This article presents a novel method for causal discovery with generalized structural equation models suited for analyzing diverse types of outcomes, including discrete, continuous, and mixed data. Causal discovery often faces challenges due to unmeasured confounders that hinder the identification of causal relationships. The proposed approach addresses this issue by developing two peeling algorithms (bottom-up and top-down) to ascertain causal relationships and valid instruments. This approach first reconstructs a super-graph to represent ancestral relationships between variables, using a peeling algorithm based on nodewise GLM regressions that exploit relationships between primary and instrumental variables. Then, it estimates parent-child effects from the ancestral relationships using another peeling algorithm while deconfounding a child's model with information borrowed from its parents' models. The article offers a theoretical analysis of the proposed approach, which establishes conditions for model identifiability and provides statistical guarantees for accurately discovering parent-child relationships via the peeling algorithms. Furthermore, the article presents numerical experiments showcasing the effectiveness of our approach in comparison to state-of-the-art structure learning methods without confounders. Lastly, it demonstrates an application to Alzheimer's disease (AD), highlighting the utility of the method in constructing gene-to-gene and gene-to-disease regulatory networks involving Single Nucleotide Polymorphisms (SNPs) for healthy and AD subjects.
Bayesian optimization is a coherent, ubiquitous approach to decision-making under uncertainty, with applications including multi-arm bandits, active learning, and black-box optimization. Bayesian optimization selects decisions (i.e. objective function queries) with maximal expected utility with respect to the posterior distribution of a Bayesian model, which quantifies reducible, epistemic uncertainty about query outcomes. In practice, subjectively implausible outcomes can occur regularly for two reasons: 1) model misspecification and 2) covariate shift. Conformal prediction is an uncertainty quantification method with coverage guarantees even for misspecified models and a simple mechanism to correct for covariate shift. We propose conformal Bayesian optimization, which directs queries towards regions of search space where the model predictions have guaranteed validity, and investigate its behavior on a suite of black-box optimization tasks and tabular ranking tasks. In many cases we find that query coverage can be significantly improved without harming sample-efficiency.
This paper investigates the problem of online statistical inference of model parameters in stochastic optimization problems via the Kiefer-Wolfowitz algorithm with random search directions. We first present the asymptotic distribution for the Polyak-Ruppert-averaging type Kiefer-Wolfowitz (AKW) estimators, whose asymptotic covariance matrices depend on the distribution of search directions and the function-value query complexity. The distributional result reflects the trade-off between statistical efficiency and function query complexity. We further analyze the choice of random search directions to minimize certain summary statistics of the asymptotic covariance matrix. Based on the asymptotic distribution, we conduct online statistical inference by providing two construction procedures of valid confidence intervals.
We propose a novel algorithmic framework for distributional reinforcement learning, based on learning finite-dimensional mean embeddings of return distributions. We derive several new algorithms for dynamic programming and temporal-difference learning based on this framework, provide asymptotic convergence theory, and examine the empirical performance of the algorithms on a suite of tabular tasks. Further, we show that this approach can be straightforwardly combined with deep reinforcement learning, and obtain a new deep RL agent that improves over baseline distributional approaches on the Arcade Learning Environment.
We study dynamic algorithms in the model of algorithms with predictions. We assume the algorithm is given imperfect predictions regarding future updates, and we ask how such predictions can be used to improve the running time. This can be seen as a model interpolating between classic online and offline dynamic algorithms. Our results give smooth tradeoffs between these two extreme settings. First, we give algorithms for incremental and decremental transitive closure and approximate APSP that take as an additional input a predicted sequence of updates (edge insertions, or edge deletions, respectively). They preprocess it in $\tilde{O}(n^{(3+\omega)/2})$ time, and then handle updates in $\tilde{O}(1)$ worst-case time and queries in $\tilde{O}(\eta^2)$ worst-case time. Here $\eta$ is an error measure that can be bounded by the maximum difference between the predicted and actual insertion (deletion) time of an edge, i.e., by the $\ell_\infty$-error of the predictions. The second group of results concerns fully dynamic problems with vertex updates, where the algorithm has access to a predicted sequence of the next $n$ updates. We show how to solve fully dynamic triangle detection, maximum matching, single-source reachability, and more, in $O(n^{\omega-1}+n\eta_i)$ worst-case update time. Here $\eta_i$ denotes how much earlier the $i$-th update occurs than predicted. Our last result is a reduction that transforms a worst-case incremental algorithm without predictions into a fully dynamic algorithm which is given a predicted deletion time for each element at the time of its insertion. As a consequence we can, e.g., maintain fully dynamic exact APSP with such predictions in $\tilde{O}(n^2)$ worst-case vertex insertion time and $\tilde{O}(n^2 (1+\eta_i))$ worst-case vertex deletion time (for the prediction error $\eta_i$ defined as above).
We present DARLEI, a framework that combines evolutionary algorithms with parallelized reinforcement learning for efficiently training and evolving populations of UNIMAL agents. Our approach utilizes Proximal Policy Optimization (PPO) for individual agent learning and pairs it with a tournament selection-based generational learning mechanism to foster morphological evolution. By building on Nvidia's Isaac Gym, DARLEI leverages GPU accelerated simulation to achieve over 20x speedup using just a single workstation, compared to previous work which required large distributed CPU clusters. We systematically characterize DARLEI's performance under various conditions, revealing factors impacting diversity of evolved morphologies. For example, by enabling inter-agent collisions within the simulator, we find that we can simulate some multi-agent interactions between the same morphology, and see how it influences individual agent capabilities and long-term evolutionary adaptation. While current results demonstrate limited diversity across generations, we hope to extend DARLEI in future work to include interactions between diverse morphologies in richer environments, and create a platform that allows for coevolving populations and investigating emergent behaviours in them. Our source code is also made publicly at //saeejithnair.github.io/darlei.
This article addresses the obstacle avoidance problem for setpoint stabilization and path-following tasks in complex dynamic 2D environments that go beyond conventional scenes with isolated convex obstacles. A combined motion planner and controller is proposed for setpoint stabilization that integrates the favorable convergence characteristics of closed-form motion planning techniques with the intuitive representation of system constraints through Model Predictive Control (MPC). The method is analytically proven to accomplish collision avoidance and convergence under certain conditions, and it is extended to path-following control. Various simulation scenarios using a non-holonomic unicycle robot are provided to showcase the efficacy of the control scheme and its improved convergence results compared to standard path-following MPC approaches with obstacle avoidance.
The multiobjective evolutionary optimization algorithm (MOEA) is a powerful approach for tackling multiobjective optimization problems (MOPs), which can find a finite set of approximate Pareto solutions in a single run. However, under mild regularity conditions, the Pareto optimal set of a continuous MOP could be a low dimensional continuous manifold that contains infinite solutions. In addition, structure constraints on the whole optimal solution set, which characterize the patterns shared among all solutions, could be required in many real-life applications. It is very challenging for existing finite population based MOEAs to handle these structure constraints properly. In this work, we propose the first model-based algorithmic framework to learn the whole solution set with structure constraints for multiobjective optimization. In our approach, the Pareto optimality can be traded off with a preferred structure among the whole solution set, which could be crucial for many real-world problems. We also develop an efficient evolutionary learning method to train the set model with structure constraints. Experimental studies on benchmark test suites and real-world application problems demonstrate the promising performance of our proposed framework.
This paper presents a Gaussian Process (GP) framework, a non-parametric technique widely acknowledged for regression and classification tasks, to address inverse problems in mean field games (MFGs). By leveraging GPs, we aim to recover agents' strategic actions and the environment's configurations from partial and noisy observations of the population of agents and the setup of the environment. Our method is a probabilistic tool to infer the behaviors of agents in MFGs from data in scenarios where the comprehensive dataset is either inaccessible or contaminated by noises.
We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.