亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Security and dependability of devices are paramount for the IoT ecosystem. Message Queuing Telemetry Transport protocol (MQTT) is the de facto standard and the most common alternative for those limited devices that cannot leverage HTTP. However, the MQTT protocol was designed with no security concern since initially designed for private networks of the oil and gas industry. Since MQTT is widely used for real applications, it is under the lens of the security community, also considering the widespread attacks targeting IoT devices. Following this direction research, in this paper we present an empirical security evaluation of several widespread implementations of MQTT system components, namely five broker libraries and three client libraries. While the results of our research do not capture very critical flaws, there are several scenarios where some libraries do not fully adhere to the standard and leave some margins that could be maliciously exploited and potentially cause system inconsistencies.

相關內容

The plausibility of the ``parallel trends assumption'' in Difference-in-Differences estimation is usually assessed by a test of the null hypothesis that the difference between the average outcomes of both groups is constant over time before the treatment. However, failure to reject the null hypothesis does not imply the absence of differences in time trends between both groups. We provide equivalence tests that allow researchers to find evidence in favor of the parallel trends assumption and thus increase the credibility of their treatment effect estimates. While we motivate our tests in the standard two-way fixed effects model, we discuss simple extensions to settings in which treatment adoption is staggered over time.

The Flexible Job Shop Scheduling Problem (FJSSP) has been extensively studied in the literature, and multiple approaches have been proposed within the heuristic, exact, and metaheuristic methods. However, the industry's demand to be able to respond in real-time to disruptive events has generated the necessity to be able to generate new schedules within a few seconds. Among these methods, under this constraint, only dispatching rules (DRs) are capable of generating schedules, even though their quality can be improved. To improve the results, recent methods have been proposed for modeling the FJSSP as a Markov Decision Process (MDP) and employing reinforcement learning to create a policy that generates an optimal solution assigning operations to machines. Nonetheless, there is still room for improvement, particularly in the larger FJSSP instances which are common in real-world scenarios. Therefore, the objective of this paper is to propose a method capable of robustly solving large instances of the FJSSP. To achieve this, we propose a novel way of modeling the FJSSP as an MDP using graph neural networks. We also present two methods to make inference more robust: generating a diverse set of scheduling policies that can be parallelized and limiting them using DRs. We have tested our approach on synthetically generated instances and various public benchmarks and found that our approach outperforms dispatching rules and achieves better results than three other recent deep reinforcement learning methods on larger FJSSP instances.

Neural networks (NNs) are primarily developed within the frequentist statistical framework. Nevertheless, frequentist NNs lack the capability to provide uncertainties in the predictions, and hence their robustness can not be adequately assessed. Conversely, the Bayesian neural networks (BNNs) naturally offer predictive uncertainty by applying Bayes' theorem. However, their computational requirements pose significant challenges. Moreover, both frequentist NNs and BNNs suffer from overfitting issues when dealing with noisy and sparse data, which render their predictions unwieldy away from the available data space. To address both these problems simultaneously, we leverage insights from a hierarchical setting in which the parameter priors are conditional on hyperparameters to construct a BNN by applying a semi-analytical framework known as nonlinear sparse Bayesian learning (NSBL). We call our network sparse Bayesian neural network (SBNN) which aims to address the practical and computational issues associated with BNNs. Simultaneously, imposing a sparsity-inducing prior encourages the automatic pruning of redundant parameters based on the automatic relevance determination (ARD) concept. This process involves removing redundant parameters by optimally selecting the precision of the parameters prior probability density functions (pdfs), resulting in a tractable treatment for overfitting. To demonstrate the benefits of the SBNN algorithm, the study presents an illustrative regression problem and compares the results of a BNN using standard Bayesian inference, hierarchical Bayesian inference, and a BNN equipped with the proposed algorithm. Subsequently, we demonstrate the importance of considering the full parameter posterior by comparing the results with those obtained using the Laplace approximation with and without NSBL.

Quantum computing promises transformational gains for solving some problems, but little to none for others. For anyone hoping to use quantum computers now or in the future, it is important to know which problems will benefit. In this paper, we introduce a framework for answering this question both intuitively and quantitatively. The underlying structure of the framework is a race between quantum and classical computers, where their relative strengths determine when each wins. While classical computers operate faster, quantum computers can sometimes run more efficient algorithms. Whether the speed advantage or the algorithmic advantage dominates determines whether a problem will benefit from quantum computing or not. Our analysis reveals that many problems, particularly those of small to moderate size that can be important for typical businesses, will not benefit from quantum computing. Conversely, larger problems or those with particularly big algorithmic gains will benefit from near-term quantum computing. Since very large algorithmic gains are rare in practice and theorized to be rare even in principle, our analysis suggests that the benefits from quantum computing will flow either to users of these rare cases, or practitioners processing very large data.

Sparse Bayesian learning (SBL) has been extensively utilized in data-driven modeling to combat the issue of overfitting. While SBL excels in linear-in-parameter models, its direct applicability is limited in models where observations possess nonlinear relationships with unknown parameters. Recently, a semi-analytical Bayesian framework known as nonlinear sparse Bayesian learning (NSBL) was introduced by the authors to induce sparsity among model parameters during the Bayesian inversion of nonlinear-in-parameter models. NSBL relies on optimally selecting the hyperparameters of sparsity-inducing Gaussian priors. It is inherently an approximate method since the uncertainty in the hyperparameter posterior is disregarded as we instead seek the maximum a posteriori (MAP) estimate of the hyperparameters (type-II MAP estimate). This paper aims to investigate the hierarchical structure that forms the basis of NSBL and validate its accuracy through a comparison with a one-level hierarchical Bayesian inference as a benchmark in the context of three numerical experiments: (i) a benchmark linear regression example with Gaussian prior and Gaussian likelihood, (ii) the same regression problem with a highly non-Gaussian prior, and (iii) an example of a dynamical system with a non-Gaussian prior and a highly non-Gaussian likelihood function, to explore the performance of the algorithm in these new settings. Through these numerical examples, it can be shown that NSBL is well-suited for physics-based models as it can be readily applied to models with non-Gaussian prior distributions and non-Gaussian likelihood functions. Moreover, we illustrate the accuracy of the NSBL algorithm as an approximation to the one-level hierarchical Bayesian inference and its ability to reduce the computational cost while adequately exploring the parameter posteriors.

Highly oscillatory differential equations present significant challenges in numerical treatments. The Modulated Fourier Expansion (MFE), used as an ansatz, is a commonly employed tool as a numerical approximation method. In this article, the Modulated Fourier Expansion is analytically derived for a linear partial differential equation with a multifrequency highly oscillatory potential. The solution of the equation is expressed as a convergent Neumann series within the appropriate Sobolev space. The proposed approach enables, firstly, to derive a general formula for the error associated with the approximation of the solution by MFE, and secondly, to determine the coefficients for this expansion -- without the need to solve numerically the system of differential equations to find the coefficients of MFE. Numerical experiments illustrate the theoretical investigations.

The emergence of Large Language Models (LLMs) has improved software development efficiency, but their performance can be hindered by training data limitations and prompt design issues. Existing LLM development tools often operate as black boxes, with users unable to view the prompts used and unable to improve performance by correcting prompts when errors occur. To address the aforementioned issues, GPTutor was introduced as an open-source AI pair programming tool, offering an alternative to Copilot. GPTutor empowers users to customize prompts for various programming languages and scenarios, with support for 120+ human languages and 50+ programming languages. Users can fine-tune prompts to correct the errors from LLM for precision and efficient code generation. At the end of the paper, we underscore GPTutor's potential through examples, including demonstrating its proficiency in interpreting and generating Sui-Move, a newly introduced smart contract language, using prompt engineering.

We introduce novel Markov chain Monte Carlo (MCMC) algorithms based on numerical approximations of piecewise-deterministic Markov processes obtained with the framework of splitting schemes. We present unadjusted as well as adjusted algorithms, for which the asymptotic bias due to the discretisation error is removed applying a non-reversible Metropolis-Hastings filter. In a general framework we demonstrate that the unadjusted schemes have weak error of second order in the step size, while typically maintaining a computational cost of only one gradient evaluation of the negative log-target function per iteration. Focusing then on unadjusted schemes based on the Bouncy Particle and Zig-Zag samplers, we provide conditions ensuring geometric ergodicity and consider the expansion of the invariant measure in terms of the step size. We analyse the dependence of the leading term in this expansion on the refreshment rate and on the structure of the splitting scheme, giving a guideline on which structure is best. Finally, we illustrate the competitiveness of our samplers with numerical experiments on a Bayesian imaging inverse problem and a system of interacting particles.

We observe a large variety of robots in terms of their bodies, sensors, and actuators. Given the commonalities in the skill sets, teaching each skill to each different robot independently is inefficient and not scalable when the large variety in the robotic landscape is considered. If we can learn the correspondences between the sensorimotor spaces of different robots, we can expect a skill that is learned in one robot can be more directly and easily transferred to the other robots. In this paper, we propose a method to learn correspondences between robots that have significant differences in their morphologies: a fixed-based manipulator robot with joint control and a differential drive mobile robot. For this, both robots are first given demonstrations that achieve the same tasks. A common latent representation is formed while learning the corresponding policies. After this initial learning stage, the observation of a new task execution by one robot becomes sufficient to generate a latent space representation pertaining to the other robot to achieve the same task. We verified our system in a set of experiments where the correspondence between two simulated robots is learned (1) when the robots need to follow the same paths to achieve the same task, (2) when the robots need to follow different trajectories to achieve the same task, and (3) when complexities of the required sensorimotor trajectories are different for the robots considered. We also provide a proof-of-the-concept realization of correspondence learning between a real manipulator robot and a simulated mobile robot.

We propose an approach to 3D reconstruction via inverse procedural modeling and investigate two variants of this approach. The first option consists in the fitting set of input parameters using a genetic algorithm. We demonstrate the results of our work on tree models, complex objects, with the reconstruction of which most existing methods cannot handle. The second option allows us to significantly improve the precision by using gradients within memetic algorithm, differentiable rendering and also differentiable procedural generators. In our work we see 2 main contributions. First, we propose a method to join differentiable rendering and inverse procedural modeling. This gives us an opportunity to reconstruct 3D model more accurately than existing approaches when a small number of input images are available (even for single image). Second, we join both differentiable and non-differentiable procedural generators in a single framework which allow us to apply inverse procedural modeling to fairly complex generators: when gradient is available, reconstructions is precise, when gradient is not available, reconstruction is approximate, but always high quality without visual artifacts.

北京阿比特科技有限公司