Causal reversibility blends reversibility and causality for concurrent systems. It indicates that an action can be undone provided that all of its consequences have been undone already, thus making it possible to bring the system back to a past consistent state. Time reversibility is instead considered in the field of stochastic processes, mostly for efficient analysis purposes. A performance model based on a continuous-time Markov chain is time reversible if its stochastic behavior remains the same when the direction of time is reversed. We bridge these two theories of reversibility by showing the conditions under which causal reversibility and time reversibility are both ensured by construction. This is done in the setting of a stochastic process calculus, which is then equipped with a variant of stochastic bisimilarity accounting for both forward and backward directions.
In this paper, we address the optimization problem of moments of Age of Information (AoI) for active and passive users in a random access network. In this network, active users broadcast sensing data while passive users only receive signals. Collisions occur when multiple active users transmit simultaneously, and passive users are unable to receive signals while any active user is transmitting. Each active user follows a Markov process for their transmissions. We aim to minimize the weighted sum of any moments of AoI for both active and passive users in this network. To achieve this, we employ a second-order analysis to analyze the system. Specifically, we characterize an active user's transmission Markov process by its mean and temporal process. We show that any moment of the AoI can be expressed a function of the mean and temporal variance, which, in turn, enables us to derive the optimal transmission Markov process. Our simulation results demonstrate that this proposed strategy outperforms other baseline policies that use different active user transmission models.
The ParaOpt algorithm was recently introduced as a time-parallel solver for optimal-control problems with a terminal-cost objective, and convergence results have been presented for the linear diffusive case with implicit-Euler time integrators. We reformulate ParaOpt for tracking problems and provide generalized convergence analyses for both objectives. We focus on linear diffusive equations and prove convergence bounds that are generic in the time integrators used. For large problem dimensions, ParaOpt's performance depends crucially on having a good preconditioner to solve the arising linear systems. For the case where ParaOpt's cheap, coarse-grained propagator is linear, we introduce diagonalization-based preconditioners inspired by recent advances in the ParaDiag family of methods. These preconditioners not only lead to a weakly-scalable ParaOpt version, but are themselves invertible in parallel, making maximal use of available concurrency. They have proven convergence properties in the linear diffusive case that are generic in the time discretization used, similarly to our ParaOpt results. Numerical results confirm that the iteration count of the iterative solvers used for ParaOpt's linear systems becomes constant in the limit of an increasing processor count. The paper is accompanied by a sequential MATLAB implementation.
The differences in brain dynamics across human subjects, commonly referred to as human artifacts, have long been a challenge in the field, severely limiting the generalizability of brain dynamics recognition models. Traditional methods for human artifact removal typically employ spectrum filtering or blind source separation, based on simple prior distribution assumptions, which ultimately constrain the capacity to model each subject's domain variance. In this paper, we propose a novel approach to model human artifact removal as a generative denoising process, capable of simultaneously generating and learning subject-specific domain variance and invariant brain signals. We introduce the Domain Specific Denoising Diffusion Probabilistic Model (DS-DDPM), which decomposes the denoising process into subject domain variance and invariant content at each step. By incorporating subtle constraints and probabilistic design, we formulate domain variance and invariant content into orthogonal spaces and further supervise the domain variance with a subject classifier. This method is the first to explicitly separate human subject-specific variance through generative denoising processes, outperforming previous methods in two aspects: 1) DS-DDPM can learn more accurate subject-specific domain variance through domain generative learning compared to traditional filtering methods, and 2) DS-DDPM is the first approach capable of explicitly generating subject noise distribution. Comprehensive experimental results indicate that DS-DDPM effectively alleviates domain distribution bias for cross-domain brain dynamics signal recognition.
We give a simple characterization of which functions can be computed deterministically by anonymous processes in dynamic networks, depending on the number of leaders in the network. In addition, we provide efficient distributed algorithms for computing all such functions assuming minimal or no knowledge about the network. Each of our algorithms comes in two versions: one that terminates with the correct output and a faster one that stabilizes on the correct output without explicit termination. Notably, these are the first deterministic algorithms whose running times scale linearly with both the number of processes and a parameter of the network which we call "dynamic disconnectivity" (meaning that our dynamic networks do not necessarily have to be connected at all times). We also provide matching lower bounds, showing that all our algorithms are asymptotically optimal for any fixed number of leaders. While most of the existing literature on anonymous dynamic networks relies on classical mass-distribution techniques, our work makes use of a recently introduced combinatorial structure called "history tree", also developing its theory in new directions. Among other contributions, our results make definitive progress on two popular fundamental problems for anonymous dynamic networks: leaderless Average Consensus (i.e., computing the mean value of input numbers distributed among the processes) and multi-leader Counting (i.e., determining the exact number of processes in the network). In fact, our approach unifies and improves upon several independent lines of research on anonymous networks, including Nedic et al., IEEE Trans. Automat. Contr. 2009; Olshevsky, SIAM J. Control Optim. 2017; Kowalski-Mosteiro, ICALP 2019, SPAA 2021; Di Luna-Viglietta, FOCS 2022.
Epidemiological models must be calibrated to ground truth for downstream tasks such as producing forward projections or running what-if scenarios. The meaning of calibration changes in case of a stochastic model since output from such a model is generally described via an ensemble or a distribution. Each member of the ensemble is usually mapped to a random number seed (explicitly or implicitly). With the goal of finding not only the input parameter settings but also the random seeds that are consistent with the ground truth, we propose a class of Gaussian process (GP) surrogates along with an optimization strategy based on Thompson sampling. This Trajectory Oriented Optimization (TOO) approach produces actual trajectories close to the empirical observations instead of a set of parameter settings where only the mean simulation behavior matches with the ground truth.
Arguably, the largest class of stochastic processes generated by means of a finite memory consists of those that are sequences of observations produced by sequential measurements in a suitable generalized probabilistic theory (GPT). These are constructed from a finite-dimensional memory evolving under a set of possible linear maps, and with probabilities of outcomes determined by linear functions of the memory state. Examples of such models are given by classical hidden Markov processes, where the memory state is a probability distribution, and at each step it evolves according to a non-negative matrix, and hidden quantum Markov processes, where the memory state is a finite dimensional quantum state, and at each step it evolves according to a completely positive map. Here we show that the set of processes admitting a finite-dimensional explanation do not need to be explainable in terms of either classical probability or quantum mechanics. To wit, we exhibit families of processes that have a finite-dimensional explanation, defined manifestly by the dynamics of explicitly given GPT, but that do not admit a quantum, and therefore not even classical, explanation in finite dimension. Furthermore, we present a family of quantum processes on qubits and qutrits that do not admit a classical finite-dimensional realization, which includes examples introduced earlier by Fox, Rubin, Dharmadikari and Nadkarni as functions of infinite dimensional Markov chains, and lower bound the size of the memory of a classical model realizing a noisy version of the qubit processes.
Stochastic partial differential equations have been used in a variety of contexts to model the evolution of uncertain dynamical systems. In recent years, their applications to geophysical fluid dynamics has increased massively. For a judicious usage in modelling fluid evolution, one needs to calibrate the amplitude of the noise to data. In this paper we address this requirement for the stochastic rotating shallow water (SRSW) model. This work is a continuation of [LvLCP23], where a data assimilation methodology has been introduced for the SRSW model. The noise used in [LvLCP23] was introduced as an arbitrary random phase shift in the Fourier space. This is not necessarily consistent with the uncertainty induced by a model reduction procedure. In this paper, we introduce a new method of noise calibration of the SRSW model which is compatible with the model reduction technique. The method is generic and can be applied to arbitrary stochastic parametrizations. It is also agnostic as to the source of data (real or synthetic). It is based on a principal component analysis technique to generate the eigenvectors and the eigenvalues of the covariance matrix of the stochastic parametrization. For SRSW model covered in this paper, we calibrate the noise by using the elevation variable of the model, as this is an observable easily obtainable in practical application, and use synthetic data as input for the calibration procedure.
Bayesian optimization is a class of global optimization techniques. In Bayesian optimization, the underlying objective function is modeled as a realization of a Gaussian process. Although the Gaussian process assumption implies a random distribution of the Bayesian optimization outputs, quantification of this uncertainty is rarely studied in the literature. In this work, we propose a novel approach to assess the output uncertainty of Bayesian optimization algorithms, which proceeds by constructing confidence regions of the maximum point (or value) of the objective function. These regions can be computed efficiently, and their confidence levels are guaranteed by the uniform error bounds for sequential Gaussian process regression newly developed in the present work. Our theory provides a unified uncertainty quantification framework for all existing sequential sampling policies and stopping criteria.
Causal discovery and causal reasoning are classically treated as separate and consecutive tasks: one first infers the causal graph, and then uses it to estimate causal effects of interventions. However, such a two-stage approach is uneconomical, especially in terms of actively collected interventional data, since the causal query of interest may not require a fully-specified causal model. From a Bayesian perspective, it is also unnatural, since a causal query (e.g., the causal graph or some causal effect) can be viewed as a latent quantity subject to posterior inference -- other unobserved quantities that are not of direct interest (e.g., the full causal model) ought to be marginalized out in this process and contribute to our epistemic uncertainty. In this work, we propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian active learning framework for integrated causal discovery and reasoning, which jointly infers a posterior over causal models and queries of interest. In our approach to ABCI, we focus on the class of causally-sufficient, nonlinear additive noise models, which we model using Gaussian processes. We sequentially design experiments that are maximally informative about our target causal query, collect the corresponding interventional data, and update our beliefs to choose the next experiment. Through simulations, we demonstrate that our approach is more data-efficient than several baselines that only focus on learning the full causal graph. This allows us to accurately learn downstream causal queries from fewer samples while providing well-calibrated uncertainty estimates for the quantities of interest.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.