Although adaptive gradient methods have been extensively used in deep learning, their convergence rates proved in the literature are all slower than that of SGD, particularly with respect to their dependence on the dimension. This paper considers the classical RMSProp and its momentum extension and establishes the convergence rate of $\frac{1}{T}\sum_{k=1}^T E\left[\|\nabla f(x^k)\|_1\right]\leq O(\frac{\sqrt{d}C}{T^{1/4}})$ measured by $\ell_1$ norm without the bounded gradient assumption, where $d$ is the dimension of the optimization variable, $T$ is the iteration number, and $C$ is a constant identical to that appeared in the optimal convergence rate of SGD. Our convergence rate matches the lower bound with respect to all the coefficients except the dimension $d$. Since $\|x\|_2\ll\|x\|_1\leq\sqrt{d}\|x\|_2$ for problems with extremely large $d$, our convergence rate can be considered to be analogous to the $\frac{1}{T}\sum_{k=1}^T E\left[\|\nabla f(x^k)\|_2\right]\leq O(\frac{C}{T^{1/4}})$ rate of SGD in the ideal case of $\|\nabla f(x)\|_1=\varTheta(\sqrt{d}\|\nabla f(x)\|_2)$.
We prove the first hardness results against efficient proof search by quantum algorithms. We show that under Learning with Errors (LWE), the standard lattice-based cryptographic assumption, no quantum algorithm can weakly automate $\mathbf{TC}^0$-Frege. This extends the line of results of Kraj\'i\v{c}ek and Pudl\'ak (Information and Computation, 1998), Bonet, Pitassi, and Raz (FOCS, 1997), and Bonet, Domingo, Gavald\`a, Maciel, and Pitassi (Computational Complexity, 2004), who showed that Extended Frege, $\mathbf{TC}^0$-Frege and $\mathbf{AC}^0$-Frege, respectively, cannot be weakly automated by classical algorithms if either the RSA cryptosystem or the Diffie-Hellman key exchange protocol are secure. To the best of our knowledge, this is the first interaction between quantum computation and propositional proof search.
Large Language Models (LLMs) have gained significant popularity in the last few years due to their performance in diverse tasks such as translation, prediction, or content generation. At the same time, the research community has shown that LLMs are susceptible to various attacks but can also improve the security of diverse systems. However, besides enabling more secure systems, how well do open source LLMs behave as covertext distributions to, e.g., facilitate censorship resistant communication? In this paper, we explore the capabilities of open-source LLM-based covert channels. We approach this problem from the experimental side by empirically measuring the security vs. capacity of the open-source LLM model (Llama-7B) to assess how well it performs as a covert channel. Although our results indicate that such channels are not likely to achieve high practical bitrates, which depend on message length and model entropy, we also show that the chance for an adversary to detect covert communication is low. To ensure that our results can be used with the least effort as a general reference, we employ a conceptually simple and concise scheme and only assume public models.
Boundary integral equation formulations of elliptic partial differential equations lead to dense system matrices when discretized, yet they are data-sparse. Using the $\mathcal{H}$-matrix format, this sparsity is exploited to achieve $\mathcal{O}(N\log N)$ complexity for storage and multiplication by a vector. This is achieved purely algebraically, based on low-rank approximations of subblocks, and hence the format is also applicable to a wider range of problems. The $\mathcal{H}^2$-matrix format improves the complexity to $\mathcal{O}(N)$ by introducing a recursive structure onto subblocks on multiple levels. However, in practice this comes with a large proportionality constant, making the $\mathcal{H}^2$-matrix format advantageous mostly for large problems. In this paper we investigate the usefulness of a matrix format that lies in between these two: Uniform $\mathcal{H}$-matrices. An algebraic compression algorithm is introduced to transform a regular $\mathcal{H}$-matrix into a uniform $\mathcal{H}$-matrix, which maintains the asymptotic complexity.
Vizing's theorem states that any $n$-vertex $m$-edge graph of maximum degree $\Delta$ can be {\em edge colored} using at most $\Delta + 1$ different colors [Diskret.~Analiz, '64]. Vizing's original proof is algorithmic and shows that such an edge coloring can be found in $\tilde{O}(mn)$ time. This was subsequently improved to $\tilde O(m\sqrt{n})$, independently by Arjomandi [1982] and by Gabow et al.~[1985]. In this paper we present an algorithm that computes such an edge coloring in $\tilde O(mn^{1/3})$ time, giving the first polynomial improvement for this fundamental problem in over 40 years.
We study the possibility of designing $N^{o(1)}$-round protocols for problems of substantially super-linear polynomial-time complexity on the congested clique with about $N^{1/2}$ nodes, where $N$ is the input size. We show that the exponent of the polynomial (if any) bounding the average time complexity of local computations performed at a node in such protocols has to be larger than that of the polynomial bounding the time complexity of the given problem.
In this work we present a consistent reduction of the relaxed micromorphic model to its corresponding two-dimensional planar model, such that its capacity to capture discontinuous dilatation fields is preserved. As a direct consequence of our approach, new conforming finite elements for $H^\mathrm{dev}(\mathrm{Curl},A)$ become necessary. We present two novel $H^\mathrm{dev}(\mathrm{Curl},A)$-conforming finite element spaces, of which one is a macro element based on Clough--Tocher splits, as well as primal and mixed variational formulations of the planar relaxed micromorphic model. Finally, we demonstrate the effectiveness of our approach with two numerical examples.
Scientific datasets present unique challenges for machine learning-driven compression methods, including more stringent requirements on accuracy and mitigation of potential invalidating artifacts. Drawing on results from compressed sensing and rate-distortion theory, we introduce effective data compression methods by developing autoencoders using high dimensional latent spaces that are $L^1$-regularized to obtain sparse low dimensional representations. We show how these information-rich latent spaces can be used to mitigate blurring and other artifacts to obtain highly effective data compression methods for scientific data. We demonstrate our methods for short angle scattering (SAS) datasets showing they can achieve compression ratios around two orders of magnitude and in some cases better. Our compression methods show promise for use in addressing current bottlenecks in transmission, storage, and analysis in high-performance distributed computing environments. This is central to processing the large volume of SAS data being generated at shared experimental facilities around the world to support scientific investigations. Our approaches provide general ways for obtaining specialized compression methods for targeted scientific datasets.
We investigate the maximum cardinality and the mathematical structure of error-correcting codes endowed with the Kendall-$\tau$ metric. We establish an averaging bound for the cardinality of a code with prescribed minimum distance, discuss its sharpness, and characterize codes attaining it. This leads to introducing the family of $t$-balanced codes in the Kendall-$\tau$ metric. The results are based on novel arguments that shed new light on the structure of the Kendall-$\tau$ metric space.
Objective: Magnetic particle imaging (MPI) is an emerging medical imaging modality which has gained increasing interest in recent years. Among the benefits of MPI are its high temporal resolution, and that the technique does not expose the specimen to any kind of ionizing radiation. It is based on the non-linear response of magnetic nanoparticles to an applied magnetic field. From the electric signal measured in receive coils, the particle concentration has to be reconstructed. Due to the ill-posedness of the reconstruction problem, various regularization methods have been proposed for reconstruction ranging from early stopping methods, via classical Tikhonov regularization and iterative methods to modern machine learning approaches. In this work, we contribute to the latter class: we propose a plug-and-play approach based on a generic zero-shot denoiser with an $\ell^1$-prior. Approach: We validate the reconstruction parameters of the method on a hybrid dataset and compare it with the baseline Tikhonov, DIP and the previous PP-MPI, which is a plug-and-play method with denoiser trained on MPI-friendly data. Main results: We offer a quantitative and qualitative evaluation of the zero-shot plug-and-play approach on the 3D Open MPI dataset. Moreover, we show the quality of the approach with different levels of preprocessing of the data. Significance: The proposed method employs a zero-shot denoiser which has not been trained for the MPI task and therefore saves the cost for training. Moreover, it offers a method that can be potentially applied in future MPI contexts.
The classical work of (Arora et al., 1999) provides a scheme that gives, for any $\epsilon>0$, a polynomial time $1-\epsilon$ approximation algorithm for dense instances of a family of $\mathcal{NP}$-hard problems, such as Max-CUT and Max-$k$-SAT. In this paper we extend and speed up this scheme using a logarithmic number of one-bit predictions. We propose a learning augmented framework which aims at finding fast algorithms which guarantees approximation consistency, smoothness and robustness with respect to the prediction error. We provide such algorithms, which moreover use predictions parsimoniously, for dense instances of various optimization problems.