亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Once-For-All (OFA) method offers an excellent pathway to deploy a trained neural network model into multiple target platforms by utilising the supernet-subnet architecture. Once trained, a subnet can be derived from the supernet (both architecture and trained weights) and deployed directly to the target platform with little to no retraining or fine-tuning. To train the subnet population, OFA uses a novel training method called Progressive Shrinking (PS) which is designed to limit the negative impact of interference during training. It is believed that higher interference during training results in lower subnet population accuracies. In this work we take a second look at this interference effect. Surprisingly, we find that interference mitigation strategies do not have a large impact on the overall subnet population performance. Instead, we find the subnet architecture selection bias during training to be a more important aspect. To show this, we propose a simple-yet-effective method called Random Subnet Sampling (RSS), which does not have mitigation on the interference effect. Despite no mitigation, RSS is able to produce a better performing subnet population than PS in four small-to-medium-sized datasets; suggesting that the interference effect does not play a pivotal role in these datasets. Due to its simplicity, RSS provides a $1.9\times$ reduction in training times compared to PS. A $6.1\times$ reduction can also be achieved with a reasonable drop in performance when the number of RSS training epochs are reduced. Code available at //github.com/Jordan-HS/RSS-Interference-CVPRW2022.

相關內容

RSS(簡易信(xin)息聚(ju)合,也叫聚(ju)合內容)是(shi)(shi)一種描述和同(tong)步網(wang)站內容的格式。RSS可以是(shi)(shi)以下三個解(jie)釋的其(qi)中一個: Really Simple Syndication;RDF (Resource Description Framework) Site Summary; Rich Site Summary。但其(qi)實這三個解(jie)釋都(dou)是(shi)(shi)指(zhi)同(tong)一種Syndication的技術。

Cross-validation is a widely-used technique to estimate prediction error, but its behavior is complex and not fully understood. Ideally, one would like to think that cross-validation estimates the prediction error for the model at hand, fit to the training data. We prove that this is not the case for the linear model fit by ordinary least squares; rather it estimates the average prediction error of models fit on other unseen training sets drawn from the same population. We further show that this phenomenon occurs for most popular estimates of prediction error, including data splitting, bootstrapping, and Mallow's Cp. Next, the standard confidence intervals for prediction error derived from cross-validation may have coverage far below the desired level. Because each data point is used for both training and testing, there are correlations among the measured accuracies for each fold, and so the usual estimate of variance is too small. We introduce a nested cross-validation scheme to estimate this variance more accurately, and we show empirically that this modification leads to intervals with approximately correct coverage in many examples where traditional cross-validation intervals fail.

Neuromorphic neural network processors, in the form of compute-in-memory crossbar arrays of memristors, or in the form of subthreshold analog and mixed-signal ASICs, promise enormous advantages in compute density and energy efficiency for NN-based ML tasks. However, these technologies are prone to computational non-idealities, due to process variation and intrinsic device physics. This degrades the task performance of networks deployed to the processor, by introducing parameter noise into the deployed model. While it is possible to calibrate each device, or train networks individually for each processor, these approaches are expensive and impractical for commercial deployment. Alternative methods are therefore needed to train networks that are inherently robust against parameter variation, as a consequence of network architecture and parameters. We present a new adversarial network optimisation algorithm that attacks network parameters during training, and promotes robust performance during inference in the face of parameter variation. Our approach introduces a regularization term penalising the susceptibility of a network to weight perturbation. We compare against previous approaches for producing parameter insensitivity such as dropout, weight smoothing and introducing parameter noise during training. We show that our approach produces models that are more robust to targeted parameter variation, and equally robust to random parameter variation. Our approach finds minima in flatter locations in the weight-loss landscape compared with other approaches, highlighting that the networks found by our technique are less sensitive to parameter perturbation. Our work provides an approach to deploy neural network architectures to inference devices that suffer from computational non-idealities, with minimal loss of performance. ...

Collaborative filtering algorithms capture underlying consumption patterns, including the ones specific to particular demographics or protected information of users, e.g. gender, race, and location. These encoded biases can influence the decision of a recommendation system (RS) towards further separation of the contents provided to various demographic subgroups, and raise privacy concerns regarding the disclosure of users' protected attributes. In this work, we investigate the possibility and challenges of removing specific protected information of users from the learned interaction representations of a RS algorithm, while maintaining its effectiveness. Specifically, we incorporate adversarial training into the state-of-the-art MultVAE architecture, resulting in a novel model, Adversarial Variational Auto-Encoder with Multinomial Likelihood (Adv-MultVAE), which aims at removing the implicit information of protected attributes while preserving recommendation performance. We conduct experiments on the MovieLens-1M and LFM-2b-DemoBias datasets, and evaluate the effectiveness of the bias mitigation method based on the inability of external attackers in revealing the users' gender information from the model. Comparing with baseline MultVAE, the results show that Adv-MultVAE, with marginal deterioration in performance (w.r.t. NDCG and recall), largely mitigates inherent biases in the model on both datasets.

Modern neural networks are often operated in a strongly overparametrized regime: they comprise so many parameters that they can interpolate the training set, even if actual labels are replaced by purely random ones. Despite this, they achieve good prediction error on unseen data: interpolating the training set does not lead to a large generalization error. Further, overparametrization appears to be beneficial in that it simplifies the optimization landscape. Here we study these phenomena in the context of two-layers neural networks in the neural tangent (NT) regime. We consider a simple data model, with isotropic covariates vectors in $d$ dimensions, and $N$ hidden neurons. We assume that both the sample size $n$ and the dimension $d$ are large, and they are polynomially related. Our first main result is a characterization of the eigenstructure of the empirical NT kernel in the overparametrized regime $Nd\gg n$. This characterization implies as a corollary that the minimum eigenvalue of the empirical NT kernel is bounded away from zero as soon as $Nd\gg n$, and therefore the network can exactly interpolate arbitrary labels in the same regime. Our second main result is a characterization of the generalization error of NT ridge regression including, as a special case, min-$\ell_2$ norm interpolation. We prove that, as soon as $Nd\gg n$, the test error is well approximated by the one of kernel ridge regression with respect to the infinite-width kernel. The latter is in turn well approximated by the error of polynomial ridge regression, whereby the regularization parameter is increased by a `self-induced' term related to the high-degree components of the activation function. The polynomial degree depends on the sample size and the dimension (in particular on $\log n/\log d$).

Adversarial training methods are state-of-the-art (SOTA) empirical defense methods against adversarial examples. Many regularization methods have been proven to be effective with the combination of adversarial training. Nevertheless, such regularization methods are implemented in the time domain. Since adversarial vulnerability can be regarded as a high-frequency phenomenon, it is essential to regulate the adversarially-trained neural network models in the frequency domain. Faced with these challenges, we make a theoretical analysis on the regularization property of wavelets which can enhance adversarial training. We propose a wavelet regularization method based on the Haar wavelet decomposition which is named Wavelet Average Pooling. This wavelet regularization module is integrated into the wide residual neural network so that a new WideWaveletResNet model is formed. On the datasets of CIFAR-10 and CIFAR-100, our proposed Adversarial Wavelet Training method realizes considerable robustness under different types of attacks. It verifies the assumption that our wavelet regularization method can enhance adversarial robustness especially in the deep wide neural networks. The visualization experiments of the Frequency Principle (F-Principle) and interpretability are implemented to show the effectiveness of our method. A detailed comparison based on different wavelet base functions is presented. The code is available at the repository: \url{//github.com/momo1986/AdversarialWaveletTraining}.

Modern approaches to supervised learning like deep neural networks (DNNs) typically implicitly assume that observed responses are statistically independent. In contrast, correlated data are prevalent in real-life large-scale applications, with typical sources of correlation including spatial, temporal and clustering structures. These correlations are either ignored by DNNs, or ad-hoc solutions are developed for specific use cases. We propose to use the mixed models framework to handle correlated data in DNNs. By treating the effects underlying the correlation structure as random effects, mixed models are able to avoid overfitted parameter estimates and ultimately yield better predictive performance. The key to combining mixed models and DNNs is using the Gaussian negative log-likelihood (NLL) as a natural loss function that is minimized with DNN machinery including stochastic gradient descent (SGD). Since NLL does not decompose like standard DNN loss functions, the use of SGD with NLL presents some theoretical and implementation challenges, which we address. Our approach which we call LMMNN is demonstrated to improve performance over natural competitors in various correlation scenarios on diverse simulated and real datasets. Our focus is on a regression setting and tabular datasets, but we also show some results for classification. Our code is available at //github.com/gsimchoni/lmmnn.

In selection processes such as hiring, promotion, and college admissions, implicit bias toward socially-salient attributes such as race, gender, or sexual orientation of candidates is known to produce persistent inequality and reduce aggregate utility for the decision maker. Interventions such as the Rooney Rule and its generalizations, which require the decision maker to select at least a specified number of individuals from each affected group, have been proposed to mitigate the adverse effects of implicit bias in selection. Recent works have established that such lower-bound constraints can be very effective in improving aggregate utility in the case when each individual belongs to at most one affected group. However, in several settings, individuals may belong to multiple affected groups and, consequently, face more extreme implicit bias due to this intersectionality. We consider independently drawn utilities and show that, in the intersectional case, the aforementioned non-intersectional constraints can only recover part of the total utility achievable in the absence of implicit bias. On the other hand, we show that if one includes appropriate lower-bound constraints on the intersections, almost all the utility achievable in the absence of implicit bias can be recovered. Thus, intersectional constraints can offer a significant advantage over a reductionist dimension-by-dimension non-intersectional approach to reducing inequality.

There has been appreciable progress in unsupervised network representation learning (UNRL) approaches over graphs recently with flexible random-walk approaches, new optimization objectives and deep architectures. However, there is no common ground for systematic comparison of embeddings to understand their behavior for different graphs and tasks. In this paper we theoretically group different approaches under a unifying framework and empirically investigate the effectiveness of different network representation methods. In particular, we argue that most of the UNRL approaches either explicitly or implicit model and exploit context information of a node. Consequently, we propose a framework that casts a variety of approaches -- random walk based, matrix factorization and deep learning based -- into a unified context-based optimization function. We systematically group the methods based on their similarities and differences. We study the differences among these methods in detail which we later use to explain their performance differences (on downstream tasks). We conduct a large-scale empirical study considering 9 popular and recent UNRL techniques and 11 real-world datasets with varying structural properties and two common tasks -- node classification and link prediction. We find that there is no single method that is a clear winner and that the choice of a suitable method is dictated by certain properties of the embedding methods, task and structural properties of the underlying graph. In addition we also report the common pitfalls in evaluation of UNRL methods and come up with suggestions for experimental design and interpretation of results.

To address the sparsity and cold start problem of collaborative filtering, researchers usually make use of side information, such as social networks or item attributes, to improve recommendation performance. This paper considers the knowledge graph as the source of side information. To address the limitations of existing embedding-based and path-based methods for knowledge-graph-aware recommendation, we propose Ripple Network, an end-to-end framework that naturally incorporates the knowledge graph into recommender systems. Similar to actual ripples propagating on the surface of water, Ripple Network stimulates the propagation of user preferences over the set of knowledge entities by automatically and iteratively extending a user's potential interests along links in the knowledge graph. The multiple "ripples" activated by a user's historically clicked items are thus superposed to form the preference distribution of the user with respect to a candidate item, which could be used for predicting the final clicking probability. Through extensive experiments on real-world datasets, we demonstrate that Ripple Network achieves substantial gains in a variety of scenarios, including movie, book and news recommendation, over several state-of-the-art baselines.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司