Understanding labour market dynamics requires accurately identifying the skills required for and possessed by the workforce. Automation techniques are increasingly being developed to support this effort. However, automatically extracting skills from job postings is challenging due to the vast number of existing skills. The ESCO (European Skills, Competences, Qualifications and Occupations) framework provides a useful reference, listing over 13,000 individual skills. However, skills extraction remains difficult and accurately matching job posts to the ESCO taxonomy is an open problem. In this work, we propose an end-to-end zero-shot system for skills extraction from job descriptions based on large language models (LLMs). We generate synthetic training data for the entirety of ESCO skills and train a classifier to extract skill mentions from job posts. We also employ a similarity retriever to generate skill candidates which are then re-ranked using a second LLM. Using synthetic data achieves an RP@10 score 10 points higher than previous distant supervision approaches. Adding GPT-4 re-ranking improves RP@10 by over 22 points over previous methods. We also show that Framing the task as mock programming when prompting the LLM can lead to better performance than natural language prompts, especially with weaker LLMs. We demonstrate the potential of integrating large language models at both ends of skills matching pipelines. Our approach requires no human annotations and achieve extremely promising results on skills extraction against ESCO.
Cortical processing, in vision and other domains, combines bottom-up (BU) with extensive top-down (TD) processing. Two primary goals attributed to TD processing are learning and directing attention. These two roles are accomplished in current network models through distinct mechanisms. Attention guidance is often implemented by extending the model's architecture, while learning is typically accomplished by an external learning algorithm such as back-propagation. In the current work, we present an integration of the two functions above, which appear unrelated, using a single unified mechanism inspired by the human brain. We propose a novel symmetric bottom-up top-down network structure that can integrate conventional bottom-up networks with a symmetric top-down counterpart, allowing each network to recurrently guide and influence the other. For example, during multi-task learning, the same top-down network is being used for both learning, via propagating feedback signals, and at the same time also for top-down attention, by guiding the bottom-up network to perform a selected task. In contrast with standard models, no external back-propagation is used for learning. Instead, we propose a 'Counter-Hebb' learning, which adjusts the weights of both the bottom-up and top-down networks simultaneously. We show that our method achieves competitive performance on standard multi-task learning benchmarks. Yet, unlike existing methods, we rely on single-task architectures and optimizers, without any task-specific parameters. The results, which show how attention-guided multi-tasks can be combined efficiently with internal learning in a unified TD process, suggest a possible model for combining BU and TD processing in human vision.
We consider the problem of sampling from a distribution governed by a potential function. This work proposes an explicit score-based MCMC method that is deterministic, resulting in a deterministic evolution for particles rather than a stochastic differential equation evolution. The score term is given in closed form by a regularized Wasserstein proximal, using a kernel convolution that is approximated by sampling. We demonstrate fast convergence on various problems and show improved dimensional dependence of mixing time bounds for the case of Gaussian distributions compared to the unadjusted Langevin algorithm (ULA) and the Metropolis-adjusted Langevin algorithm (MALA). We additionally derive closed form expressions for the distributions at each iterate for quadratic potential functions, characterizing the variance reduction. Empirical results demonstrate that the particles behave in an organized manner, lying on level set contours of the potential. Moreover, the posterior mean estimator of the proposed method is shown to be closer to the maximum a-posteriori estimator compared to ULA and MALA, in the context of Bayesian logistic regression.
Video temporal character grouping locates appearing moments of major characters within a video according to their identities. To this end, recent works have evolved from unsupervised clustering to graph-based supervised clustering. However, graph methods are built upon the premise of fixed affinity graphs, bringing many inexact connections. Besides, they extract multi-modal features with kinds of models, which are unfriendly to deployment. In this paper, we present a unified and dynamic graph (UniDG) framework for temporal character grouping. This is accomplished firstly by a unified representation network that learns representations of multiple modalities within the same space and still preserves the modality's uniqueness simultaneously. Secondly, we present a dynamic graph clustering where the neighbors of different quantities are dynamically constructed for each node via a cyclic matching strategy, leading to a more reliable affinity graph. Thirdly, a progressive association method is introduced to exploit spatial and temporal contexts among different modalities, allowing multi-modal clustering results to be well fused. As current datasets only provide pre-extracted features, we evaluate our UniDG method on a collected dataset named MTCG, which contains each character's appearing clips of face and body and speaking voice tracks. We also evaluate our key components on existing clustering and retrieval datasets to verify the generalization ability. Experimental results manifest that our method can achieve promising results and outperform several state-of-the-art approaches.
This paper proposes a system capable of recognizing a speaker's utterance-level emotion through multimodal cues in a video. The system seamlessly integrates multiple AI models to first extract and pre-process multimodal information from the raw video input. Next, an end-to-end MER model sequentially predicts the speaker's emotions at the utterance level. Additionally, users can interactively demonstrate the system through the implemented interface.
Large Language Models (LLMs) have shown promise in automated program reasoning, a crucial aspect of many security tasks. However, existing LLM architectures for code are often borrowed from other domains like natural language processing, raising concerns about their generalization and robustness to unseen code. A key generalization challenge is to incorporate the knowledge of code semantics, including control and data flow, into the LLM architectures. Drawing inspiration from examples of convolution layers exploiting translation symmetry, we explore how code symmetries can enhance LLM architectures for program analysis and modeling. We present a rigorous group-theoretic framework that formally defines code symmetries as semantics-preserving transformations and provides techniques for precisely reasoning about symmetry preservation within LLM architectures. Using this framework, we introduce a novel variant of self-attention that preserves program symmetries, demonstrating its effectiveness in generalization and robustness through detailed experimental evaluations across different binary and source code analysis tasks. Overall, our code symmetry framework offers rigorous and powerful reasoning techniques that can guide the future development of specialized LLMs for code and advance LLM-guided program reasoning tasks.
Stereoscopic image quality assessment (SIQA) plays a crucial role in evaluating and improving the visual experience of 3D content. Existing binocular properties and attention-based methods for SIQA have achieved promising performance. However, these bottom-up approaches are inadequate in exploiting the inherent characteristics of the human visual system (HVS). This paper presents a novel network for SIQA via stereo attention, employing a top-down perspective to guide the quality assessment process. Our proposed method realizes the guidance from high-level binocular signals down to low-level monocular signals, while the binocular and monocular information can be calibrated progressively throughout the processing pipeline. We design a generalized Stereo AttenTion (SAT) block to implement the top-down philosophy in stereo perception. This block utilizes the fusion-generated attention map as a high-level binocular modulator, influencing the representation of two low-level monocular features. Additionally, we introduce an Energy Coefficient (EC) to account for recent findings indicating that binocular responses in the primate primary visual cortex are less than the sum of monocular responses. The adaptive EC can tune the magnitude of binocular response flexibly, thus enhancing the formation of robust binocular features within our framework. To extract the most discriminative quality information from the summation and subtraction of the two branches of monocular features, we utilize a dual-pooling strategy that applies min-pooling and max-pooling operations to the respective branches. Experimental results highlight the superiority of our top-down method in simulating the property of visual perception and advancing the state-of-the-art in the SIQA field. The code of this work is available at //github.com/Fanning-Zhang/SATNet.
This report first takes stock of XAI-related requirements appearing in various EU directives, regulations, guidelines, and CJEU case law. This analysis of existing requirements will permit us to have a clearer vision of the purposes, the ``why'', of XAI, which we separate into five categories: contestability, empowerment/redressing information asymmetries, control over system performance, evaluation of algorithmic decisions, and public administration transparency. The analysis of legal requirements also permits us to create four categories of recipients for explainability: data science teams; human operators of the system; persons affected by algorithmic decisions, and regulators/judges/auditors. Lastly, we identify four main operational contexts for explainability: XAI for the upstream design and testing phase; XAI for human-on-the-loop control; XAI for human-in-the-loop control; and XAI for ex-post challenges and investigations.Second, we will present user-centered design methodology, which takes the purposes, the recipients and the operational context into account in order to develop optimal XAI solutions.Third, we will suggest a methodology to permit suppliers and users of high-risk AI applications to propose local XAI solutions that are effective in the sense of being ``meaningful'', for example, useful in light of the operational, safety and fundamental rights contexts. The process used to develop these ``meaningful'' XAI solutions will be based on user-centric design principles examined in the second part.Fourth, we will suggest that the European Commission issue guidelines to provide a harmonised approach to defining ``meaningful'' explanations based on the purposes, audiences and operational contexts of AI systems. These guidelines would apply to the AI Act, but also to the other EU texts requiring explanations for algorithmic systems and results.
Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.
Human-centric perception plays a vital role in vision and graphics. But their data annotations are prohibitively expensive. Therefore, it is desirable to have a versatile pre-train model that serves as a foundation for data-efficient downstream tasks transfer. To this end, we propose the Human-Centric Multi-Modal Contrastive Learning framework HCMoCo that leverages the multi-modal nature of human data (e.g. RGB, depth, 2D keypoints) for effective representation learning. The objective comes with two main challenges: dense pre-train for multi-modality data, efficient usage of sparse human priors. To tackle the challenges, we design the novel Dense Intra-sample Contrastive Learning and Sparse Structure-aware Contrastive Learning targets by hierarchically learning a modal-invariant latent space featured with continuous and ordinal feature distribution and structure-aware semantic consistency. HCMoCo provides pre-train for different modalities by combining heterogeneous datasets, which allows efficient usage of existing task-specific human data. Extensive experiments on four downstream tasks of different modalities demonstrate the effectiveness of HCMoCo, especially under data-efficient settings (7.16% and 12% improvement on DensePose Estimation and Human Parsing). Moreover, we demonstrate the versatility of HCMoCo by exploring cross-modality supervision and missing-modality inference, validating its strong ability in cross-modal association and reasoning.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.