. Providing safe data transmission, monitoring, decentralization, preserving patient privacy, and maintaining confidentiality are essential to an electronic healthcare system. In this study, we introduce (SCALHEALTH) which is a blockchain-based scheme of the Hyperledger Fabric consortium. In this study, we use authentication to agree on a common key for data encryption to send data confidentially. Also, sending data through IPFS is decentralized. Non-fungible token (NFT) is used to send patient prescriptions to pharmacies and insurance companies to ensure the authenticity of patient prescriptions. As the system's main body, blockchain creates authorization and validation for all devices and institutions. Also, all metadata in the system is recorded on the blockchain to maintain integrity, transparency, and timely data monitoring. The proposed study uses two types of blockchain: a health blockchain and a financial blockchain. The financial blockchain is for financial transactions and is based on Ethereum. The health blockchain also introduces a mechanism that allows several blockchains to be active in parallel, instead of only one blockchain. The prototype of this mechanism is simulated in two scenarios. In comparison to the normal state, the proposed plan has superior results.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.