Accurate load forecasting plays a vital role in numerous sectors, but accurately capturing the complex dynamics of dynamic power systems remains a challenge for traditional statistical models. For these reasons, time-series models (ARIMA) and deep-learning models (ANN, LSTM, GRU, etc.) are commonly deployed and often experience higher success. In this paper, we analyze the efficacy of the recently developed Transformer-based Neural Network model in Load forecasting. Transformer models have the potential to improve Load forecasting because of their ability to learn long-range dependencies derived from their Attention Mechanism. We apply several metaheuristics namely Differential Evolution to find the optimal hyperparameters of the Transformer-based Neural Network to produce accurate forecasts. Differential Evolution provides scalable, robust, global solutions to non-differentiable, multi-objective, or constrained optimization problems. Our work compares the proposed Transformer based Neural Network model integrated with different metaheuristic algorithms by their performance in Load forecasting based on numerical metrics such as Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE). Our findings demonstrate the potential of metaheuristic-enhanced Transformer-based Neural Network models in Load forecasting accuracy and provide optimal hyperparameters for each model.
Using model weights pretrained on a high-resource language as a warm start can reduce the need for data and compute to obtain high-quality language models for other, especially low-resource, languages. However, if we want to use a new tokenizer specialized for the target language, we cannot transfer the source model's embedding matrix. In this paper, we propose FOCUS - Fast Overlapping Token Combinations Using Sparsemax, a novel embedding initialization method that initializes the embedding matrix effectively for a new tokenizer based on information in the source model's embedding matrix. FOCUS represents newly added tokens as combinations of tokens in the overlap of the source and target vocabularies. The overlapping tokens are selected based on semantic similarity in an auxiliary static token embedding space. We focus our study on using the multilingual XLM-R as a source model and empirically show that FOCUS outperforms random initialization and previous work in language modeling and on a range of downstream tasks (NLI, QA, and NER).
In the burgeoning domain of distributed quantum computing, achieving consensus amidst adversarial settings remains a pivotal challenge. We introduce an enhancement to the Quantum Byzantine Agreement (QBA) protocol, uniquely incorporating advanced error mitigation techniques: Twirled Readout Error Extinction (T-REx) and dynamical decoupling (DD). Central to this refined approach is the utilization of a Noisy Intermediate Scale Quantum (NISQ) source device for heightened performance. Extensive tests on both simulated and real-world quantum devices, notably IBM's quantum computer, provide compelling evidence of the effectiveness of our T-REx and DD adaptations in mitigating prevalent quantum channel errors. Subsequent to the entanglement distribution, our protocol adopts a verification method reminiscent of Quantum Key Distribution (QKD) schemes. The Commander then issues orders encoded in specific quantum states, like Retreat or Attack. In situations where received orders diverge, lieutenants engage in structured games to reconcile discrepancies. Notably, the frequency of these games is contingent upon the Commander's strategies and the overall network size. Our empirical findings underscore the enhanced resilience and effectiveness of the protocol in diverse scenarios. Nonetheless, scalability emerges as a concern with the growth of the network size. To sum up, our research illuminates the considerable potential of fortified quantum consensus systems in the NISQ era, highlighting the imperative for sustained research in bolstering quantum ecosystems.
In the realm of mobile edge computing (MEC), efficient computation task offloading plays a pivotal role in ensuring a seamless quality of experience (QoE) for users. Maintaining a high QoE is paramount in today's interconnected world, where users demand responsive and reliable services. This challenge stands as one of the most primary key factors contributing to handling dynamic and uncertain mobile environment. In this study, we delve into computation offloading in MEC systems, where strict task processing deadlines and energy constraints can adversely affect the system performance. We formulate the computation task offloading problem as a Markov decision process (MDP) to maximize the long-term QoE of each user individually. We propose a decentralized QoE-oriented computation offloading (QOCO) algorithm based on deep reinforcement learning (DRL) that empowers mobile devices to make their offloading decisions without requiring knowledge of decisions made by other devices. Through numerical studies, we evaluate the performance of QOCO. Simulation results validate that the QOCO algorithm efficiently exploits the computational resources of edge nodes. Consequently, it can complete 14% more tasks and reduce task delay and energy consumption by 9% and 6%, respectively. These together contribute to a significant improvement of at least 37% in average QoE compared to an existing algorithm.
Segmentation and tracking of unseen object instances in discrete frames pose a significant challenge in dynamic industrial robotic contexts, such as distribution warehouses. Here, robots must handle object rearrangement, including shifting, removal, and partial occlusion by new items, and track these items after substantial temporal gaps. The task is further complicated when robots encounter objects not learned in their training sets, which requires the ability to segment and track previously unseen items. Considering that continuous observation is often inaccessible in such settings, our task involves working with a discrete set of frames separated by indefinite periods during which substantial changes to the scene may occur. This task also translates to domestic robotic applications, such as rearrangement of objects on a table. To address these demanding challenges, we introduce new synthetic and real-world datasets that replicate these industrial and household scenarios. We also propose a novel paradigm for joint segmentation and tracking in discrete frames along with a transformer module that facilitates efficient inter-frame communication. The experiments we conduct show that our approach significantly outperforms recent methods. For additional results and videos, please visit \href{//sites.google.com/view/stow-corl23}{website}. Code and dataset will be released.
The escalating risk of collisions and the accumulation of space debris in Low Earth Orbit (LEO) has reached critical concern due to the ever increasing number of spacecraft. Addressing this crisis, especially in dealing with non-cooperative and unidentified space debris, is of paramount importance. This paper contributes to efforts in enabling autonomous swarms of small chaser satellites for target geometry determination and safe flight trajectory planning for proximity operations in LEO. Our research explores on-orbit use of the You Only Look Once v5 (YOLOv5) object detection model trained to detect satellite components. While this model has shown promise, its inherent lack of interpretability hinders human understanding, a critical aspect of validating algorithms for use in safety-critical missions. To analyze the decision processes, we introduce Probabilistic Explanations for Entropic Knowledge extraction (PEEK), a method that utilizes information theoretic analysis of the latent representations within the hidden layers of the model. Through both synthetic in hardware-in-the-loop experiments, PEEK illuminates the decision-making processes of the model, helping identify its strengths, limitations and biases.
The chain graph model admits both undirected and directed edges in one graph, where symmetric conditional dependencies are encoded via undirected edges and asymmetric causal relations are encoded via directed edges. Though frequently encountered in practice, the chain graph model has been largely under investigated in literature, possibly due to the lack of identifiability conditions between undirected and directed edges. In this paper, we first establish a set of novel identifiability conditions for the Gaussian chain graph model, exploiting a low rank plus sparse decomposition of the precision matrix. Further, an efficient learning algorithm is built upon the identifiability conditions to fully recover the chain graph structure. Theoretical analysis on the proposed method is conducted, assuring its asymptotic consistency in recovering the exact chain graph structure. The advantage of the proposed method is also supported by numerical experiments on both simulated examples and a real application on the Standard & Poor 500 index data.
Submodular maximization under various constraints is a fundamental problem studied continuously, in both computer science and operations research, since the late $1970$'s. A central technique in this field is to approximately optimize the multilinear extension of the submodular objective, and then round the solution. The use of this technique requires a solver able to approximately maximize multilinear extensions. Following a long line of work, Buchbinder and Feldman (2019) described such a solver guaranteeing $0.385$-approximation for down-closed constraints, while Oveis Gharan and Vondr\'ak (2011) showed that no solver can guarantee better than $0.478$-approximation. In this paper, we present a solver guaranteeing $0.401$-approximation, which significantly reduces the gap between the best known solver and the inapproximability result. The design and analysis of our solver are based on a novel bound that we prove for DR-submodular functions. This bound improves over a previous bound due to Feldman et al. (2011) that is used by essentially all state-of-the-art results for constrained maximization of general submodular/DR-submodular functions. Hence, we believe that our new bound is likely to find many additional applications in related problems, and to be a key component for further improvement.
Ultra-fine entity typing plays a crucial role in information extraction by predicting fine-grained semantic types for entity mentions in text. However, this task poses significant challenges due to the massive number of entity types in the output space. The current state-of-the-art approaches, based on standard multi-label classifiers or cross-encoder models, suffer from poor generalization performance or inefficient inference. In this paper, we present CASENT, a seq2seq model designed for ultra-fine entity typing that predicts ultra-fine types with calibrated confidence scores. Our model takes an entity mention as input and employs constrained beam search to generate multiple types autoregressively. The raw sequence probabilities associated with the predicted types are then transformed into confidence scores using a novel calibration method. We conduct extensive experiments on the UFET dataset which contains over 10k types. Our method outperforms the previous state-of-the-art in terms of F1 score and calibration error, while achieving an inference speedup of over 50 times. Additionally, we demonstrate the generalization capabilities of our model by evaluating it in zero-shot and few-shot settings on five specialized domain entity typing datasets that are unseen during training. Remarkably, our model outperforms large language models with 10 times more parameters in the zero-shot setting, and when fine-tuned on 50 examples, it significantly outperforms ChatGPT on all datasets. Our code, models and demo are available at //github.com/yanlinf/CASENT.
Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.