亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Extreme Value Theory plays an important role to provide approximation results for the extremes of a sequence of independent random variable when their distribution is unknown. An important one is given by the Generalised Pareto distribution $H_\gamma(x)$ as an approximation of the distribution $F_t(s(t)x)$ of the excesses over a threshold $t$, where $s(t)$ is a suitable norming function. In this paper we study the rate of convergence of $F_t(s(t)\cdot)$ to $H_\gamma$ in variational and Hellinger distances and translate it into that regarding the Kullback-Leibler divergence between the respective densities. We discuss the utility of these results in the statistical field by showing that the derivation of consistency and rate of convergence of estimators of the tail index or tail probabilities can be obtained thorough an alternative and relatively simplified approach, if compared to usual asymptotic techniques.

相關內容

Quantum dynamics can be simulated on a quantum computer by exponentiating elementary terms from the Hamiltonian in a sequential manner. However, such an implementation of Trotter steps has gate complexity depending on the total Hamiltonian term number, comparing unfavorably to algorithms using more advanced techniques. We develop methods to perform faster Trotter steps with complexity sublinear in the number of terms. We achieve this for a class of Hamiltonians whose interaction strength decays with distance according to power law. Our methods include one based on a recursive block encoding and one based on an average-cost simulation, overcoming the normalization-factor barrier of these advanced quantum simulation techniques. We also realize faster Trotter steps when certain blocks of Hamiltonian coefficients have low rank. Combining with a tighter error analysis, we show that it suffices to use $\left(\eta^{1/3}n^{1/3}+\frac{n^{2/3}}{\eta^{2/3}}\right)n^{1+o(1)}$ gates to simulate uniform electron gas with $n$ spin orbitals and $\eta$ electrons in second quantization in real space, asymptotically improving over the best previous work. We obtain an analogous result when the external potential of nuclei is introduced under the Born-Oppenheimer approximation. We prove a circuit lower bound when the Hamiltonian coefficients take a continuum range of values, showing that generic $n$-qubit $2$-local Hamiltonians with commuting terms require at least $\Omega(n^2)$ gates to evolve with accuracy $\epsilon=\Omega(1/poly(n))$ for time $t=\Omega(\epsilon)$. Our proof is based on a gate-efficient reduction from the approximate synthesis of diagonal unitaries within the Hamming weight-$2$ subspace, which may be of independent interest. Our result thus suggests the use of Hamiltonian structural properties as both necessary and sufficient to implement Trotter steps with lower gate complexity.

Indexing is a well-known database technique used to facilitate data access and speed up query processing. Nevertheless, the construction and modification of indexes are very expensive. In traditional approaches, all records in the database table are equally covered by the index. It is not effective, since some records may be queried very often and some never. To avoid this problem, adaptive merging has been introduced. The key idea is to create index adaptively and incrementally as a side-product of query processing. As a result, the database table is indexed partially depending on the query workload. This paper faces a problem of adaptive merging for phase change memory (PCM). The most important features of this memory type are: limited write endurance and high write latency. As a consequence, adaptive merging should be investigated from the scratch. We solve this problem in two steps. First, we apply several PCM optimization techniques to the traditional adaptive merging approach. We prove that the proposed method (eAM) outperforms a traditional approach by 60%. After that, we invent the framework for adaptive merging (PAM) and a new PCM-optimized index. It further improves the system performance by 20% for databases where search queries interleave with data modifications.

State-of-the-art Text-To-Speech (TTS) models are capable of producing high-quality speech. The generated speech, however, is usually neutral in emotional expression, whereas very often one would want fine-grained emotional control of words or phonemes. Although still challenging, the first TTS models have been recently proposed that are able to control voice by manually assigning emotion intensity. Unfortunately, due to the neglect of intra-class distance, the intensity differences are often unrecognizable. In this paper, we propose a fine-grained controllable emotional TTS, that considers both inter- and intra-class distances and be able to synthesize speech with recognizable intensity difference. Our subjective and objective experiments demonstrate that our model exceeds two state-of-the-art controllable TTS models for controllability, emotion expressiveness and naturalness.

In this paper, we propose and analyze a linear second-order numerical method for solving the Allen-Cahn equation with a general mobility. The proposed fully-discrete scheme is carefully constructed based on the combination of first and second-order backward differentiation formulas with nonuniform time steps for temporal approximation and the central finite difference for spatial discretization. The discrete maximum bound principle is proved of the proposed scheme by using the kernel recombination technique under certain mild constraints on the time steps and the ratios of adjacent time step sizes. Furthermore, we rigorously derive the discrete $H^{1}$ error estimate and energy stability for the classic constant mobility case and the $L^{\infty}$ error estimate for the general mobility case. Various numerical experiments are also presented to validate the theoretical results and demonstrate the performance of the proposed method with a time adaptive strategy.

Explainable artificial intelligence techniques are evolving at breakneck speed, but suitable evaluation approaches currently lag behind. With explainers becoming increasingly complex and a lack of consensus on how to assess their utility, it is challenging to judge the benefit and effectiveness of different explanations. To address this gap, we take a step back from complex predictive algorithms and instead look into explainability of simple mathematical models. In this setting, we aim to assess how people perceive comprehensibility of different model representations such as mathematical formulation, graphical representation and textual summarisation (of varying scope). This allows diverse stakeholders -- engineers, researchers, consumers, regulators and the like -- to judge intelligibility of fundamental concepts that more complex artificial intelligence explanations are built from. This position paper charts our approach to establishing appropriate evaluation methodology as well as a conceptual and practical framework to facilitate setting up and executing relevant user studies.

This paper focuses on computing the convex conjugate operation that arises when solving Euclidean Wasserstein-2 optimal transport problems. This conjugation, which is also referred to as the Legendre-Fenchel conjugate or c-transform,is considered difficult to compute and in practice,Wasserstein-2 methods are limited by not being able to exactly conjugate the dual potentials in continuous space. To overcome this, the computation of the conjugate can be approximated with amortized optimization, which learns a model to predict the conjugate. I show that combining amortized approximations to the conjugate with a solver for fine-tuning significantly improves the quality of transport maps learned for the Wasserstein-2 benchmark by Korotin et al. (2021a) and is able to model many 2-dimensional couplings and flows considered in the literature. All of the baselines, methods, and solvers in this paper are available at //github.com/facebookresearch/w2ot.

Gradient clipping is a standard training technique used in deep learning applications such as large-scale language modeling to mitigate exploding gradients. Recent experimental studies have demonstrated a fairly special behavior in the smoothness of the training objective along its trajectory when trained with gradient clipping. That is, the smoothness grows with the gradient norm. This is in clear contrast to the well-established assumption in folklore non-convex optimization, a.k.a. $L$-smoothness, where the smoothness is assumed to be bounded by a constant $L$ globally. The recently introduced $(L_0,L_1)$-smoothness is a more relaxed notion that captures such behavior in non-convex optimization. In particular, it has been shown that under this relaxed smoothness assumption, SGD with clipping requires $O(\epsilon^{-4})$ stochastic gradient computations to find an $\epsilon$-stationary solution. In this paper, we employ a variance reduction technique, namely SPIDER, and demonstrate that for a carefully designed learning rate, this complexity is improved to $O(\epsilon^{-3})$ which is order-optimal. The corresponding learning rate comprises the clipping technique to mitigate the growing smoothness. Moreover, when the objective function is the average of $n$ components, we improve the existing $O(n\epsilon^{-2})$ bound on the stochastic gradient complexity to order-optimal $O(\sqrt{n} \epsilon^{-2} + n)$.

We study the spectral convergence of a symmetrized Graph Laplacian matrix induced by a Gaussian kernel evaluated on pairs of embedded data, sampled from a manifold with boundary, a sub-manifold of $\mathbb{R}^m$. Specifically, we deduce the convergence rates for eigenpairs of the discrete Graph-Laplacian matrix to the eigensolutions of the Laplace-Beltrami operator that are well-defined on manifolds with boundary, including the homogeneous Neumann and Dirichlet boundary conditions. For the Dirichlet problem, we deduce the convergence of the \emph{truncated Graph Laplacian}, which is recently numerically observed in applications, and provide a detailed numerical investigation on simple manifolds. Our method of proof relies on the min-max argument over a compact and symmetric integral operator, leveraging the RKHS theory for spectral convergence of integral operator and a recent pointwise asymptotic result of a Gaussian kernel integral operator on manifolds with boundary.

This manuscript portrays optimization as a process. In many practical applications the environment is so complex that it is infeasible to lay out a comprehensive theoretical model and use classical algorithmic theory and mathematical optimization. It is necessary as well as beneficial to take a robust approach, by applying an optimization method that learns as one goes along, learning from experience as more aspects of the problem are observed. This view of optimization as a process has become prominent in varied fields and has led to some spectacular success in modeling and systems that are now part of our daily lives.

Artificial Intelligence (AI) is rapidly becoming integrated into military Command and Control (C2) systems as a strategic priority for many defence forces. The successful implementation of AI is promising to herald a significant leap in C2 agility through automation. However, realistic expectations need to be set on what AI can achieve in the foreseeable future. This paper will argue that AI could lead to a fragility trap, whereby the delegation of C2 functions to an AI could increase the fragility of C2, resulting in catastrophic strategic failures. This calls for a new framework for AI in C2 to avoid this trap. We will argue that antifragility along with agility should form the core design principles for AI-enabled C2 systems. This duality is termed Agile, Antifragile, AI-Enabled Command and Control (A3IC2). An A3IC2 system continuously improves its capacity to perform in the face of shocks and surprises through overcompensation from feedback during the C2 decision-making cycle. An A3IC2 system will not only be able to survive within a complex operational environment, it will also thrive, benefiting from the inevitable shocks and volatility of war.

北京阿比特科技有限公司