Stochastic alternating algorithms for bi-objective optimization are considered when optimizing two conflicting functions for which optimization steps have to be applied separately for each function. Such algorithms consist of applying a certain number of steps of gradient or subgradient descent on each single objective at each iteration. In this paper, we show that stochastic alternating algorithms achieve a sublinear convergence rate of $\mathcal{O}(1/T)$, under strong convexity, for the determination of a minimizer of a weighted-sum of the two functions, parameterized by the number of steps applied on each of them. An extension to the convex case is presented for which the rate weakens to $\mathcal{O}(1/\sqrt{T})$. These rates are valid also in the non-smooth case. Importantly, by varying the proportion of steps applied to each function, one can determine an approximation to the Pareto front.
The time-fractional porous medium equation is an important model of many hydrological, physical, and chemical flows. We study its self-similar solutions, which make up the profiles of many important experimentally measured situations. We prove that there is a unique solution to the general initial-boundary value problem in the one-dimensional setting. When supplemented with boundary conditions from the physical models, the problem exhibits a self-similar solution described with the use of the Erd\'elyi-Kober fractional operator. Using a backward shooting method, we show that there exists a unique solution to our problem. The shooting method is not only useful in deriving the theoretical results. We utilize it to devise an efficient numerical scheme to solve the governing problem along with two ways of discretizing the Erd\'elyi-Kober fractional derivative. Since the latter is a nonlocal operator, its numerical realization has to include some truncation. We find the correct truncation regime and prove several error estimates. Furthermore, the backward shooting method can be used to solve the main problem, and we provide a convergence proof. The main difficulty lies in the degeneracy of the diffusivity. We overcome it with some regularization. Our findings are supplemented with numerical simulations that verify the theoretical findings.
While the empirical success of self-supervised learning (SSL) heavily relies on the usage of deep nonlinear models, existing theoretical works on SSL understanding still focus on linear ones. In this paper, we study the role of nonlinearity in the training dynamics of contrastive learning (CL) on one and two-layer nonlinear networks with homogeneous activation $h(x) = h'(x)x$. We have two major theoretical discoveries. First, the presence of nonlinearity can lead to many local optima even in 1-layer setting, each corresponding to certain patterns from the data distribution, while with linear activation, only one major pattern can be learned. This suggests that models with lots of parameters can be regarded as a \emph{brute-force} way to find these local optima induced by nonlinearity. Second, in the 2-layer case, linear activation is proven not capable of learning specialized weights into diverse patterns, demonstrating the importance of nonlinearity. In addition, for 2-layer setting, we also discover \emph{global modulation}: those local patterns discriminative from the perspective of global-level patterns are prioritized to learn, further characterizing the learning process. Simulation verifies our theoretical findings.
Evolutionary multi-objective algorithms have been widely shown to be successful when utilized for a variety of stochastic combinatorial optimization problems. Chance constrained optimization plays an important role in complex real-world scenarios, as it allows decision makers to take into account the uncertainty of the environment. We consider a version of the knapsack problem with stochastic profits to guarantee a certain level of confidence in the profit of the solutions. We introduce the multi-objective formulations of the profit chance constrained knapsack problem and design three bi-objective fitness evaluation methods that work independently of the specific confidence level required. We evaluate our approaches using well-known multi-objective evolutionary algorithms GSEMO and NSGA-II. In addition, we introduce a filtering method for GSEMO that improves the quality of the final population by periodically removing certain solutions from the interim populations based on their confidence level. We show the effectiveness of our approaches on several benchmarks for both settings where the knapsack items have fixed uniform uncertainties and uncertainties that are positively correlated with the expected profit of an item.
We present a flexible data-driven method for dynamical system analysis that does not require explicit model discovery. The method is rooted in well-established techniques for approximating the Koopman operator from data and is implemented as a semidefinite program that can be solved numerically. The method is agnostic of whether data is generated through a deterministic or stochastic process, so its implementation requires no prior adjustments by the user to accommodate these different scenarios. Rigorous convergence results justify the applicability of the method, while also extending and uniting similar results from across the literature. Examples on discovering Lyapunov functions and on performing ergodic optimization for both deterministic and stochastic dynamics exemplify these convergence results and demonstrate the performance of the method.
Bayesian persuasion studies how an informed sender should influence beliefs of rational receivers who take decisions through Bayesian updating of a common prior. We focus on the online Bayesian persuasion framework, in which the sender repeatedly faces one or more receivers with unknown and adversarially selected types. First, we show how to obtain a tight $\tilde O(T^{1/2})$ regret bound in the case in which the sender faces a single receiver and has partial feedback, improving over the best previously known bound of $\tilde O(T^{4/5})$. Then, we provide the first no-regret guarantees for the multi-receiver setting under partial feedback. Finally, we show how to design no-regret algorithms with polynomial per-iteration running time by exploiting type reporting, thereby circumventing known intractability results on online Bayesian persuasion. We provide efficient algorithms guaranteeing a $O(T^{1/2})$ regret upper bound both in the single- and multi-receiver scenario when type reporting is allowed.
We present a methodology to automatically compute worst-case performance bounds for a large class of first-order decentralized optimization algorithms. These algorithms aim at minimizing the average of local functions that are distributed across a network of agents. They typically combine local computations and consensus steps. Our methodology is based on the approach of Performance Estimation Problem (PEP), which allows computing the worst-case performance and a worst-case instance of first-order optimization algorithms by solving an SDP. We propose two ways of representing consensus steps in PEPs, which allow writing and solving PEPs for decentralized optimization. The first formulation is exact but specific to a given averaging matrix. The second formulation is a relaxation but provides guarantees valid over an entire class of averaging matrices, characterized by their spectral range. This formulation often allows recovering a posteriori the worst possible averaging matrix for the given algorithm. We apply our methodology to three different decentralized methods. For each of them, we obtain numerically tight worst-case performance bounds that significantly improve on the existing ones, as well as insights about the parameters tuning and the worst communication networks.
In stochastic optimization, a common tool to deal sequentially with large sample is to consider the well-known stochastic gradient algorithm. Nevertheless, since the stepsequence is the same for each direction, this can lead to bad results in practice in case of ill-conditionned problem. To overcome this, adaptive gradient algorithms such that Adagrad or Stochastic Newton algorithms should be prefered. This paper is devoted to the non asymptotic analyis of these adaptive gradient algorithms for strongly convex objective. All the theoretical results will be adapted to linear regression and regularized generalized linear model for both Adagrad and Stochastic Newton algorithms.
For the stochastic heat equation with multiplicative noise we consider the problem of estimating the diffusivity parameter in front of the Laplace operator. Based on local observations in space, we first study an estimator that was derived for additive noise. A stable central limit theorem shows that this estimator is consistent and asymptotically mixed normal. By taking into account the quadratic variation, we propose two new estimators. Their limiting distributions exhibit a smaller (conditional) variance and the last estimator also works for vanishing noise levels. The proofs are based on local approximation results to overcome the intricate nonlinearities and on a stable central limit theorem for stochastic integrals with respect to cylindrical Brownian motion. Simulation results illustrate the theoretical findings.
This book develops an effective theory approach to understanding deep neural networks of practical relevance. Beginning from a first-principles component-level picture of networks, we explain how to determine an accurate description of the output of trained networks by solving layer-to-layer iteration equations and nonlinear learning dynamics. A main result is that the predictions of networks are described by nearly-Gaussian distributions, with the depth-to-width aspect ratio of the network controlling the deviations from the infinite-width Gaussian description. We explain how these effectively-deep networks learn nontrivial representations from training and more broadly analyze the mechanism of representation learning for nonlinear models. From a nearly-kernel-methods perspective, we find that the dependence of such models' predictions on the underlying learning algorithm can be expressed in a simple and universal way. To obtain these results, we develop the notion of representation group flow (RG flow) to characterize the propagation of signals through the network. By tuning networks to criticality, we give a practical solution to the exploding and vanishing gradient problem. We further explain how RG flow leads to near-universal behavior and lets us categorize networks built from different activation functions into universality classes. Altogether, we show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks. By using information-theoretic techniques, we estimate the optimal aspect ratio at which we expect the network to be practically most useful and show how residual connections can be used to push this scale to arbitrary depths. With these tools, we can learn in detail about the inductive bias of architectures, hyperparameters, and optimizers.
Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.