We construct several smooth finite element spaces defined on three--dimensional Worsey--Farin splits. In particular, we construct $C^1$, $H^1(\curl)$, and $H^1$-conforming finite element spaces and show the discrete spaces satisfy local exactness properties. A feature of the spaces is their low polynomial degree and lack of extrinsic supersmoothness at sub-simplices of the mesh. In the lowest order case, the last two spaces in the sequence consist of piecewise linear and piecewise constant spaces, and are suitable for the discretization of the (Navier-)Stokes equation.
Many papers in the field of integer linear programming (ILP, for short) are devoted to problems of the type $\max\{c^\top x \colon A x = b,\, x \in \mathbb{Z}^n_{\geq 0}\}$, where all the entries of $A,b,c$ are integer, parameterized by the number of rows of $A$ and $\|A\|_{\max}$. This class of problems is known under the name of ILP problems in the standard form, adding the word "bounded" if $x \leq u$, for some integer vector $u$. Recently, many new sparsity, proximity, and complexity results were obtained for bounded and unbounded ILP problems in the standard form. In this paper, we consider ILP problems in the canonical form $$\max\{c^\top x \colon b_l \leq A x \leq b_r,\, x \in \mathbb{Z}^n\},$$ where $b_l$ and $b_r$ are integer vectors. We assume that the integer matrix $A$ has the rank $n$, $(n + m)$ rows, $n$ columns, and parameterize the problem by $m$ and $\Delta(A)$, where $\Delta(A)$ is the maximum of $n \times n$ sub-determinants of $A$, taken in the absolute value. We show that any ILP problem in the standard form can be polynomially reduced to some ILP problem in the canonical form, preserving $m$ and $\Delta(A)$, but the reverse reduction is not always possible. More precisely, we define the class of generalized ILP problems in the standard form, which includes an additional group constraint, and prove the equivalence to ILP problems in the canonical form. We generalize known sparsity, proximity, and complexity bounds for ILP problems in the canonical form. Additionally, sometimes, we strengthen previously known results for ILP problems in the canonical form, and, sometimes, we give shorter proofs. Finally, we consider the special cases of $m \in \{0,1\}$. By this way, we give specialised sparsity, proximity, and complexity bounds for the problems on simplices, Knapsack problems and Subset-Sum problems.
Plausibility is a formalization of exact tests for parametric models and generalizes procedures such as Fisher's exact test. The resulting tests are based on cumulative probabilities of the probability density function and evaluate consistency with a parametric family while providing exact control of the $\alpha$ level for finite sample size. Model comparisons are inefficient in this approach. We generalize plausibility by incorporating weighing which allows to perform model comparisons. We show that one weighing scheme is asymptotically equivalent to the likelihood ratio test (LRT) and has finite sample guarantees for the test size under the null hypothesis unlike the LRT. We confirm theoretical properties in simulations that mimic the data set of our data application. We apply the method to a retinoblastoma data set and demonstrate a parent-of-origin effect. Weighted plausibility also has applications in high-dimensional data analysis and P-values for penalized regression models can be derived. We demonstrate superior performance as compared to a data-splitting procedure in a simulation study. We apply weighted plausibility to a high-dimensional gene expression, case-control prostate cancer data set. We discuss the flexibility of the approach by relating weighted plausibility to targeted learning, the bootstrap, and sparsity selection.
Numerically predicting the performance of heterogenous structures without scale separation represents a significant challenge to meet the critical requirements on computational scalability and efficiency -- adopting a mesh fine enough to fully account for the small-scale heterogeneities leads to prohibitive computational costs while simply ignoring these fine heterogeneities tends to drastically over-stiffen the structure's rigidity. This study proposes an approach to construct new material-aware shape (basis) functions per element on a coarse discretization of the structure with respect to each curved bridge nodes (CBNs) defined along the elements' boundaries. Instead of formulating their derivation by solving a nonlinear optimization problem, the shape functions are constructed by building a map from the CBNs to the interior nodes and are ultimately presented in an explicit matrix form as a product of a B\'ezier interpolation transformation and a boundary-interior transformation. The CBN shape function accomodates more flexibility in closely capturing the coarse element's heterogeneity, overcomes the important and challenging issues of inter-element stiffness and displacement discontinuity across interface between coarse elements, and improves the analysis accuracy by orders of magnitude; they also meet the basic geometric properties of shape functions that avoid aphysical analysis results. Extensive numerical examples, including a 3D industrial example of billions of degrees of freedom, are also tested to demonstrate the approach's performance in comparison with results obtained from classical approaches.
We study the problem of finding a minimum homology basis, that is, a shortest set of cycles that generates the $1$-dimensional homology classes with $\mathbb{Z}_2$ coefficients in a given simplicial complex $K$. This problem has been extensively studied in the last few years. For general complexes, the current best deterministic algorithm, by Dey et al., runs in $O(N^\omega + N^2 g)$ time, where $N$ denotes the number of simplices in $K$, $g$ denotes the rank of the $1$-homology group of $K$, and $\omega$ denotes the exponent of matrix multiplication. In this paper, we present two conceptually simple randomized algorithms that compute a minimum homology basis of a general simplicial complex $K$. The first algorithm runs in $\tilde{O}(m^\omega)$ time, where $m$ denotes the number of edges in $K$, whereas the second algorithm runs in $O(m^\omega + N m^{\omega-1})$ time. We also study the problem of finding a minimum cycle basis in an undirected graph $G$ with $n$ vertices and $m$ edges. The best known algorithm for this problem runs in $O(m^\omega)$ time. Our algorithm, which has a simpler high-level description, but is slightly more expensive, runs in $\tilde{O}(m^\omega)$ time.
Random walk based node embedding algorithms learn vector representations of nodes by optimizing an objective function of node embedding vectors and skip-bigram statistics computed from random walks on the network. They have been applied to many supervised learning problems such as link prediction and node classification and have demonstrated state-of-the-art performance. Yet, their properties remain poorly understood. This paper studies properties of random walk based node embeddings in the unsupervised setting of discovering hidden block structure in the network, i.e., learning node representations whose cluster structure in Euclidean space reflects their adjacency structure within the network. We characterize the ergodic limits of the embedding objective, its generalization, and related convex relaxations to derive corresponding non-randomized versions of the node embedding objectives. We also characterize the optimal node embedding Grammians of the non-randomized objectives for the expected graph of a two-community Stochastic Block Model (SBM). We prove that the solution Grammian has rank $1$ for a suitable nuclear norm relaxation of the non-randomized objective. Comprehensive experimental results on SBM random networks reveal that our non-randomized ergodic objectives yield node embeddings whose distribution is Gaussian-like, centered at the node embeddings of the expected network within each community, and concentrate in the linear degree-scaling regime as the number of nodes increases.
In this work, we study the $k$-means cost function. Given a dataset $X \subseteq \mathbb{R}^d$ and an integer $k$, the goal of the Euclidean $k$-means problem is to find a set of $k$ centers $C \subseteq \mathbb{R}^d$ such that $\Phi(C, X) \equiv \sum_{x \in X} \min_{c \in C} ||x - c||^2$ is minimized. Let $\Delta(X,k) \equiv \min_{C \subseteq \mathbb{R}^d} \Phi(C, X)$ denote the cost of the optimal $k$-means solution. For any dataset $X$, $\Delta(X,k)$ decreases as $k$ increases. In this work, we try to understand this behaviour more precisely. For any dataset $X \subseteq \mathbb{R}^d$, integer $k \geq 1$, and a precision parameter $\varepsilon > 0$, let $L(X, k, \varepsilon)$ denote the smallest integer such that $\Delta(X, L(X, k, \varepsilon)) \leq \varepsilon \cdot \Delta(X,k)$. We show upper and lower bounds on this quantity. Our techniques generalize for the metric $k$-median problem in arbitrary metric spaces and we give bounds in terms of the doubling dimension of the metric. Finally, we observe that for any dataset $X$, we can compute a set $S$ of size $O \left(L(X, k, \varepsilon/c) \right)$ using $D^2$-sampling such that $\Phi(S,X) \leq \varepsilon \cdot \Delta(X,k)$ for some fixed constant $c$. We also discuss some applications of our bounds.
Partial differential equations on manifolds have been widely studied and plays a crucial role in many subjects. In our previous work, a class of nonlocal models was introduced to approximate the Poisson equation on manifolds that embedded in high dimensional Euclid spaces with Dirichlet and Neumann boundaries. In this paper, we improve the accuracy of such model under Dirichlet boundary by adding a higher order term along a layer adjacent to the boundary. Such term is explicitly expressed by the normal derivative of solution and the mean curvature of the boundary, while the normal derivative is regarded as a variable. All the truncation errors that involve or do not involve such term have been re-analyzed and been significantly reduced. Our concentration is on the well-posedness analysis of the weak formulation corresponding to the nonlocal model and the convergence analysis to its PDE counterpart. The main result of our work is that, such manifold nonlocal model converges to the local Poisson problem in a rate of \mathcal{O}(\delta^2) in H^1 norm, where {\delta} is the parameter that denotes the range of support for the kernel of the nonlocal operators. Such convergence rate is currently optimal among all the nonlocal models according to the literature. Two numerical experiments are included to illustrate our convergence results on the other side.
In applications of remote sensing, estimation, and control, timely communication is not always ensured by high-rate communication. This work proposes distributed age-efficient transmission policies for random access channels with $M$ transmitters. In the first part of this work, we analyze the age performance of stationary randomized policies by relating the problem of finding age to the absorption time of a related Markov chain. In the second part of this work, we propose the notion of \emph{age-gain} of a packet to quantify how much the packet will reduce the instantaneous age of information at the receiver side upon successful delivery. We then utilize this notion to propose a transmission policy in which transmitters act in a distributed manner based on the age-gain of their available packets. In particular, each transmitter sends its latest packet only if its corresponding age-gain is beyond a certain threshold which could be computed adaptively using the collision feedback or found as a fixed value analytically in advance. Both methods improve age of information significantly compared to the state of the art. In the limit of large $M$, we prove that when the arrival rate is small (below $\frac{1}{eM}$), slotted ALOHA-type algorithms are asymptotically optimal. As the arrival rate increases beyond $\frac{1}{eM}$, while age increases under slotted ALOHA, it decreases significantly under the proposed age-based policies. For arrival rates $\theta$, $\theta=\frac{1}{o(M)}$, the proposed algorithms provide a multiplicative factor of at least two compared to the minimum age under slotted ALOHA (minimum over all arrival rates). We conclude that, as opposed to the common practice, it is beneficial to increase the sampling rate (and hence the arrival rate) and transmit packets selectively based on their age-gain.
Inverse kinematics (IK) is the problem of finding robot joint configurations that satisfy constraints on the position or pose of one or more end-effectors. For robots with redundant degrees of freedom, there is often an infinite, nonconvex set of solutions. The IK problem is further complicated when collision avoidance constraints are imposed by obstacles in the workspace. In general, closed-form expressions yielding feasible configurations do not exist, motivating the use of numerical solution methods. However, these approaches rely on local optimization of nonconvex problems, often requiring an accurate initialization or numerous re-initializations to converge to a valid solution. In this work, we first formulate complicated inverse kinematics problems as convex feasibility problems whose low-rank feasible points provide exact IK solutions. We then present CIDGIK (Convex Iteration for Distance-Geometric Inverse Kinematics), an algorithm that solves these feasibility problems with a sequence of semidefinite programs whose objectives are designed to encourage low-rank minimizers. Our problem formulation elegantly unifies the configuration space and workspace constraints of a robot: intrinsic robot geometry and obstacle avoidance are both expressed as simple linear matrix equations and inequalities. Our experimental results for a variety of popular manipulator models demonstrate faster and more accurate convergence than a conventional nonlinear optimization-based approach, especially in environments with many obstacles.
Deep learning is the mainstream technique for many machine learning tasks, including image recognition, machine translation, speech recognition, and so on. It has outperformed conventional methods in various fields and achieved great successes. Unfortunately, the understanding on how it works remains unclear. It has the central importance to lay down the theoretic foundation for deep learning. In this work, we give a geometric view to understand deep learning: we show that the fundamental principle attributing to the success is the manifold structure in data, namely natural high dimensional data concentrates close to a low-dimensional manifold, deep learning learns the manifold and the probability distribution on it. We further introduce the concepts of rectified linear complexity for deep neural network measuring its learning capability, rectified linear complexity of an embedding manifold describing the difficulty to be learned. Then we show for any deep neural network with fixed architecture, there exists a manifold that cannot be learned by the network. Finally, we propose to apply optimal mass transportation theory to control the probability distribution in the latent space.