Salt and pepper noise removal is a common inverse problem in image processing. Traditional denoising methods have two limitations. First, noise characteristics are often not described accurately. For example, the noise location information is often ignored and the sparsity of the salt and pepper noise is often described by L1 norm, which cannot illustrate the sparse variables clearly. Second, conventional methods separate the contaminated image into a recovered image and a noise part, thus resulting in recovering an image with unsatisfied smooth parts and detail parts. In this study, we introduce a noise detection strategy to determine the position of the noise, and a non-convex sparsity regularization depicted by Lp quasi-norm is employed to describe the sparsity of the noise, thereby addressing the first limitation. The morphological component analysis framework with stationary Framelet transform is adopted to decompose the processed image into cartoon, texture, and noise parts to resolve the second limitation. Then, the alternating direction method of multipliers (ADMM) is employed to solve the proposed model. Finally, experiments are conducted to verify the proposed method and compare it with some current state-of-the-art denoising methods. The experimental results show that the proposed method can remove salt and pepper noise while preserving the details of the processed image.
A generic out-of-sample error estimate is proposed for robust $M$-estimators regularized with a convex penalty in high-dimensional linear regression where $(X,y)$ is observed and $p,n$ are of the same order. If $\psi$ is the derivative of the robust data-fitting loss $\rho$, the estimate depends on the observed data only through the quantities $\hat\psi = \psi(y-X\hat\beta)$, $X^\top \hat\psi$ and the derivatives $(\partial/\partial y) \hat\psi$ and $(\partial/\partial y) X\hat\beta$ for fixed $X$. The out-of-sample error estimate enjoys a relative error of order $n^{-1/2}$ in a linear model with Gaussian covariates and independent noise, either non-asymptotically when $p/n\le \gamma$ or asymptotically in the high-dimensional asymptotic regime $p/n\to\gamma'\in(0,\infty)$. General differentiable loss functions $\rho$ are allowed provided that $\psi=\rho'$ is 1-Lipschitz. The validity of the out-of-sample error estimate holds either under a strong convexity assumption, or for the $\ell_1$-penalized Huber M-estimator if the number of corrupted observations and sparsity of the true $\beta$ are bounded from above by $s_*n$ for some small enough constant $s_*\in(0,1)$ independent of $n,p$. For the square loss and in the absence of corruption in the response, the results additionally yield $n^{-1/2}$-consistent estimates of the noise variance and of the generalization error. This generalizes, to arbitrary convex penalty, estimates that were previously known for the Lasso.
For many applications of agent-based models (ABMs), an agent's age influences important decisions (e.g. their contribution to/withdrawal from pension funds, their level of risk aversion in decision-making, etc.) and outcomes in their life cycle (e.g. their susceptibility to disease). These considerations make it crucial to accurately capture the age distribution of the population being considered. Often, empirical survival probabilities cannot be used in ABMs to generate the observed age structure due to discrepancies between samples or models (between the ABM and the survival statistical model used to produce empirical rates). In these cases, imputing empirical survival probabilities will not generate the observed age structure of the population, and assumptions such as exogenous agent inflows are necessary (but not necessarily empirically valid). In this paper, we propose a method that allows for the preservation of agent age-structure without the exogenous influx of agents, even when only a subset of the population is being modelled. We demonstrate the flexibility and accuracy of our methodology by performing simulations of several real-world age distributions. This method is a useful tool for those developing ABMs across a broad range of applications.
We study the problem of federated stochastic multi-arm contextual bandits with unknown contexts, in which M agents are faced with different bandits and collaborate to learn. The communication model consists of a central server and the agents share their estimates with the central server periodically to learn to choose optimal actions in order to minimize the total regret. We assume that the exact contexts are not observable and the agents observe only a distribution of the contexts. Such a situation arises, for instance, when the context itself is a noisy measurement or based on a prediction mechanism. Our goal is to develop a distributed and federated algorithm that facilitates collaborative learning among the agents to select a sequence of optimal actions so as to maximize the cumulative reward. By performing a feature vector transformation, we propose an elimination-based algorithm and prove the regret bound for linearly parametrized reward functions. Finally, we validated the performance of our algorithm and compared it with another baseline approach using numerical simulations on synthetic data and on the real-world movielens dataset.
Conventional optimization methods in machine learning and controls rely heavily on first-order update rules. Selecting the right method and hyperparameters for a particular task often involves trial-and-error or practitioner intuition, motivating the field of meta-learning. We generalize a broad family of preexisting update rules by proposing a meta-learning framework in which the inner loop optimization step involves solving a differentiable convex optimization (DCO). We illustrate the theoretical appeal of this approach by showing that it enables one-step optimization of a family of linear least squares problems, given that the meta-learner has sufficient exposure to similar tasks. Various instantiations of the DCO update rule are compared to conventional optimizers on a range of illustrative experimental settings.
Recent research has revealed that Graph Neural Networks (GNNs) are susceptible to adversarial attacks targeting the graph structure. A malicious attacker can manipulate a limited number of edges, given the training labels, to impair the victim model's performance. Previous empirical studies indicate that gradient-based attackers tend to add edges rather than remove them. In this paper, we present a theoretical demonstration revealing that attackers tend to increase inter-class edges due to the message passing mechanism of GNNs, which explains some previous empirical observations. By connecting dissimilar nodes, attackers can more effectively corrupt node features, making such attacks more advantageous. However, we demonstrate that the inherent smoothness of GNN's message passing tends to blur node dissimilarity in the feature space, leading to the loss of crucial information during the forward process. To address this issue, we propose a novel surrogate model with multi-level propagation that preserves the node dissimilarity information. This model parallelizes the propagation of unaggregated raw features and multi-hop aggregated features, while introducing batch normalization to enhance the dissimilarity in node representations and counteract the smoothness resulting from topological aggregation. Our experiments show significant improvement with our approach.Furthermore, both theoretical and experimental evidence suggest that adding inter-class edges constitutes an easily observable attack pattern. We propose an innovative attack loss that balances attack effectiveness and imperceptibility, sacrificing some attack effectiveness to attain greater imperceptibility. We also provide experiments to validate the compromise performance achieved through this attack loss.
This paper studies an infinite horizon optimal control problem for discrete-time linear system and quadratic criteria, both with random parameters which are independent and identically distributed with respect to time. In this general setting, we apply the policy gradient method, a reinforcement learning technique, to search for the optimal control without requiring knowledge of statistical information of the parameters. We investigate the sub-Gaussianity of the state process and establish global linear convergence guarantee for this approach based on assumptions that are weaker and easier to verify compared to existing results. Numerical experiments are presented to illustrate our result.
Orthogonality constraints naturally appear in many machine learning problems, from Principal Components Analysis to robust neural network training. They are usually solved using Riemannian optimization algorithms, which minimize the objective function while enforcing the constraint. However, enforcing the orthogonality constraint can be the most time-consuming operation in such algorithms. Recently, Ablin & Peyr\'e (2022) proposed the Landing algorithm, a method with cheap iterations that does not enforce the orthogonality constraint but is attracted towards the manifold in a smooth manner. In this article, we provide new practical and theoretical developments for the landing algorithm. First, the method is extended to the Stiefel manifold, the set of rectangular orthogonal matrices. We also consider stochastic and variance reduction algorithms when the cost function is an average of many functions. We demonstrate that all these methods have the same rate of convergence as their Riemannian counterparts that exactly enforce the constraint. Finally, our experiments demonstrate the promise of our approach to an array of machine-learning problems that involve orthogonality constraints.
Optimization problems involving sequential decisions in a stochastic environment were studied in Stochastic Programming (SP), Stochastic Optimal Control (SOC) and Markov Decision Processes (MDP). In this paper we mainly concentrate on SP and SOC modelling approaches. In these frameworks there are natural situations when the considered problems are convex. Classical approach to sequential optimization is based on dynamic programming. It has the problem of the so-called ``Curse of Dimensionality", in that its computational complexity increases exponentially with increase of dimension of state variables. Recent progress in solving convex multistage stochastic problems is based on cutting planes approximations of the cost-to-go (value) functions of dynamic programming equations. Cutting planes type algorithms in dynamical settings is one of the main topics of this paper. We also discuss Stochastic Approximation type methods applied to multistage stochastic optimization problems. From the computational complexity point of view, these two types of methods seem to be complimentary to each other. Cutting plane type methods can handle multistage problems with a large number of stages, but a relatively smaller number of state (decision) variables. On the other hand, stochastic approximation type methods can only deal with a small number of stages, but a large number of decision variables.
Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.