亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we present refined generalization bounds for the Deep Ritz Method (DRM) and Physics-Informed Neural Networks (PINNs). For the DRM, we focus on two prototype elliptic PDEs: Poisson equation and static Schr\"odinger equation on the $d$-dimensional unit hypercube with the Neumann boundary condition. And sharper generalization bounds are derived based on the localization techniques under the assumptions that the exact solutions of the PDEs lie in the Barron space or the general Sobolev spaces. For the PINNs, we investigate the general linear second elliptic PDEs with Dirichlet boundary condition.

相關內容

In this paper, we provide expressions for the secrecy outage probability (SOP) for suboptimal and optimal opportunistic scheduling schemes in a reconfigurable intelligent surface (RIS) aided system with multiple eavesdroppers in approximate closed form. A suboptimal scheduling (SS) scheme is analyzed, which is used when the channel state information (CSI) of the eavesdropping links is unavailable, and the optimal scheduling (OS) scheme is also analyzed, which is used when the global CSI is available. For each scheme, we provide a simplified expression for the SOP in the high signal-to-noise ratio (SNR) regime to demonstrate its behavior as a function of the key system parameters. At high SNR, the SOP saturates to a constant level which decreases exponentially with the number of RIS elements in the SS scheme and with the product of the number of RIS elements and the number of users in the OS scheme. We compare the performance of the opportunistic user scheduling schemes with that of a non-orthogonal multiple access (NOMA) based scheduling scheme which chooses a pair of users in each time slot for scheduling and we show that the opportunistic schemes outperform the NOMA-based scheme. We also derive a closed-form expression for the SOP of a decode-and-forward (DF) relay-aided scheduling scheme in order to compare it with that of the RIS-aided system. It is found that the RIS-aided system outperforms the relay-aided systems when the number of RIS elements is sufficiently large. An increased number of RIS elements is required to outperform the relay-aided system at higher operating frequencies.

In this work, we introduce a framework that enables the use of Syndrome-Based Neural Decoders (SBND) for high-order Bit-Interleaved Coded Modulations (BICM). To this end, we extend the previous results on SBND, for which the validity is limited to Binary Phase-Shift Keying (BPSK), by means of a theoretical channel modeling of the bit Log-Likelihood Ratio (bit-LLR) induced outputs. We implement the proposed SBND system for two polar codes $(64,32)$ and $(128,64)$, using a Recurrent Neural Network (RNN) and a Transformer-based architecture. Both implementations are compared in Bit Error Rate (BER) performance and computational complexity.

In this paper, we propose Prosody-aware VITS (PAVITS) for emotional voice conversion (EVC), aiming to achieve two major objectives of EVC: high content naturalness and high emotional naturalness, which are crucial for meeting the demands of human perception. To improve the content naturalness of converted audio, we have developed an end-to-end EVC architecture inspired by the high audio quality of VITS. By seamlessly integrating an acoustic converter and vocoder, we effectively address the common issue of mismatch between emotional prosody training and run-time conversion that is prevalent in existing EVC models. To further enhance the emotional naturalness, we introduce an emotion descriptor to model the subtle prosody variations of different speech emotions. Additionally, we propose a prosody predictor, which predicts prosody features from text based on the provided emotion label. Notably, we introduce a prosody alignment loss to establish a connection between latent prosody features from two distinct modalities, ensuring effective training. Experimental results show that the performance of PAVITS is superior to the state-of-the-art EVC methods. Speech Samples are available at //jeremychee4.github.io/pavits4EVC/ .

In this paper, we first present the character texture generation system \textit{Minecraft-ify}, specified to Minecraft video game toward in-game application. Ours can generate face-focused image for texture mapping tailored to 3D virtual character having cube manifold. While existing projects or works only generate texture, proposed system can inverse the user-provided real image, or generate average/random appearance from learned distribution. Moreover, it can be manipulated with text-guidance using StyleGAN and StyleCLIP. These features provide a more extended user experience with enlarged freedom as a user-friendly AI-tool. Project page can be found at //gh-bumsookim.github.io/Minecraft-ify/

This paper introduces Bespoke Non-Stationary (BNS) Solvers, a solver distillation approach to improve sample efficiency of Diffusion and Flow models. BNS solvers are based on a family of non-stationary solvers that provably subsumes existing numerical ODE solvers and consequently demonstrate considerable improvement in sample approximation (PSNR) over these baselines. Compared to model distillation, BNS solvers benefit from a tiny parameter space ($<$200 parameters), fast optimization (two orders of magnitude faster), maintain diversity of samples, and in contrast to previous solver distillation approaches nearly close the gap from standard distillation methods such as Progressive Distillation in the low-medium NFE regime. For example, BNS solver achieves 45 PSNR / 1.76 FID using 16 NFE in class-conditional ImageNet-64. We experimented with BNS solvers for conditional image generation, text-to-image generation, and text-2-audio generation showing significant improvement in sample approximation (PSNR) in all.

In this work, we present novel protocols over rings for semi-honest secure three-party computation (3-PC) and malicious four-party computation (4-PC) with one corruption. Compared to state-of-the-art protocols in the same setting, our protocols require fewer low-latency and high-bandwidth links between the parties to achieve high throughput. Our protocols also reduce the computational complexity by requiring up to 50 percent fewer basic instructions per gate. Further, our protocols achieve the currently best-known communication complexity (3, resp. 5 elements per multiplication gate) with an optional preprocessing phase to reduce the communication complexity of the online phase to 2 (resp. 3) elements per multiplication gate. In homogeneous network settings, i.e. all links between the parties share similar network bandwidth and latency, our protocols achieve up to two times higher throughput than state-of-the-art protocols. In heterogeneous network settings, i.e. all links between the parties share different network bandwidth and latency, our protocols achieve even larger performance improvements. We implemented our protocols and multiple other state-of-the-art protocols (Replicated 3-PC, Astra, Fantastic Four, Tetrad) in a novel open-source C++ framework optimized for achieving high throughput. Five out of six implemented 3-PC and 4-PC protocols achieve more than one billion 32-bit multiplication or more than 32 billion AND gates per second using our implementation in a 25 Gbit/s LAN environment. This is the highest throughput achieved in 3-PC and 4-PC so far and between two and three orders of magnitude higher than the throughput MP-SPDZ achieves in the same settings.

In this paper, we revisit the Power Curves in ANOVA Simultaneous Component Analysis (ASCA) based on permutation testing, and introduce the Population Curves derived from population parameters describing the relative effect among factors and interactions. We distinguish Relative from Absolute Population Curves, where the former represent statistical power in terms of the normalized effect size between structure and noise, and the latter in terms of the sample size. Relative Population Curves are useful to find the optimal ASCA model (e.g., fixed/random factors, crossed/nested relationships, interactions, the test statistic, transformations, etc.) for the analysis of an experimental design at hand. Absolute Population Curves are useful to determine the sample size and the optimal number of levels for each factor during the planning phase on an experiment. We illustrate both types of curves through simulation. We expect Population Curves to become the go-to approach to plan the optimal analysis pipeline and the required sample size in an omics study analyzed with ASCA.

This paper presents an exhaustive quantitative and qualitative evaluation of Large Language Models (LLMs) for Knowledge Graph (KG) construction and reasoning. We employ eight distinct datasets that encompass aspects including entity, relation and event extraction, link prediction, and question answering. Empirically, our findings suggest that GPT-4 outperforms ChatGPT in the majority of tasks and even surpasses fine-tuned models in certain reasoning and question-answering datasets. Moreover, our investigation extends to the potential generalization ability of LLMs for information extraction, which culminates in the presentation of the Virtual Knowledge Extraction task and the development of the VINE dataset. Drawing on these empirical findings, we further propose AutoKG, a multi-agent-based approach employing LLMs for KG construction and reasoning, which aims to chart the future of this field and offer exciting opportunities for advancement. We anticipate that our research can provide invaluable insights for future undertakings of KG\footnote{Code and datasets will be available in //github.com/zjunlp/AutoKG.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.

北京阿比特科技有限公司