We summarise popular methods used for skill rating in competitive sports, along with their inferential paradigms and introduce new approaches based on sequential Monte Carlo and discrete hidden Markov models. We advocate for a state-space model perspective, wherein players' skills are represented as time-varying, and match results serve as observed quantities. We explore the steps to construct the model and the three stages of inference: filtering, smoothing and parameter estimation. We examine the challenges of scaling up to numerous players and matches, highlighting the main approximations and reductions which facilitate statistical and computational efficiency. We additionally compare approaches in a realistic experimental pipeline that can be easily reproduced and extended with our open-source Python package, //github.com/SamDuffield/abile.
Biomedical entity linking, a main component in automatic information extraction from health-related texts, plays a pivotal role in connecting textual entities (such as diseases, drugs and body parts mentioned by patients) to their corresponding concepts in a structured biomedical knowledge base. The task remains challenging despite recent developments in natural language processing. This paper presents the first evaluated biomedical entity linking model for the Dutch language. We use MedRoBERTa.nl as base model and perform second-phase pretraining through self-alignment on a Dutch biomedical ontology extracted from the UMLS and Dutch SNOMED. We derive a corpus from Wikipedia of ontology-linked Dutch biomedical entities in context and fine-tune our model on this dataset. We evaluate our model on the Dutch portion of the Mantra GSC-corpus and achieve 54.7% classification accuracy and 69.8% 1-distance accuracy. We then perform a case study on a collection of unlabeled, patient-support forum data and show that our model is hampered by the limited quality of the preceding entity recognition step. Manual evaluation of small sample indicates that of the correctly extracted entities, around 65% is linked to the correct concept in the ontology. Our results indicate that biomedical entity linking in a language other than English remains challenging, but our Dutch model can be used to for high-level analysis of patient-generated text.
Path optimization is a fundamental concern across various real-world scenarios, ranging from traffic congestion issues to efficient data routing over the internet. The Traffic Assignment Problem (TAP) is a classic continuous optimization problem in this field. This study considers the Integer Traffic Assignment Problem (ITAP), a discrete variant of TAP. ITAP involves determining optimal routes for commuters in a city represented by a graph, aiming to minimize congestion while adhering to integer flow constraints on paths. This restriction makes ITAP an NP-hard problem. While conventional TAP prioritizes repulsive interactions to minimize congestion, this work also explores the case of attractive interactions, related to minimizing the number of occupied edges. We present and evaluate multiple algorithms to address ITAP, including a message passing algorithm, a greedy approach, simulated annealing, and relaxation of ITAP to TAP. Inspired by studies of random ensembles in the large-size limit in statistical physics, comparisons between these algorithms are conducted on large sparse random regular graphs with a random set of origin-destination pairs. Our results indicate that while the simplest greedy algorithm performs competitively in the repulsive scenario, in the attractive case the message-passing-based algorithm and simulated annealing demonstrate superiority. We then investigate the relationship between TAP and ITAP in the repulsive case. We find that, as the number of paths increases, the solution of TAP converges toward that of ITAP, and we investigate the speed of this convergence. Depending on the number of paths, our analysis leads us to identify two scaling regimes: in one the average flow per edge is of order one, and in another the number of paths scales quadratically with the size of the graph, in which case the continuous relaxation solves the integer problem closely.
Brain lesion segmentation plays an essential role in neurological research and diagnosis. As brain lesions can be caused by various pathological alterations, different types of brain lesions tend to manifest with different characteristics on different imaging modalities. Due to this complexity, brain lesion segmentation methods are often developed in a task-specific manner. A specific segmentation model is developed for a particular lesion type and imaging modality. However, the use of task-specific models requires predetermination of the lesion type and imaging modality, which complicates their deployment in real-world scenarios. In this work, we propose a universal foundation model for 3D brain lesion segmentation, which can automatically segment different types of brain lesions for input data of various imaging modalities. We formulate a novel Mixture of Modality Experts (MoME) framework with multiple expert networks attending to different imaging modalities. A hierarchical gating network combines the expert predictions and fosters expertise collaboration. Furthermore, we introduce a curriculum learning strategy during training to avoid the degeneration of each expert network and preserve their specialization. We evaluated the proposed method on nine brain lesion datasets, encompassing five imaging modalities and eight lesion types. The results show that our model outperforms state-of-the-art universal models and provides promising generalization to unseen datasets.
Hyperparameter optimization plays a pivotal role in enhancing the predictive performance and generalization capabilities of ML models. However, in many applications, we do not only care about predictive performance but also about objectives such as inference time, memory, or energy consumption. In such MOO scenarios, determining the importance of hyperparameters poses a significant challenge due to the complex interplay between the conflicting objectives. In this paper, we propose the first method for assessing the importance of hyperparameters in the context of multi-objective hyperparameter optimization. Our approach leverages surrogate-based hyperparameter importance (HPI) measures, i.e. fANOVA and ablation paths, to provide insights into the impact of hyperparameters on the optimization objectives. Specifically, we compute the a-priori scalarization of the objectives and determine the importance of the hyperparameters for different objective tradeoffs. Through extensive empirical evaluations on diverse benchmark datasets with three different objectives paired with accuracy, namely time, demographic parity, and energy consumption, we demonstrate the effectiveness and robustness of our proposed method. Our findings not only offer valuable guidance for hyperparameter tuning in MOO tasks but also contribute to advancing the understanding of HPI in complex optimization scenarios.
Longitudinal-only platooning methods are facing great challenges on running mobility, since they may be impeded by slow-moving vehicles from time to time. To address this issue, this paper proposes a vehicles swarming method coupled both longitudinal and lateral cooperation. The proposed method bears the following contributions: i) enhancing driving mobility by swarming like a bee colony; ii) ensuring the success rate of overtaking; iii) cruising as a string of platoon to preserve sustainability. Evaluations indicate that the proposed method is capable of maneuvering a vehicle swarm to overtake slow-moving vehicles safely and successfully. The proposed method is confirmed to improve running mobility by 12.04%. Swarming safety is ensured by a safe following distance. The proposed method's influence on traffic is limited within five upstream vehicles.
In general-sum stochastic games, a stationary Stackelberg equilibrium (SSE) does not always exist, in which the leader maximizes leader's return for all the initial states when the follower takes the best response against the leader's policy. Existing methods of determining the SSEs require strong assumptions to guarantee the convergence and the coincidence of the limit with the SSE. Moreover, our analysis suggests that the performance at the fixed points of these methods is not reasonable when they are not SSEs. Herein, we introduced the concept of Pareto-optimality as a reasonable alternative to SSEs. We derive the policy improvement theorem for stochastic games with the best-response follower and propose an iterative algorithm to determine the Pareto-optimal policies based on it. Monotone improvement and convergence of the proposed approach are proved, and its convergence to SSEs is proved in a special case.
While automatic summarization techniques have made significant advancements, their primary focus has been on summarizing short news articles or documents that have clear structural patterns like scientific articles or government reports. There has not been much exploration into developing efficient methods for summarizing financial documents, which often contain complex facts and figures. Here, we study the problem of bullet point summarization of long Earning Call Transcripts (ECTs) using the recently released ECTSum dataset. We leverage an unsupervised question-based extractive module followed by a parameter efficient instruction-tuned abstractive module to solve this task. Our proposed model FLAN-FinBPS achieves new state-of-the-art performances outperforming the strongest baseline with 14.88% average ROUGE score gain, and is capable of generating factually consistent bullet point summaries that capture the important facts discussed in the ECTs.
Effective multi-robot teams require the ability to move to goals in complex environments in order to address real-world applications such as search and rescue. Multi-robot teams should be able to operate in a completely decentralized manner, with individual robot team members being capable of acting without explicit communication between neighbors. In this paper, we propose a novel game theoretic model that enables decentralized and communication-free navigation to a goal position. Robots each play their own distributed game by estimating the behavior of their local teammates in order to identify behaviors that move them in the direction of the goal, while also avoiding obstacles and maintaining team cohesion without collisions. We prove theoretically that generated actions approach a Nash equilibrium, which also corresponds to an optimal strategy identified for each robot. We show through extensive simulations that our approach enables decentralized and communication-free navigation by a multi-robot system to a goal position, and is able to avoid obstacles and collisions, maintain connectivity, and respond robustly to sensor noise.
Promoting behavioural diversity is critical for solving games with non-transitive dynamics where strategic cycles exist, and there is no consistent winner (e.g., Rock-Paper-Scissors). Yet, there is a lack of rigorous treatment for defining diversity and constructing diversity-aware learning dynamics. In this work, we offer a geometric interpretation of behavioural diversity in games and introduce a novel diversity metric based on \emph{determinantal point processes} (DPP). By incorporating the diversity metric into best-response dynamics, we develop \emph{diverse fictitious play} and \emph{diverse policy-space response oracle} for solving normal-form games and open-ended games. We prove the uniqueness of the diverse best response and the convergence of our algorithms on two-player games. Importantly, we show that maximising the DPP-based diversity metric guarantees to enlarge the \emph{gamescape} -- convex polytopes spanned by agents' mixtures of strategies. To validate our diversity-aware solvers, we test on tens of games that show strong non-transitivity. Results suggest that our methods achieve much lower exploitability than state-of-the-art solvers by finding effective and diverse strategies.
Conventional methods for object detection typically require a substantial amount of training data and preparing such high-quality training data is very labor-intensive. In this paper, we propose a novel few-shot object detection network that aims at detecting objects of unseen categories with only a few annotated examples. Central to our method are our Attention-RPN, Multi-Relation Detector and Contrastive Training strategy, which exploit the similarity between the few shot support set and query set to detect novel objects while suppressing false detection in the background. To train our network, we contribute a new dataset that contains 1000 categories of various objects with high-quality annotations. To the best of our knowledge, this is one of the first datasets specifically designed for few-shot object detection. Once our few-shot network is trained, it can detect objects of unseen categories without further training or fine-tuning. Our method is general and has a wide range of potential applications. We produce a new state-of-the-art performance on different datasets in the few-shot setting. The dataset link is //github.com/fanq15/Few-Shot-Object-Detection-Dataset.